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■ Abstract This review explains why generalized parton distributions and the re-
lated quantum phase-space distributions are useful in exploring the quark and gluon
structure of the proton and neutron. It starts with the physics of form factors and
parton distributions. Then quantum phase-space distributions and their offspring are
discussed. The properties of generalized parton distributions are described. In particu-
lar, I elucidate the relation to the spin structure of the nucleon. Finally, various methods
to determine the new distributions are explained.
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1. INTRODUCTION

In the past few years, generalized parton distributions (GPDs) have received con-
siderable attention in both the theory and experimental communities. This article
is an introduction to, but not a thorough review of, GPDs in hadrons (mostly the
nucleon). The topics covered here were selected for their pedagogical utility. In
particular, the material in the first two sections presents the view that quantum
phase-space distributions are the fundamental physical observables, and GPDs are
the observables needed to generate phase-space images of the quarks and gluons
in hadrons. The discussion follows closely a recent paper by Belitsky, Yuan, and
this author (1). For an up-to-date review of GPDs with many technical details and
extensive references, the reader may consult Reference (2). Earlier views can be
found in References (3–5), and some of the materials here overlap with those in
Reference (3).

The subject of nucleon structure has been investigated extensively for sev-
eral decades, so why do we care about another distribution? In understanding the
microscopic structure of matter, we have so far relied mainly on two types of
physical quantities. The first is the spatial distribution of matter (charge or current)
in a system, which can be probed through elastic scattering of electrons, photons,
neutrons, etc. The observables that one measures are the elastic form (structure)
factors, which depend on three-momentum transfer to the system. The Fourier
transformation of these form factors provides information about spatial distribu-
tions. The well-known examples include the charge distribution in an atom and the
atomic structure of a crystal. The second type of quantity on which we rely is the
distribution of constituents in momentum space, or simply the momentum distri-
butions, which can be measured through deep-inelastic knockout scattering. The
well-known examples contain the proton distribution in nuclei, measurable through
quasielastic electron scattering, and the distribution of atoms in a quantum liquid
probable through neutron scattering. With some modifications to accommodate
the relativistic nature of the system, both experimental approaches have been used
to explore the inside of the nucleon. The elastic nucleon form factors have been
measured since the 1950s, and, at low-momentum transfer (�nucleon mass MN )
where the nucleon recoil effect is small, the three-dimensional Fourier transforma-
tion of the form factors is interpretable as the spatial charge and current distribu-
tions of quarks (6). On the other hand, Feynman parton distributions, measurable
in high-energy hard collisions such as deep-inelastic scattering (DIS) and Drell-
Yan and other hard processes, are the longitudinal-momentum distributions of the
quarks and gluons in the so-called infinite momentum frame (7). Both observables
have taught us a great deal about the nucleon, but they have similar deficiencies.
The form factors contain no dynamical information on the constituents, such as
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their speed and angular momentum, and the momentum distributions provide no
knowledge of their spatial locations.

More complete information about the microscopic structure lies in the correla-
tion between momentum and spatial coordinates, i.e., simultaneous knowledge of
a contituent’s location and velocity. This knowledge is certainly attainable for a
classical system, for which one can define and study the phase-space distribution.
For a quantum mechanical system, however, the notion of a phase-space distribu-
tion seems less useful because of the uncertainty principle: One cannot determine
the position and conjugate momentum of a particle simultaneously. Nonetheless,
the first quantum mechanical phase-space distribution was introduced by Wigner
as early as 1932 (8), followed by many similar ones. These distributions have
been used for various purposes in very diverse areas, such as heavy-ion collisions,
quantum molecular dynamics, signal analysis, quantum information, optics, im-
age processing, nonlinear dynamics, etc. (9). Thanks to the rapid experimental
progress of the past decade, Wigner distributions (or functions) for many simple
quantum systems are measurable (10–12), and provide remarkable insight about
the dynamics of these systems.

The main question addressed in this article is, “Can one generalize the concept
of phase-space distribution to the relativistic quarks and gluons in a hadron?”
The notion of a correlated parton position-and-momentum distribution had not
been systematically explored in quantum chromodynamics (QCD) until a few
years ago. The relevant physical observable is GPDs. Roughly speaking, a GPD
is a one-body matrix element that combines the kinematics of both elastic form
factors and Feynman parton distributions, and is measurable in hard exclusive
processes. GPDs were explicitly introduced in Reference (13) as objects with
interesting perturbative QCD (pQCD) evolution, but were largely ignored because
of unclear physical significance. They were rediscovered (14) in the study of
quark orbital motion and the spin structure of the nucleon in which the physics
potential of the distributions began to surface. In the past few years, a full picture
of the role of GPDs in studying the quark and gluon structure of the nucleon has
emerged. A crucial step has been the impact-parameter-space interpretation of
GPDs at a particular kinematic point advocated by Burkardt (15). For a thorough
list of references chronicling the rich and diverse development of the field, see
Reference (2).

The organization of the article is as follows. Section 2 clarifies the effects of
relativity on the physical interpretation of the form factors and parton distribu-
tions. Section 3 introduces quantum phase-space distributions and their offspring.
I first summarize the main features of a quantum mechanical Wigner distribution,
then introduce quantum phase-space parton distributions for a nucleon in its rest-
frame, and finally relate them to experimental observables: transverse-momentum-
dependent and generalized parton distributions. Section 4 reviews some general
properties of the GPDs: their sum rules, relation to the spin structure of the nu-
cleon, chiral behavior, partonic interpretation, scale evolutions, inequalities, and
behaviors at large x and t. Section 5 discusses the GPD dynamics from various
approaches: experimental measurements (hard exclusive processes such as deeply
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virtual Compton scattering), lattice QCD calculations, and models and parame-
terizations. I present a model quantum phase-space distribution, illustrating what
one might expect from future experimental data (1).

2. PHYSICS OF FORM FACTORS AND
PARTON DISTRIBUTIONS

This section is devoted to the familiar topics of elastic form factors and Feynman
parton distributions partly because a phase-space distribution or GPD is, in some
sense, a hybrid of two basic observables. A more important reason, however, is
that special relativity imposes strong constraints on the physical interpretations of
these quantities. In fact, for nucleon physics, relativity is absolutely essential. In
measuring the elastic form factors of the proton, the momentum transfer to the
system can easily exceed the rest mass, resulting in a large Lorentz contraction
in the recoil. In DIS, the struck quark travels along the light-cone: the world-line
of an extreme relativistic particle. Clearly a proper exposition of the physics of
form factors and momentum distributions in the relativistic domain is crucial to
answering the question (1), “What sense does a phase-space quark distribution
make?”

2.1. Form Factors and Scheme-Dependent
Charge Distributions

The electromagnetic form factors are among the first measured and most studied
observables of the nucleon (16). They are defined as the matrix elements of the
electromagnetic current between the nucleon states of different four-momenta.
Because the nucleon is a spin-1/2 particle, the matrix element defines two form
factors,

〈p2| jµ(0)|p1〉 = Ū (p2)

{
F1(q2)γµ + F2(q2)

iσµνqν

2MN

}
U (p1), 1.

where F1 and F2 are the well-known Dirac and Pauli form factors, respectively,
depending on the momentum transfer q = p2 − p1 squared.

Since the 1950s, it has been known that the physical interpretation of the nucleon
form factors is complicated by relativistic effects (17). Consider a system of size
R and mass M. In relativistic quantum theory, the system cannot be localized
to a precision better than its Compton wavelength 1/M . Any attempt to do so
with an external potential results in creation of particle-antiparticle pairs. As a
consequence, the static size of the system cannot be defined to a precision better
than 1/M . Moreover, when the probing wavelength is comparable to 1/M , its form
factors are no longer determined by the internal structure alone. They contain, in
addition, dynamical effects of the Lorentz boost to generate the final nucleon from
the initial. Boost operators are interaction-dependent, and hence the nucleon wave
function is different in different frames (in the usual instant form of quantization).
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Therefore, in the region |�q| ∼ M , the physical interpretation of the form factors is
complicated by the entanglement of the internal and the center-of-mass motions.
If R � 1/M , which is the case for nonrelativistic systems, relativity does not
pose a significant constraint; one can probe the internal structure of the system
with a wavelength (1/|�q|) comparable to or even much smaller than R, but still
large enough compared with 1/M so that the probe does not induce an appreciable
recoil.

For the nucleon, MN RN ∼ 4. Although much less certain than in the case of
the hydrogen atom, it is still sensible to have a rest-frame picture in terms of the
electromagnetic form factors, so long as one keeps in mind that equally justified
definitions of the nucleon size can differ by ∼1/MN (RN MN ). For example, the
traditional definition of the proton charge radius in terms of the slope of the Sachs
form factor G E (q2) is 0.86 fm. On the other hand, if one uses the slope of the
Dirac form factor F1 to define the charge radius, one gets 0.79 fm, about 10%
smaller. The form factors at |�q| ≥ MN ∼ 1 GeV definitely cannot be interpreted
as information about the internal structure alone.

