Zach Meisel

Associate Professor

of Physics & Astronomy,

Director of the Edwards Accelerator Laboratory,

Ohio University

About Me

I am Director of the Edwards Accelerator Laboratory and an Associate Professor in the Department of Physics and Astronomy at Ohio University. My research is primarily in the field of nuclear astrophysics.

Brief Bio:

My primary research foci are the origin of the elements and the nuclear physics of transient phenomena involving compact stellar objects. I also investigate the structural evolution of nuclei, nuclear reactions for intermediate mass nuclides, and the development of nuclear instrumentation and analysis techniques. My primary research methods are low-energy nuclear physics experiments with stable and radioactive ion beams, coupled with astrophysics model calculations using open-source software. I briefly describe my work in general terms in this video and in a public lecture you can find here. I am a member of the Institute of Nuclear and Particle Physics and am affiliated with the Joint Institute for Nuclear Astrophysics and International Research Network for Nuclear Astrophysics.

I teach undergraduate and graduate courses in the Physics and Astronomy Department at Ohio University, as well as participate in science outreach events as a lecturer.

CV | Publications


Nuclear astrophysics and experimental low-energy nuclear physics.

Nuclear Physics of Accreting Neutron Stars

Neutron stars that siphon material from binary companions are host to numerous astronomical observables that probe the behavior of high density matter at low temperatures, such as x-ray bursts and quasipersistent transients. My group works to improve our understanding of these events by studying the underlying nuclear physics through laboratory experiments and astrophysics model calculations. Our primary aims are to reduce and remove nuclear physics uncertainties present in predictions of x-ray burst light curves and in the production of and impact of urca cooling nuclides on accreting neutron stars. I briefly describe our reserch in general terms in this video and in a public lecture you can find here. I discussed a particular project from late 2019 with AAS journals editor Frank Timmes to kick off their author interview series, which can be found here.

Go to research highlights

Nucleosynthesis in the Universe

Though a subject of study for nearly 100 years, the origin of the elements remains an outstanding mystery. My group works to improve the situation by measuring nuclear reactions thought to play a role in element formation at the energies of relevance to astrophysical scenarios and assessing their impact in astrophysics model calculations. Our primary aims are to reduce and remove the substantial uncertainties unknown (α,n) reaction rates contribute to predictions for the production of the as-yet unaccounted-for elements of ~zinc-to-tin in the neutron-rich ν-driven winds of core-collapse supernovae and to identify and constrain important reaction rates for nucleosynthesis in the core-collapse supernova post-bounce shock. I briefly describe our reserch in general terms in this video and in a public lecture you can find here.

Go to research highlights


Undergraduate and graduate physics and astronomy courses and science outreach.

Graduate Courses

Courses taught thus far include PHYS 6751 – Graduate Laboratory: Nuclear and Particle (Fall 2016) and PHYS 7501 – Particles and Nuclei I (Fall 2017,2019,2021). In PHYS 6751 we gain hands-on experience with low-energy nuclear physics laboratory and analysis techniques. In PHYS 7501 we discuss major topics in low-energy nuclear physics, emphasizing connections to contemporary research. In each course an emphasis is also placed on honing effective written and oral communication.

Go to course webpages

Undergraduate Courses

Undergraduate courses I have taught include PHYS 2001 – Introduction to Physics (Spring 2017,2018,2019,2020), PHYS 4031 – Electricity and Magnetism I (Fall 2018), ASTR 4201 – Stellar Physics and Radiaiton (Fall 2020), and ASTR 1000 – Survey of Astronomy (Spring 2021,2022). In PHYS 2001 our goal is to gain a basic understanding of Newtonian mechanics, waves, and thermodynamics, while avoiding the use of calculus. In PHYS 4031 we cover the basics of electrostatics and magnetostatics. In ASTR 4201 we cover the introductory astrophysics of stars. ASTR 1000 consists of a brief overview of main topics in astronomy. My introductory astronomy videos are available on YouTube here and my upper-level undergraduate astrophysics videos can be found on YouTube here.

Go to course webpages


I have participated in several outreach endeavors in the past, including lecturing for elementary, middle, and high school science camps, and serving as a tour guide for nuclear physics facilities.

Go to outreach highlights

Contact Me

204 Edwards Accelerator Laboratory
Ohio University
Athens, Ohio, 45701 USA
Phone: 740-593-1973