Because relativity makes the interpretation of the electromagnetic form factors
nonunique, the best one can do is to choose an interpretation and work with it
consistently. For example, when extracting the proton charge radius from the Lamb
shift measurements, one should use the same definition as that from the electric
form factor. The most frequently used form-factor interpretation is that of Sachs (6),
but other schemes are equally good and the scheme dependence disappears in the
limit M R → ∞. This is very much like the renormalization scheme dependence
of parton densities due to radiative corrections at a finite coupling constant αs .
Although the MS scheme is the most popular in the literature, one can define the
parton densities in any other scheme to correlate physical observables.

In this article, I adopt the Sachs interpretation of the form factors. To appreciate
the motivation for this scheme, let us review the argument offered by Sachs et al.
(6). To establish the notion of a static (charge) distribution, one must create a
wave packet representing a proton localized at �R

| �R〉 =
∫

d3 �p
(2π )3

ei �p· �R �(�p)|�p〉, 2.

where the plane-wave state |�p〉 is normalized in a relativistic-covariant manner,
〈�p2|�p1〉 = 2E �p1

(2π )3δ(3)(�p1 − �p2). With the above, we can calculate, for ex-
ample, the charge distribution relative to the center of the wave packet, ρ(�r ) =
〈�R = 0| j0(�r )| �R = 0〉, where �r measures the relative distance to the center �R = 0.
Taking its Fourier transform, one gets

F(�q) ≡
∫

d3�r ei �q·�rρ(�r )

=
∫

d3 �p
(2π )3

�∗ (�p + �q/2
)
�

(�p − �q/2
) 〈�p + �q/2| j0(0) |�p − �q/2〉, 3.
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where we have changed the momentum integration variables, with �p representing
the average momentum of the initial and final protons. It is important to point
out that the resolution momentum �q is now linked to the difference in the initial-
and final-state momenta. In nonrelativistic quantum systems, because of the large
masses, the momentum transfer causes little change in velocity, and hence the
initial and final states have practically the same intrinsic wave functions.

To remove the effects of the wave packet, the necessary condition on �(�p) is
that the coordinate-space size of the wave packet must be much smaller than the
system size |δ�r | � RN . Furthermore, the probing wavelength, or resolution scale,
must also be large compared to the size of the wave packet 1/�q � δ�r ∼ 1/�p.
Then one can ignore �q-dependence in �, so that �(�p ± 1

2 �q) ≈ �(�p)

F(�q) =
∫

d3 �p
(2π )3

|�(�p)|2 〈�p + �q/2| j0(0) |�p − �q/2〉 . 4.

On the other hand, to be insensitive to the antiparticle degrees of freedom, the
wave packet must be larger than the proton Compton wavelength |δ�r | � 1/MN . In
the momentum space, this corresponds to a restriction on momenta allowed in the
wave packet, |�p| � MN . Therefore the combined constraint on the wave packet
profile is 1/RN � |�q| � |�p| � MN . The extreme limit of the last inequality yields
a wave packet with a zero-momentum nucleon, |�(�p)|2 = (2π )3

2MN
δ(3)(�p), which gives

2MN F(�q) = 〈�q/2| j0(0) | − �q/2〉 . 5.

This is the matrix element of the charge density in the Breit frame, and is
2MN G E (t)w∗

2w1, where G E (t) = F1(t) + t
4M2

N
F2(t) is the Sachs electric form

factor (t = −�q2). Hence, G E is a Fourier transformation of the proton charge
distribution. Similar analysis finds G M (t) = F1(t) + F(t) as the Fourier transfor-
mation of the magnetization density.

2.2. Physics of Parton Distributions in the Rest Frame

Parton distributions were introduced by Feynman to describe DIS (7). They have
the simplest interpretation in the infinite momentum frame as the densities of
partons in the longitudinal momentum x. In QCD, the quark distribution is defined
through the following matrix element:

q(x) = 1

2p+

∫
dλ

2π
eiλx 〈p|�̄(0)γ +�(λn)|p〉. 6.

Equation 6 uses the standard light-cone notation p± = (p0 ± p3)/
√

2. The vector
nµ is along the direction of (1, 0, 0, −1), and n · p = 1. The notation � is a quark
field with an associated gauge link that extends from the position of the quark to in-
finity along the light-cone nµ, and hence is gauge-invariant in nonsingular gauges.
The renormalization scale dependence is implicit. In light-cone quantization (18),
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it is easy to show

q(x)|x>0 = 1

2x

∑
λ=↑↓

∫
d2�k⊥
(2π )3

〈p|b†
λ(k+, �k⊥)bλ(k+, �k⊥)|p〉

〈p|p〉 ,

q(x)|x<0 = −1

2x

∑
λ=↑↓

∫
d2�k⊥
(2π )3

〈p|d†
λ(k+, �k⊥)dλ(k+, �k⊥)|p〉

〈p|p〉 , 7.

where b† and d† are creation operators of a quark and an antiquark, respectively,
with longitudinal momentum k+ ≡ xp+ and transverse momentum �k⊥. The inter-
pretation as parton densities is then obvious.

To construct a quantum phase-space distribution, we need an interpretation of
the Feynman distribution in the rest frame. This is because the infinite momen-
tum frame involves a Lorentz boost along the z direction, introducing a Lorentz
contraction on a three-dimensional system, which we try to avoid here. However,
if one works in the rest frame, the two quark fields in Equation 6 are no longer
simultaneous. If one Fourier-expands one of the fields in terms of quark creation
and annihilation operators, the other must be determined from the Heisenberg
equation of motion. The result is that the bilinear quark operator takes a very com-
plicated expression in terms of the creation and annihilation operators in equal-time
quantization.

The rest-frame physics of Feynman distributions is made clear through the
“spectral function,”

S(k) = 1

2p+

∫
d4ξeik·ξ 〈p|�̄(0)γ +�(ξ )|p〉, 8.

which is the dispersive part of a single-quark Green’s function in the nucleon. The
physical meaning of S(k) can be seen from its spectral representation,

S(k) =
∑

n

(2π )4δ(4)(p − k − pn)〈p|�̄k |n〉γ +〈n|�(0)|p〉/2p+

∼
∑

n

(2π )4δ(4)(p − k − pn)|〈n|�k+|p〉|2, 9.

where �k is a Fourier transformation of �(ξ ): It is the probability of annihilating
a quark (or creating an antiquark) of four-momentum k (three-momentum �k and
the off-shell energy E = k0) in the nucleon, leading to an “on-shell” state of
energy-momentum pn = p − k. The quark here is off-shell because if pn and p
are both “on-shell,” k2 �= m2

q in general. (That the partons are off-shell is in fact
also true in infinite-momentum-frame calculations.) Of course, in QCD |n〉 is not
in the Hilbert space, but the spectral function itself is still a meaningful physical
quantity.

Because the quarks are ultrarelativistic, �k contains both quark and antiquark
Fock operators. One cannot in general separate quark and antiquark contributions,
unlike in the nonrelativistic systems, in which only the particle or antiparticle
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contributes. In fact, if one expands the above expression, one finds pair creations
and annihilation terms. This is also true for the charge density discussed in the
previous subsection. Therefore, we can only speak of S(k) as a distribution of
charges and currents, not as a “particle density.” In nuclear physics, where the
nonrelativistic dynamics dominates, the nucleon spectral function in a nucleus is
positive-definite and can be regarded as a particle density. The function is directly
measurable through pickup and knockout experiments, in which E and �k are called
the missing energy and missing momentum, respectively (see, e.g., Reference
(19)).

It is now easy to see that in the rest frame of the proton, the Feynman quark
distribution is

q(x) =
√

2
∫

d4k

(2π )4
δ
(
k0 + kz − x MN

)
S(k). 10.

The x variable is simply a special combination of the off-shell energy k0 = E and
momentum component kz . The parton distribution is the spectral function of quarks
projected along a special direction in the four-dimensional energy-momentum
space. The quarks with different E and kz may have the same x, and moreover,
both the x > 0 and x < 0 distributions contain contributions from quarks and
antiquarks.

To summarize, in the nucleon rest frame, the quarks are naturally off-shell
and hence have a distribution in the four-dimensional energy-momentum space.
The Feynman distribution results from a reduction of the spectral function in the
momentum space orthogonal to the kz + E direction.

3. QUANTUM PHASE-SPACE DISTRIBUTIONS
AND THEIR OFFSPRING

Having established the concept of phase-space distribution in nonrelativistic quan-
tum mechanics, I generalize it in this section to relativistic quantum field theories—
in particular, to quarks and gluons in QCD. The procedure is not unique; however,
we are guided by the requirement that the resulting distributions must be experi-
mental observables.

In classical physics, the state of a particle is specified by its position �r and
momentum �p. In a gas of classical particles, the single-particle properties are de-
scribed by a phase-space distribution f (�r , �p) that represents the density of particles
at a phase-space point (�r , �p). The time evolution of the distribution is governed
by the Boltzmann equation, or by the Liouville equation if the particles are not
interacting. In quantum mechanics, position and momentum operators do not com-
mute and hence, in principle, one cannot entertain a joint momentum and position
distribution of particles. Indeed, the quantum mechanical wave functions depend
on either spatial coordinates or momentum but not both. Nonetheless, Wigner in-
troduced the first quantum phase-space distribution just a few years after quantum
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mechanics was formulated (8). It is not positive-definite and hence cannot be re-
garded as a probability distribution. However, it reduces to the positive-definite
classical phase-space distribution in the h̄ → 0 limit. The sign oscillation in the
phase-space is essential to reproduce quantum interference effects. The Wigner dis-
tribution contains the complete single-particle information about a quantum system
(equivalent to the full single-particle density matrix) and can be used to calculate
any single-particle observable through classical-type phase-space averages.

3.1. A Brief Introduction to Wigner Distribution

There is a vast literature on quantum phase-space distributions and the Wigner
distribution in particular. This subsection summarizes some salient features.

Suppose we have a one-dimensional quantum mechanical system with wave
function ψ(x). The Wigner function or distribution is defined as

W (x, p) =
∫

dηei pηψ∗(x − η/2)ψ(x + η/2), 11.

where we have set h̄ = 1. When integrating out the coordinate x, one gets the
momentum density |ψ(p)|2, which is positive-definite. When integrating out p,
the positive-definite coordinate space density |ψ(x)|2 follows. For arbitrary p and
x, the Wigner distribution is not positive-definite and does not have a probability
interpretation. Nonetheless, to calculate the physical observables, one simply takes
averages over the phase-space as if it were a classical distribution,

〈Ô(x, p)〉 =
∫

dx dp W (x, p)O(x, p), 12.

where the operators are ordered according to the Weyl association rule. For a
single-particle system, the Wigner distribution contains everything there is in the
quantum wave function. For a many-body system, the distribution can be used to
calculate the averages of all one-body operators.

In the classical limit, the Wigner distribution is expected to become classical
phase-space distribution. For systems that are statistical ensembles, the limit h̄ → 0
is often well-behaved. For example, for an ensemble of harmonic oscillators at finite
temperature, the Wigner distribution becomes the classical Boltzmann distribution
as h̄ → 0 (see, e.g., Reference (20)). The Wigner distribution for the nth excited
state of the one-dimensional harmonic oscillator of energy En = h̄ω(n + 1

2 ) is (21)

Wn(p, x) = (−1)n

πh̄
e−2H/(h̄ω)Ln

(
4H

h̄ω

)
, 13.

where H stands for the hamiltonian H (p, x) = p2/(2m) + mω2x2/2 and Ln is
the nth Laguerre polynomial. In the quasiclassical limit—vanishing Planck con-
stant and large quantum numbers—the oscillator Wigner distribution turns into
the generalized distribution residing on the classical trajectoriesE∞ = fixed,
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lim
h̄→0, n→∞

Wn(p, x) ∼ δ(H (p, x) − E∞). 14.

Phase-space averaging with this kernel is equivalent to calculating observables
using the classical equations of motion. This can be easily understood from the
semiclassical form of the wave function,

ψ(x) = C(x)ei S(x)/h̄ . 15.

Substituting this into Equation 11 and expanding S to the first order in h̄, one gets
the quasiclassical Wigner distribution,

W (p, x) = |C |2δ
(

p − ∂S(x)

∂x

)
, 16.

where the argument of the δ-function describes a family of classical paths.
The quantum mechanical Wigner distribution is measurable. The actual mea-

surement has been performed for a very simple quantum system—the quantum
state of a light mode (a pulse of laser light of given frequency)—employing the
ideas of Vogel & Risken (10). It was extracted via the method of homodyne tomog-
raphy (11) by measurement of a marginal observable and subsequent reconstruction
by inverse Radon transformation. Recently this Wigner distribution was measured
directly by means of the photon counting techniques based on a Mach-Zender
interferometric scheme (12).

Other versions of phase-space distributions are possible. They are all members
of the “Cohen class” (22), of which Husimi and Kirkwood distributions (23) are
the best-known representatives. The Husimi distribution is a smeared version of
the Wigner distribution defined by projection of the wave function on the coherent
state (Gaussian wave packet)

H ( p̄, x̄) =
∫

dp′dx ′ W (p′, x ′)Wcoh(p′ − p̄, x ′ − x̄),

which is real and positive-definite. In contrast, the Kirkwood function is complex.
Once again, all these distributions are expected to reduce to the same phase-space
distribution in the h̄ → 0 limit.

3.2. Quantum Phase-Space Parton Distributions

Let us generalize phase-space distribution to relativistic quarks and gluons in the
nucleon (24). The single-particle wave function is replaced by a quantum field in
quantum field theory, and hence it is natural to introduce the “Wigner operator,”

Ŵ�(�r , k) =
∫

d4ηeik·η�̄(�r − η/2)��(�r + η/2), 17.

where �r is the quark phase-space position and k the phase-space four-momentum
conjugated to the space-time separation η. The matrix � is a Dirac matrix that
defines the types of quark distributions because the quarks are spin-1/2 relativistic
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particles. Depending on the choice of �, we have vector, axial vector, or tensor
Wigner operators.

Because QCD is a gauge theory, the product of two quark fields at different
space-time points is not automatically gauge-invariant. One can define a gauge-
invariant quark field by adding a gauge link to the space-time infinity along a
constant four-vector ζµ,

�(η) = exp

−ig

∞∫
0

dλ ζ · A(λζ + η)

 ψ(η), 18.

where we choose a nonsingular gauge in which the gauge potential vanishes at
the space-time infinity (25–27). Although gauge-invariant, the Wigner operator
depends on the choice of ζµ. Although theoretically any ζµ is possible, it is
constrained, in real observables, to be the light-cone vector nµ by the experimental
probes.

The Wigner distribution has been extended to include the time variable. There-
fore, besides the dependence on the three-momentum, there is also a dependence
on the energy. For the bound states in a simple system, such as those in a sim-
ple harmonic oscillator, the energy dependence is a δ-function that singles out
the binding energies. For many-body systems, however, the energy dependence is
more complicated, as it reflects the energy distribution of the resulting states after
one particle is removed from the system.

For nonrelativistic systems for which the center of mass is well-defined and
fixed, one can define phase-space distributions by taking the expectation value of
the above Wigner operators in the center-of-mass �R = 0 state. For the proton, for
which the recoil effects cannot be neglected, the rest-frame state cannot be uniquely
defined, as elaborated in Section 2. Here we follow Sachs, constructing a “rest-
frame” matrix element actually in the Breit frame, followed by averaging over all
possible three-momentum transfers. Therefore, we define quantum phase-space
quark distribution in the nucleon as

W�(�r , k) = 1

2

∫
d3�q

(2π )3
〈�q/2|Ŵ�(�r , k)| − �q/2〉

= 1

2

∫
d3�q

(2π )3
e−i �q·�r 〈�q/2|Ŵ�(0, k)| − �q/2〉, 19.

where the plane-wave states are normalized relativistically. The most general
phase-space distribution depends on seven independent variables. However, there
is no known experiment that measures this function.

The only way we know how to probe the single-particle distributions is through
high-energy processes, in which the light-cone energy k− = (k0 − kz)/

√
2 is diffi-

cult to measure (the z-axis refers to the momentum transfer direction of a probe).
Moreover, the leading observables in these processes are associated with the “good”
components of the quark (gluon) fields in the sense of light-cone quantization (18),
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which can be selected by � = γ +, γ +γ5, or σ+⊥, where γ + = (γ 0 + γ z)/
√

2.
The direction of the gauge link, ζµ, is then determined by the trajectories of high-
energy partons traveling along the (near) light-cone n = (1, 0, 0, −1) (27, 30).
Therefore, from now on, we restrict ourselves to the reduced Wigner distributions
by integrating out k−,

W�(�r , �k) =
∫

dk−

(2π )2
W�(�r , k), 20.

with a light-cone gauge link implied. However, no known experiment can measure
this six-dimensional distribution either.

3.3. Transverse-Momentum-Dependent Parton Distributions

Integrating over �r in Equation 20, we obtain the transverse-momentum-dependent
(TMD) parton distributions. For � = γ +,∫

d3�r
(2π )2

Wγ + (�r , �k) = q(x, k⊥) + qT (x, k⊥)(k̂⊥ × Ŝ⊥) · P̂

= 1

2

∫
d2η⊥dη−

(2π )3
ei(k+ξ−−�k⊥· �η⊥)〈P|�̄(0)γ +�(η−, �η⊥)|P〉.

21.

The new distributions generalize those of Feynman with additional information
about partons’ transverse momentum. For example, q(x, �k⊥) is, roughly speaking,
the probability of finding a quark with longitudinal momentum x P+ and transverse
momentum �k⊥ in a nucleon (or hadron) with four-momentum Pµ = (P0, 0, 0, P3).

The transverse-polarization Ŝ⊥-dependent term qT (x, k⊥) was first introduced
by Sivers and has been called the Sivers function in the literature (28). Physically, it
signifies that the parton momentum distribution in a transversely polarized nucleon
is not rotationally invariant along the z direction—it has an azimuthal dependence.
The term violates the naive time-reversal invariance; however, a careful examina-
tion indicates that time reversal does not forbid its existence because the quark field
� contains the guage link. It has been shown phenomenologically that qT (x, k⊥)
can be responsible for the target single-spin asymmetry observed in semi-inclusive
deep-inelastic production of pions (29, 30).

Boer, Mulders, and Tangerman systematically classified all the leading-twist
TMD parton distributions (31, 32). When � = γ +γ5, one finds∫

d3�r
(2π )2

Wγ +γ5 (�r , �k) = �qL (x, k⊥)(S · n) + �qT (x, k⊥)(k̂⊥ · Ŝ⊥)

= 1

2

∫
d2η⊥dη−

(2π )3
ei(k+η−−�k⊥· �η⊥)〈P|�̄(0)γ +γ5�(η−, �η⊥)|P〉,

22.
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where �qT (x, k⊥) is a novel quark helicity distribution in a transversely polarized
nucleon. With � = σ+⊥γ5, one has four TMD distributions,

∫
d3�r

(2π )2
Wσ+⊥γ5 (�r , �k)

= δqT (x, k⊥)ŜT + δqT ′ (x, k⊥)k̂⊥(k̂⊥ · Ŝ⊥) + δqL (x, k⊥)k̂⊥(S · n) + δq(x, k⊥)k̂⊥

= 1

2

∫
d2η⊥dη−

(2π )3
ei(k+η−−�k⊥· �η⊥)〈P|�̄(0)σ+⊥γ5�(η−, η⊥)|P〉, 23.

where δq(x, k⊥) is a transversity distribution in an unpolarized nucleon and van-
ishes under naive time-reversal transformation; δqL (x, k⊥) is a transversity distri-
bution in a longitudinally polarized nucleon.

TMD distributions have wide-ranging phenomenological applications in semi-
inclusive DIS, the Drell-Yan process, and back-to-back jet production in e+e−

annihilation (31–33). Without going into the details here, I offer a couple of theo-
retical comments:

First, physical interpretation and gauge invariance of these new distributions
are subtle. Usually, the parton distributions are simplest to interpret in the light-
cone gauge A+ = 0, in which the light-cone gauge link vanishes. However, it
turns out that the above definition is good only in nonsingular gauges. In the
light-cone gauge, we must introduce additional gauge links at infinity to make the
distribution gauge-invariant (27, 34). When we do so, however, a straightforward
parton interpretation is no longer possible.

Second, unlike the usual parton distribution, TMD distributions are sensitive
to the rapidity cutoff of the partons. Without such a cutoff, there is a light-cone
divergence (see, e.g., Reference (35) and references therein). The rapidity cutoff is
in general not commutable with the transverse momentum integration. As a con-
sequence, for a regularized TMD parton distribution, even when k⊥ is integrated,
the distribution does not simply go back to an integrated parton distribution.

3.4. Generalized Parton Distributions and
Phase-Space Quark Images

An alternative way of reducing W�(�r , �k) is to integrate out the transverse momen-
tum of the quarks. We then have a four-dimensional quantum distribution,

f̃ �(�r , k+) =
∫

d2�k⊥
(2π )2

W�(�r , �k)

= 1

2

∫
d3�q

(2π )3
e−i �q·�r

∫
dη−

2π
eiη−k+

×〈�q/2|�̄(−η−/2)��(η−/2)| − �q/2〉. 24.
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As we shall see, the matrix element under the momentum integral defines the GPDs.
Indeed, if one replaces k+ by Feynman variable xp+ (with p+ = Eq/

√
2, proton

energy Eq =
√

M2 + �q2/4) and η− by λ/p+, the above distribution becomes

f�(�r , x) =
∫

d3�q
(2π )3

e−i �q·�r F�(x, ξ, t). 25.

In this equation, ξ = qz/(2Eq ), t = −�q2, and

F�(x, ξ, t) = 1

2p+

∫
dλ

2π
eiλx 〈�q/2|�̄(−λn/2)��(λn/2)| −�q/2〉, 26.

which generates the leading-twist GPDs for different choices of �.
Taking � = γ +, we write (14)

Fγ + (x, ξ, t) = 1

2p+

∫
dλ

2π
eiλx 〈�q/2|�̄(−λn/2)γ +�(λn/2)| − �q/2〉

= 1

2p+ Ū (�q/2)

[
H (x, ξ, t)γ + + E(x, ξ, t)

iσ+i qi

2M

]
U (−�q/2),

27.

where H (x, ξ, t) and E(x, ξ, t) are the two GPDs. On the other hand, if one takes
� = γ +γ5, then

Fγ +γ5 (x, ξ, t) = 1

2p+

∫
dλ

2π
eiλx 〈�q/2|�̄(−λn/2)γ +γ5�(λn/2)| − �q/2〉 28.

= 1

2p+ Ū (�q/2)

[
H̃ (x, ξ, t)γ + + Ẽ(x, ξ, t)

iσ+i qi

2M

]
U (−�q/2),

which defines two more GPDs. Finally, if one chooses � = σ+⊥γ5, then (36, 37)

Fσ+i γ5 (x, ξ, t) = 1

2p+

∫
dλ

2π
eiλx 〈�q/2|�̄(−λn/2)σ+iγ5�(λn/2)| −�q/2〉 29.

= 1

2p+ Ū (�q/2)

[
HT (x, ξ, t)γ +iγ5 + H̃ T (x, ξ, t)

ε+iαβ�α Pβ

M2

+ ET (x, ξ, t)
ε+iαβ�αγβ

2M
+ Ẽ T (x, ξ, t)

ε+iαβ Pαγβ

M

]
U (−�q/2).

Therefore, we have a total of eight leading-twist GPDs for every quark flavor. As
with the TMD distributions, the total number is related to the number of indepen-
dent quark and nucleon scattering amplitudes.

The quantum phase-space distribution f�(�r , x) can be used to construct three-
dimensional images of quarks for selected Feynman momenta x in the rest frame
of the proton. These images provide the pictures of the proton seen through the
Feynman momentum (or “color”) filters. To see an example, let us examine the
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physical content of fγ + (�r , x). Working out the spin structure in Equation 27, we
find

Fγ + (x, ξ, t) = [H (x, ξ, t) − τ E(x, ξ, t)]

+ i[�s × �q]z 1

2MN
[H (x, ξ, t) + E(x, ξ, t)], 30.

where τ = �q2/4M2
N . The first term is independent of the proton spin and generates

the phase-space charge density,

ρ+(�r , x) =
∫

d3�q
(2π )3

e−i �q·�r [H (x, ξ, t) − τ E(x, ξ, t)]. 31.

The spin-dependent term generates the third component of the phase-space vector
current,

j z
+(�r , x) =

∫
d3�q

(2π )3
e−i �q·�r i[�s × �q]z 1

2MN
[H (x, ξ, t) + E(x, ξ, t)]. 32.

The E-term generates a convection current due to the orbital motion of massless
quarks and vanishes when all quarks are in the s-orbit. The physics of separating f +

γ

into ρ+ and j z
+ can be seen from the Dirac matrix γ + selected by the high-energy

probes, which is a combination of time and space components.
Figure 1 shows a model phase-space charge distribution ρ+(�r , x) for up quarks

(1), to be explained in Section 5. The vertical axis is z, and the three-dimensional
images are rotational-symmetric in the x–y plane, for which only a slice is shown
as the horizontal axis. Different images are for different Feynman momenta, which
in the rest frame are proportional to a special combination of the off-shell energy
and momentum along z, E + kz . For further discussion, see Section 5.

By integrating the phase-space charge distribution ρ+(�r , x) over x, or superim-
posing the images at all x, one recovers the spherically symmetric charge density in

Figure 1 The u-quark phase-space charge distribution at different values of the Feyn-
man momentum from a nonfactorizable parameterization for H(x, ξ , t) (1), with pa-
rameters fitted to known form factors and Feynman distributions. The vertical and
horizontal axes correspond to z and |�r⊥|, respectively, measured in fermi.
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space. On the other hand, by integrating over x in j z
+(�r , x), one obtains the electric

current density. In the latter case, if the integral is weighted with x, one obtains the
mechanical momentum density (24).

3.5. Impact-Parameter Space

Integrating over the z coordinate in f�(�r , x), one has

f�(�b, x) =
∞∫

−∞
dz f�(�b = �r⊥, z, x) =

∫
d2�q⊥
(2π )2

F�(x, 0, −�q2
⊥), 33.

which is related to the GPDs at ξ = 0. The distribution f� (introduced in Reference
(15); also see Reference (38)) is called impact-parameter-space parton distribution.
This distribution has important advantages over a phase-space distribution but also
a significant disadvantage.

The important advantages are that f�(�b, x) is a real density in the sense that it
is the expectation value of a number operator, and its interpretation does not suffer
from relativistic effects. The variables �b and x live in different dimensions, and
therefore there is no quantum mechanical uncertainty constraint. Indeed, f�(�b, x)
is a spatial-and-momentum-density hybrid in that it represents a spatial density in
the transverse directions and momentum density in the longitudinal direction, and
thus is not a Wigner distribution in a proper sense. f�(�b, x) is also invariant under
boost along the z direction. In particular, if the nucleon has an infinity momentum,
its effective mass is also infinity. Therefore, its spatial structure in the transverse
directions, just like in nonrelativistic systems, can be obtained directly from the
Fourier transformation of the form factors without the relativistic recoil effects
discussed in the previous section.

However, the price one pays for these nice features is one spatial dimension.
Every object one studies becomes a pancake in this framework. The physics of ξ in
GPDs, which generates the spatial deformation along z from the above discussion,
represents a parameter in the process of quantum interference (39–41).

4. PROPERTIES OF GENERALIZED PARTON
DISTRIBUTIONS

This section is devoted to a discussion of the general properties of GPDs. Some of
these are kinetic, independent of a specific strong-interaction theory—for example,
the relations between GPDs and form factors and the usual parton distributions,
and the partonic interpretation in light-front quantization. Some properties depend
on QCD dynamics, for example, chiral properties, scale evolutions, and large-x
and -t behavior. I also emphasize the information about the spin structure of the
nucleon contained in GPDs.
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4.1. Generalized Form Factors and Polynomiality Condition

One of the most important sources of information about the nucleon structure is
the form factors of the electroweak currents. The Pauli form factor F2 gives the
anomalous magnetic moment of the nucleon, κ = F2(0). The charge radius of the
nucleon is defined by

〈r2〉 = −6
dG E (Q2)

d Q2

∣∣∣∣
Q2=0

, 34.

with G E = F1 − Q2/(4M2)F2. The axial vector current also defines two form
factors, 〈

P ′|ψ̄γ µγ5ψ |P 〉 = G A(Q2)Ūγ µγ5U + G P (Q2)Ū
γ5qµ

2M
U (P). 35.

The axial form factor G A(0) at Q2 = 0 is related to the fraction of the nucleon
spin carried by the spin of the quarks, ��, and can be measured from polarized
DIS and neutrino elastic scattering.

A generalization of the vector and axial-vector currents can be made through
the following sets of twist-two operators,

Oµ1···µn
q = ψ̄qγ

(µ1 i Dµ2 · · · i Dµn )ψ

Õµ1···µn
q = ψ̄qγ

(µ1γ5i Dµ2 · · · i Dµn )ψ, 36.

where all indices µ1 · · · µn are symmetric and traceless, as indicated by (. . .) in
the superscripts. These operators form the totally symmetric representation of the
Lorentz group. One can similarly introduce the gluon twist-two operators. For
n > 1, the above operators are not conserved currents from any global symmetry.
Consequently, their matrix elements depend on the momentum-transfer scale µ

at which they are probed. For the same reason, there is no low-energy probe that
couples to these currents.

One can then define the generalized charges an(µ2) from the forward matrix
elements of these currents:

〈P|Oµ1···µ2 |P〉 = 2an(µ2)P (µ1 Pµ2 · · · Pµn ). 37.

The moments of the Feynman parton distribution q(x, µ2) are related to these
charges as

1∫
−1

dxxn−1q(x, µ2) =
1∫

0

dxxn−1[q(x, µ2) + (−1)nq̄(x, µ2)] = an(µ2), 38.

where q̃(x, µ2) is defined in the range −1 < x < 1. For x > 0, q(x, µ2) is simply
the density of quarks that carry the fraction x of the parent nucleon momentum.
The density of antiquarks is customarily denoted by q̄(x, µ2), which in the above
notation is −q(−x, µ2) for x < 0.
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One can also define the form factors [Aqn,m(t), Bqn,m(t), and Cqn(t)] of these
currents using constraints from charge conjugation, parity, time-reversal, and
Lorentz symmetries (3):

〈P ′|Oµ1···µn
q |P〉

= Ū (P ′)γ (µ1U (P)
[ n−1

2 ]∑
i=0

Aqn,2i (t)�
µ2 · · · �µ2i+1 P̄µ2i+2 · · · P̄µn )

+ Ū (P ′)
σ (µ1αi�α

2M
U (P)

[ n−1
2 ]∑

i=0

Bqn,2i (t)�
µ2 · · · �µ2i+1 P̄µ2i+2 · · · P̄µn )

+ Cqn(t)Mod(n + 1, 2)
1

M
Ū (P ′)U (P)�(µ1 · · · �µn ), 39.

where Ū (P ′) and U (P) are Dirac spinors, �2 = (P ′ − P)2 = t , P̄ = (P ′ + P)/2,
and Mod(n + 1, 2) is 1 when n is even and 0 when n is odd. Thus, Cqn is present only
when n is even. We suppress the renormalization scale dependence for simplicity.
Choose a light-light vector nµ (n2 = 0) such that

n · P̄ = 1, ξ = −n · �/2. 40.

Then,

nµ1 · nµn 〈P ′|Oµ1···µn |P〉 = Hn(ξ, t)Ū �nU + En(ξ, t)Ū
iσµαnµ�α

2M
U, 41.

where Hn(ξ, t) and En(ξ, t) are polynomials in ξ 2 of degree n/2 (n even) or n − 1/2
(n odd). The coefficients of the polynomials are form factors. It is easy to see that
they are just the moments of the GPDs E(x, ξ, t) and H (x, ξ, t):

1∫
−1

dxxn−1 E(x, ξ, t) = En(ξ, t)

1∫
−1

dxxn−1 H (x, ξ, t) = Hn(ξ, t). 42.

Therefore, although GPDs are the functions of two variables, x and ξ , their xn

moment is only a polynomial function of ξ . This is called the polynomiality
condition.

More specifically, the first moments of GPDs are constrained by the form factors
of the electromagnetic and axial currents. Indeed, by integrating over x, we have
(14)
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1∫
−1

dx Hq (x, ξ, t) = Fq
1 (t),

1∫
−1

dx Eq (x, ξ, t) = Fq
2 (t),

1∫
−1

dx H̃q (x, ξ, t) = Gq
A(t),

1∫
−1

dx Ẽq (x, ξ, t) = Gq
P (t), 43.

where F1, F2, G A, and G P are the Dirac, Pauli, axial, and pseudoscalar elastic
form factors, respectively. The t-dependence of the form factors is characterized
by hadron mass scales, which in turn control the t-dependence of the generalized
parton distributions.

4.2. Form Factors of Energy-Momentum Tensor
and Spin Structure of the Nucleon

The physical significance of GPDs was first revealed in studying the spin structure
of the nucleon (14). Let us review this connection. In the constituent quark model,
the nucleon is made of three spin-1/2 quarks moving in the s-orbit. The spin of
the nucleon is then a vector sum of the quark spins. Although the simple quark
model has been very successful in explaining a large body of experimental data,
its prediction about the spin structure has been challenged by the polarized DIS
data obtained by the European Muon Collaboration (EMC) (42).

In polarized DIS, a polarized electron exchanges a polarized photon with a
polarized nucleon. The polarized photon is absorbed by a polarized quark whose
helicity must have the same sign as that of the photon in the center-of-mass frame, or
else angular momentum conservation forbids the absorption. Therefore, polarized
DIS allows measurement of the polarized quark distributions in the polarized
nucleon. From the data taken in a number of recent experiments, along with the
analysis of neutron and hyperon β-decay, the fraction of the nucleon spin carried
by the quark spin is determined to be (43)

��(1 GeV) = 0.2 ± 0.1. 44.

This is significantly below the quark model prediction �� = 1.
The fundamental reason for the discrepancy is that the quark model quarks are

not the same as the QCD quarks. In DIS, the photons interact directly with the
QCD current. Applying the predictions of the constituent quark model to the QCD
quarks is at best opportunistic. A more interesting approach to understanding the
EMC data is to study the spin structure of the nucleon directly in the fundamental
theory. Reference (14) clarified the structure of the angular momentum operator
in QCD, from which one can write down a decomposition of the nucleon spin:

1/2 = Jq (µ) + Jg(µ), 45.
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where Jq,g are the contributions from the quarks and gluons, respectively. Both
contributions are gauge-invariant but renormalization-scale-dependent.

Jq,g(µ) can be expressed as the matrix elements of the QCD energy-momentum
tensor T µν

q,g :

Jq,g(µ) =
〈

P
1

2

∣∣∣∣∫ d3�x(�x × �Tq,g)z

∣∣∣∣ P
1

2

〉
, 46.

which can be extracted from the form factors of the quark and gluon parts of the
T µν

q,g . Specializing Equation 39 to n = 2, one finds〈
P ′∣∣T µν

q,g

∣∣P
〉 = Ū (P ′)

[
Aq,g(t)γ (µ P̄ν) + Bq,g(t)P̄ (µiσ ν)α�α/2M

+ Cq,g(t)�(µ�ν)/M
]
U (P). 47.

Taking the forward limit of the µ = 0 component and integrating over three-
space, one finds that the Aq,g(0) give the momentum fractions of the nucleon
carried by quarks and gluons, respectively [Aq (0) + Ag(0) = 1]. On the other
hand, substituting the above into the nucleon matrix element of Equation 46, one
finds (14)

Jq,g = 1

2
[Aq,g(0) + Bq,g(0)]. 48.

Therefore, the matrix elements of the energy-momentum tensor provide the frac-
tions of the nucleon spin carried by quarks and gluons. There is an analogy for
this. If one knows the Dirac and Pauli form factors of the electromagnetic current,
F1(Q2) and F2(Q2), then the magnetic moment of the nucleon, defined as the
matrix element of (1/2)

∫
d3x(�x × �j)z , is F1(0) + F2(0).

Because the quark and gluon energy-momentum tensors are examples of twist-
two, spin-two, helicity-independent operators, we immediately have the following
sum rule for GPDs (14):

1∫
−1

dxx[Hq (x, ξ, t) + Eq (x, ξ, t)] = Aq (t) + Bq (t), 49.

where the ξ dependence, or Cq (t) contamination, drops out. If we extrapolate the
sum rule to t = 0, the total quark contribution to the nucleon spin is obtained.

The total quark contribution Jq can be decomposed gauge-invariantly into the
quark spin ��/2 and orbital contribution Lq :

Jq = ��/2 + Lq . 50.

Knowing Jq and ��, one can extract the quark orbital angular momentum. Thus,
a deep understanding of the spin structure of the nucleon can be achieved through
the study of GPDs.
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4.3. Chiral Properties of GPDs

Because the up and down quark masses are light, QCD has an approximate chiral
symmetry in which the left- and right-handed quark fields can rotate independently
in flavor space. Strong-interaction phenomenology, however, indicates that the
symmetry is spontaneously broken in the vacuum. As a result, the low-energy
QCD dynamics is dominated by that of the Goldstone bosons—the pions in this
case. One of the obvious manifestations of chiral physics in GPDs is the dominance
of the GPD Ẽ by the pion pole. Others include the predictions for the pion GPDs
and relations between the nucleon and its transition GPDs involving pion emission.
This subsection focuses on the fact that chiral perturbation theory allows one to
study the chiral behavior of nonperturbative observables such as form factors or
parton distributions (44).

The chiral behavior of electromagnetic form factors has been thoroughly in-
vestigated in the literature. In some cases, the effects of the �-resonances have
also been investigated. Similar studies on the form factors of the QCD energy-
momentum tensor have been done (45, 46) in the theory with two light flavors. I
briefly summarize the results here.

A general strategy in effective theory calculations is operator matching and
power counting. This entails matching the quark and gluon operators in QCD to
the effective operators in the chiral theory with the same quantum numbers, and
then calculating their matrix elements using the chiral Lagrangian. In the singlet
case (the sum of the up and down quark contributions), the second-order tensor
operator has the following expansion:

Oµ1µ2 = f 2
π aπ

2 Tr∂µ1�
†∂µ2� + aN

2 (2M)vµ1vµ2 N̄ v Nv

+ bN
2 (2)(i∂α)vµ1 N̄ v[Sµ2 , Sα]Nv + cN

2
1

2M
(i∂µ1 )(i∂µ2 )N̄ v Nv + . . . , 51.

where ellipses denote higher dimensional operators. � = exp(iπaτ a/ fπ ) and
Nv are the nonlinear representations of the pion and nucleon fields, respectively;
vµ and M are the velocity and mass of the nucleon ( fπ = 93 MeV). The co-
efficients of the operators summarize the short-distance physics and are a priori
unknown.

From the above, one can calculate the leading nonanalytical chiral contribution
to the gravitational form factors (46),

A(Q2) − Q2

4M2
B(Q2) = aN

2 + 3aπ
2

g2
A

64π f 2
π M

×
(

2m2
π − Q2

) 1∫
0

dx
√

m2
π (x) + 4

3
m2

π
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A(Q2) + B(Q2) = bN
2 + 3

g2
A

(4π fπ )2

1∫
0

(
aπ

2 m2
π (x) − bN

2 m2
πδ(x)

)
ln

m2
π (x)

�2

C2(Q2) = cN
2 + 3aπ

2
g2

A

16π f 2
π

M
(
2m2

π − Q2
) 1∫

0

dx
x(1 − x)√

m2
π (x)

, 52.

where mπ (x) = m2 − x(1− x)Q2 and �2 is the chiral cutoff, on the order of 4π fπ .
The first combination contains chiral-singular terms such as m3

π or mπ Q2, the
second m2

π ln m2
π and Q2 ln mπ , and the third mπ and Q2/mπ . This indicates that

the nucleon mass radius has a contribution scaling as mπ , whereas the momentum
density radius diverges like ln mπ . One application of the above results is to the
chiral behavior of the quark or gluon contribution to the nucleon spin (45),

Jq (mπ ) = bN
2 + 3

(
aπ

2 − bN
2

) g2
Am2

π

(4π fπ )2
ln

m2
π

�2
, 53.

which can be used, for example, to extrapolate the lattice results at nonphysical
quark masses to physical ones.

4.4. Partonic Interpretation

From their definition, it is straightforward to see that in the limit ξ → 0 and t → 0,
GPDs reduce to ordinary parton distributions. For instance,

Hq (x, 0, 0) = q(x),

H̃q (x, 0, 0) = �q(x), 54.

where q(x) and �q(x) are the unpolarized and polarized quark densities. Similar
equations hold for gluon distributions. For practical purposes, in the kinematic
region where √

|t | << MN and ξ << x, 55.

an off-forward distribution may be approximated by the corresponding forward
one. The first condition,

√|t | << MN , is crucial—otherwise there is a significant
form-factor suppression that cannot be neglected at any x and ξ . For a given t, ξ is
restricted to

|ξ | <
√

−t/(M2 − t/4). 56.

Therefore, when
√|t | is small, ξ is automatically limited, and there is in fact a

large region of x where the forward approximation holds.
The parton content of GPDs is made transparent in light-cone coordinates and

light-cone gauge. To see this, let us recall

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
00

4.
54

:4
13

-4
50

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 O
hi

o 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
 o

n 
12

/0
3/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



4 Oct 2004 14:18 AR AR228-NS54-12.tex AR228-NS54-12.sgm LaTeX2e(2002/01/18) P1: JRX

GENERALIZED PARTON DISTRIBUTIONS 435

Fγ + = 1

2

∫
dλ

2π
eiλx

〈
P ′

∣∣∣∣ψq

(
−λ

2
n

)
�nPe

−ig
−λ/2∫
λ/2

dα n·A(αn)
ψq

(
λ

2
n

) ∣∣∣∣P

〉
, 57.

where the gauge-link operator is explicitly shown. In the light-cone gauge n · A =
0, the gauge link between the quark fields can be ignored. Using the light-cone
coordinate system

x± = 1√
2

(x0 ± x3); x⊥ = (x1, x2), 58.

we can expand the Dirac field as follows:

ψ+(x−, x⊥) =
∫

dk+d2�k⊥
2k+(2π )3

θ (k+)
∑
λ=±

(
bλ(k+, �k⊥)uλ(k)e−i(x−k+−�x⊥·�k⊥)

+ d†
λ(k+, �k⊥)vλ(k)ei(x−k+−�x⊥·�k⊥)

)
, 59.

where ψ+ = P+ψ and P± = 1
2γ ∓γ ±. The quark (antiquark) creation and anni-

hilation operators, b†
λk (d†

λk) and bλk (dλk), obey the usual commutation relation.
Substituting the above into Equation 57, we have (62)

Fq (x, ξ ) = 1

2p+V

∫
d2k⊥

2
√

|x2 − ξ 2|(2π )3

∑
λ

×



〈P ′|b†
λ((x − ξ )p+, �k⊥ + ��⊥)bλ((x + ξ )p+, �k⊥)|P〉,

for x > ξ

〈P ′|dλ((−x + ξ )p+, −�k⊥ − ��⊥)b−λ((x + ξ )p+, �k⊥)|P〉,
for ξ > x > −ξ

−〈P ′|d†
λ((−x − ξ )p+, �k⊥ + ��⊥)dλ((−x + ξ )p+, �k⊥)|P〉,

for x < −ξ

, 60.

where V is a volume factor. The distribution has different physical interpretations
in the three different regions. In the region x > ξ , it is the amplitude for taking a
quark of momentum k out of the nucleon, changing its momentum to k + �, and
inserting it back to form a recoiled nucleon. In the region ξ > x > −ξ , it is the
amplitude for taking out a quark and antiquark pair with momentum −�. Finally,
in the region x < −ξ , we have the same situation as in x > ξ , except the quark
is replaced by an antiquark. The first and third regions are similar to those present
in ordinary parton distributions [called the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) region], whereas the middle region is similar to that in a meson
amplitude [the Efremov-Radyushkin-Brodsky-Lepage (ERBL) region].

A partonic interpretation can also be made by transforming the nucleon states
to those in the impact-parameter space (40).
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4.5. Scale Evolution

Like ordinary parton distributions, GPDs depend on the renormalization scale,
which, in practical applications, can be taken to be the probing scale. The scale
evolution of GPDs contains rich physics and interpolates between the evolutions
of a parton distribution and a meson distribution amplitude (13). There is a huge
literature on this subject and the evolution kernal is now completely known up to
two loops.

For simplicity, I present here an example of the scale evolution of the nonsinglet
distribution Fγ + . According to Equation 60, it is natural that the distributions in
three different kinematic regions evolve differently. In the region x > ξ , where we
have a quark creation and annihilation, the evolution equation is

DQ FN S(x, ξ, Q2)

D ln Q2
= αs(Q2)

2π

1∫
x

dy

y
PN S

(
x

y
,
ξ

y
,
ε

y

)
FN S(y, ξ, Q2), 61.

where

DQ

D ln Q2
= d

d ln Q2
− αs(Q2)

2π
CF

3

2
+

x∫
ξ

dy

y − x − iε
+

x∫
−ξ

dy

y − x − iε

. 62.

The parton splitting function is

PN S(x, ξ, ε) = CF
x2 + 1 − 2ξ 2

(1 − x + iε)(1 − ξ 2)
. 63.

The end-point singularity is cancelled by the divergent integrals in DQ/D ln Q2.
Obviously, when ξ = 0, the splitting function becomes the DGLAP evolution
kernel (47). For −ξ < x < ξ , where we have creation or annihilation of a quark-
antiquark pair, the evolution takes the form

DQ FN S(x, ξ, Q2)

D ln Q2
= αs(Q2)

2π

 1∫
x

dy

y
P ′

N S

(
x

y
,
ξ

y
,
ε

y

)

−
x∫

−1

dy

y
P ′

N S

(
x

y
, − ξ

y
,
ε

y

) FN S(y, ξ, Q2), 64.

where

P ′
N S(x, ξ, ε) = 2CF

x + ξ

ξ (1 + ξ )

(
1 + 2ξ

1 − x + iε

)
. 65.

When ξ = 1, the kernel reduces to the Brodsky & Lepage kernel (49). For x < −ξ ,
where we have antiquark creation and annihilation, the evolution takes the same
form as Equation 61, apart from the replacement

∫ 1
x → − ∫ x

−1.
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One can also understand the above evolution from the viewpoint of local opera-
tors. In the operator form, the evolution has been studied at the leading logarithmic
approximation. For a given twist-two operator of spin n shown in Equation 36, it
in general mixes with the following operators of total derivatives:

Oµ1···µn
n,2i = i∂ (µ1 · · · i∂µ2i ψ̄i

↔
D

µ2i+1 · · · i
↔
D

µn−1

γ µn )ψ. 66.

Consideration of such mixing is already necessary in studying the evolution of the
leading-twist meson wave functions. The answer was first obtained by Efremov
& Radyushkin (48) and by Brodsky & Lepage (49). Actually, at the leading loga-
rithmic order, the answer may be guessed from the naive conformal symmetry of
perturbative QCD (pQCD), which is broken by quantum effects only at the next-to-
leading logarithmic order. The following combination of the twist-two operators
furnishes a representation of the special conformal symmetry group,

Õn = (i∂ · n)n−1ψ̄C3/2
n−1

(
i
↔
D · n

i
←
∂ + i

→
∂

)
�nψ, 67.

where the C3/2
n−1(x) are the Gegenbauer polynomials of order 3/2. Its evolution takes

exactly the diagonal form of that for the operator without the total derivatives (48):

Õn(µ1) =
(

αs(µ1)

αs(µ2)

) γn
2β0

Õn(µ2), 68.

where

γn = 2CF

[
4

n∑
i=1

1

i
− 3 − 2

n(n + 1)

]
, 69.

and β0 = 11 − 2n f /3. CF = 4/3 for the SU(3) color group, and n f is the number
of light quark flavors. For the leading-twist pion wave function, the above result
leads to a general expansion in terms of Gegenbauer polynomials.

In a series of interesting publications, Belitsky & Müller have presented the
evolution of GPDs at two loops (50). The key observation is again that pQCD is
approximately conformally invariant. The breaking of the conformal symmetry
can be studied through the conformal Ward identities, which allow one to obtain
the nontrivial part of the two-loop anomalous dimensions by calculating only the
one-loop conformal anomaly.

4.6. Inequalities

From their parton content, GPDs may be regarded as the interferences of quantum
mechanical amplitudes of finding partons in a hadron. According to the positiv-
ity condition on the norm of any physical state, one can derive inequalities for
GPDs, as first observed by Martin & Ryskin (51). The most extensive investiga-
tion on the GPD inequalities has been carried out in a series of papers by Poblytsa
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(52). Subtleties involving scale evolution and direct derivation from physical cross
sections have also been discussed. The inequalities can be used as constraints in
parameterizing GPDs phenomenologically.

All inequalities involving twist-two GPDs and the usual Feynman parton dis-
tributions in the nucleon can be derived from the condition (52)∥∥∥∥∥ 2∑

k=1

∑
λµ

c(k)
λµ

∫
dτ

2π
eiτ xk (Pk n)φµ (τn) |Pk, λ〉

∥∥∥∥∥
2

≥ 0. 70.

Here |Pk, λ〉 is the nucleon state with momentum Pk and polarization λ, while φµ

is the component of the quark (or gluon) field that corresponds to the polarization
µ. Introducing the quark-nucleon helicity amplitudes,

Aλ′µ′,λµ =
∫

dz−

2π
eix P+z−〈p′, λ′|Oµ′,µ(z)|p, λ〉

∣∣∣∣
z+=0,z⊥=0

, 71.

where Oµ′,µ are bilinear quark light-ray operators with the polarization indices
µ, µ′. A’s contain all the leading-twist GPDs. Now the positivity condition is
easily translated into the condition for the following 8 × 8 matrix:(

A(x1, 0, 0) A†(x, ξ, t)
A(x, ξ, t) A(x2, 0, 0)

)
≥ 0 . 72.

where A’s are 4 × 4 matrices in quark and proton helicity space.
The above equation can be used to derive a host of inequalities for individual

GPDs or any linear combination of them. For example, an inequality that involves
H̃ and Ẽ reads,∣∣∣∣Hq − ξ 2

1 − ξ 2
Eq

∣∣∣∣ ≤ 1

4
√

1 − ξ 2
×

{√
(q + �q − 2δq)x1

(q + �q − 2δq)x2

+
√

(q + �q + 2δq)x1
(q + �q + 2δq)x2

+ 2
√

(q − �q)x1
(q − �q)x2

}
, 73.

where subscripts x1 = x + ξ/(1 + ξ ) and x2 = x − ξ/(1 − ξ ) are shorthand
for arguments, and q(x), �q(x), and δq(x) are quark unpolarized, helicity, and
transversity distributions, respectively. However, when averaging over the quark
polarization, one finds∣∣∣∣Hq (x, ξ, t) − ξ 2

1 − ξ 2
Eq (x, ξ, t)

∣∣∣∣ ≤
√

q(x1)q(x2)

1 − ξ 2
, 74.

which was first obtained in Reference (53). Two examples of inequalities involving
the individual GPD and unpolarized quark distributions are

|Eq (x, ξ, t)| ≤ 2m√
t0 − t

√
q(x1)q(x2) , 75.
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|Hq (x, ξ, t)| ≤
√(

1 + −t0ξ 2

t0 − t

)
q(x1)q(x2)

1 − ξ 2
, 76.

where t0 = −4ξ 2m2/(1 − ξ 2).
More general inequalities can be derived that involve GPDs convoluted with

arbitrary functions. Poblytsa has shown how to parameterize GPDs to satisfy both
the general positivity constraints and the polynomiality conditions (52).

4.7. GPDs at Large x and t

Like Feynman parton distributions at large x and electromagnetic form factors at
large t, the GPDs at large x and t can be studied in pQCD. In the x → 1 limit,
Yuan finds (54)

Hq (x, ξ, t) → (1 − x)3/(1 − ξ 2)2

Eq (x, ξ, t) → (1 − x)5/(1 − ξ 2)4 f (ξ ), 77.

where f (ξ ) is an unknown function. Thus, the distributions are independent of
the momentum transfer t in the limit. According to Equation 25, this implies that
the transverse profile of the quarks shrinks to zero. This makes sense intuitively
because when a quark carries all the longitudinal momentum of a nucleon, its center
of gravity must coincide with that of the nucleon (15). Perturbative arguments also
show that any t-dependence is suppressed by (1 − x)2, or goes like t(1 − x)2 [(54);
see also (55)].

In the large-t limit, one can derive a pQCD factorization formula for GPDs.
Let us consider first the pion case (56, 57). The leading pQCD contribution is
shown in Figure 2, where the initial and final pion states are replaced by the light-
cone Fock component with the minimal number of partons. The circled crosses
in the diagrams represent the bilocal quark operator. The hard part responsible
for the large momentum transfer contains a single gluon exchange just like in
the electromagnetic form factor. In the first two diagrams (a) and (b), there is a
hard gluon exchange between the two quark lines, and in the third one, there is a
gluon coming from the gauge link. Because the transverse momenta of the quarks
are expected to be on the order of �QCD, we may ignore them in calculating the
hard part. Thus, we can effectively integrate out k⊥ in the pion wave function to
obtain the distribution amplitude, φ(x) = ∫ d2k⊥

(2π )3 ψ(x, k⊥). The parton transverse
momenta flowing into the hard part are now taken to be zero.

The result of the above pQCD analysis is a factorization formula for the GPD
at large t in terms of the quark distribution amplitude (57),

Hq (x, ξ, t, µ) =
∫

dx1dy1φ
∗(y1, µ)φ(x1, µ)THq (x1, y1, x, ξ, t, µ), 78.

where THq is the hard part and can be calculated as a perturbation series in αs .
All quantities in the above equation depend on the renormalization scale µ. The
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Figure 2 Leading pQCD diagrams contributing to the pion’s generalized parton
distribution H (x, ξ, t) at large −t . The circled crosses represent the nonlocal quark
operator.

µ-dependence in the hard part must be sufficient to account for the difference
between the GPD and the distribution amplitude.

The leading contribution to the hard part can be calculated straightforwardly:

Tu(x, x1, y1) = 4παsCF

x̄1 ȳ1(−t)
δ(x − λ1)

[
(1 − ξ ) + 1 − ξ 2

λ1 − λ̃1

]
+ h.c., 79.

where CF = 4/3, h.c. stands for a term obtained by exchanging xi and yi , and ξ and
−ξ , λ1 = y1 + ȳ1ξ , λ̃1 = x1− x̄1ξ , where x̄ = 1 − x . Because 0 < y1 < 1, the first
term contributes when x > ξ ; the second term contributes when x > −ξ , which
indicates an up–anti-up pair contribution. The antiquark is generated through the
one-gluon exchange on the top of the valence wave function. The GPD for the
down quark Hd (x, ξ, t) can be obtained from that of the up quark through simple
charge symmetry, Hd (x, ξ, t) = −Hu(−x, ξ, t).

The above result can be translated into one for the moments of the GPDs
H (n)

q (ξ, t) = ∫ 1
−1 dxxn−1 Hq (x, ξ, t). In fact, the factorization formula applies

for the individual moments, H (n)
q (ξ, t) = ∫

dx1dy1φ
∗(y1)φ(x1)T (n)

Hq (x1, y1, ξ, t),
where T (n)

Hq (x1, y1, ξ, t) is simply the nth moment of THq (x1, y1, x, ξ, t). For the
up quark in the pion, we have

T (n)
u (ξ, t) = 4παsCF

x̄1 ȳ1(−t)

[
(1 − ξ )λn−1

1 + (1 + ξ )λ̃n−1
1 + (1 − ξ 2)

n−2∑
m=0

λm
1 λ̃n−m−2

1

]
,

80.

which contains both even and odd powers of ξ . For n = 1, the above reproduces
the hard part in the QCD factorization formula for the pion form factor. For n = 2,
T (2)

u (ξ, t) = 4παsCF/(x̄1 ȳ1t)
[
(x1 + y1 + 1) + 2(x1 − y1)ξ + (x1 + y1 − 3)ξ 2

]
.

It is easy to see that the linear dependence in ξ does not contribute to H (1)
u (ξ, t)

because of the symmetry in the initial and final states. For the same reason, all odd
powers of ξ in T (n)

u do not contribute to the GPD moments.
For the nucleon, the factorization formula for the GPD Hq takes a similar form:

Hq (x, ξ, t) =
∫

[dx][dy]�∗
3(y1, y2, y3)�3(x1, x2, x3)THq (xi , yi , x, ξ, t), 81.

where [dx] = dx1dx2dx3δ(1 − x1 − x2 − x3), and �3(xi ) is the three-quark
distribution amplitude (see, e.g., Reference 58. The leading-order hard kernel can
be found in Reference 57).
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Figure 3 t2 Hu(x, ξ, t) for the proton at −t = 20 GeV2. CZ refers to the
Chernyak-Zhitnitsky amplitude, GS the Gari-Stefanis amplitude, and AS the
asymptotic amplitude.

One can make a numerical calculation of Hu(x, ξ, t) using various model am-
plitudes in the literature (59, 60). Using the strategy of Reference (61), one can
compute t2 Hu , as shown in Figure 3, for three different values of ξ at t2 =
−20 GeV2 with the asymptotic, Chernyak-Zhitnitsky (CZ), and Gari-Stefanis (GS)
amplitudes. Although the CZ and GS amplitudes both give reasonable accounts
of data on F p

1 for −t ≥ 10 GeV2, the two yield very different predictions for
the GPD. Note that the scale of Hu is strikingly large; a relatively small Dirac F1

results from the cancellation in the integration.

5. GPDs FROM HARD SCATTERING, LATTICE QCD,
AND MODELS

GPDs are nonperturbative nucleon observables, and apart from the general proper-
ties discussed in the previous section, we know little about the dynamical informa-
tion encoded in them. This section considers several approaches to gain access to
them. First is experimental measurement. It is fortunate that there exists a new class
of hard processes in which GPDs can be measured and/or constrained. The simplest
is called deeply virtual Compton scattering (DVCS). GPDs can also be calculated
in QCD using the lattice field theory method, just like ordinary parton distribu-
tions. Since the bilocal operators in GPDs involve real-time correlation, only the
moments of GPDs, or generalized form factors, are directly computable. Finally,
one may learn certain dynamical features of GPDs in various nucleon models. A
more phenomenological approach, GPD modeling, parameterizes the GPDs using
various constraints and fits the parameters to experimental and lattice QCD data.

5.1. Hard Exclusive Processes

In recent years, the search for an experimental measurement of GPDs has turned
up a new class of QCD hard scattering processes. The simplest, and possibly
the most promising, is deep-inelastic exclusive production of photons, mesons,
and even lepton pairs. Let us consider briefly two experiments that have been
studied extensively in the literature: DVCS, in which a real photon is produced,
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and diffractive meson production. Both processes have practical advantages and
disadvantages. Real photon production is, in a sense, cleaner but the cross section
is reduced by an additional power of αem. The Bethe-Heitler contribution can
be important but can actually be used to extract the DVCS amplitude through
interferences, as in a single-spin asymmetry. Meson production may be easier to
detect, but it has a twist suppression of 1/Q2. In addition, the theoretical cross
section depends on the unknown leading light-cone wave function of the mesons.

DVCS was first proposed (14, 62) as a practical way to measure the generalized
distributions. Consider virtual photon scattering in which the momenta of the
incoming (outgoing) photon and nucleon are q(q ′) and P(P ′), respectively. The
Compton amplitude is defined as

T µν = i
∫

d4zeq̄·z
〈
P ′

∣∣∣TJµ
(
− z

2

)
J ν

( z

2

)∣∣∣ P
〉
, 82.

where q̄ = (q + q ′)/2. In the Bjorken limit, −q2 and P · q → ∞ and their ratio
remains finite; the scattering is dominated by the single-quark process, in which a
quark absorbs the virtual photon, immediately radiates a real one, and falls back
to form the recoiling nucleon. In the process, the initial and final photon helicities
remain the same. The leading-order Compton amplitude is then

T µν = gµν

⊥

1∫
−1

dx

(
1

x − ξ + iε
+ 1

x + ξ − iε

) ∑
q

e2
q Fq (x, ξ, t, Q2) 83.

+ iεµναβ pαnβ

1∫
−1

dx

(
1

x − ξ + iε
− 1

x + ξ − iε

) ∑
q

e2
q F̃q (x, ξ, t, Q2),

where n and p are the conjugate light-cone vectors defined according to the collinear
direction of q̄ and P̄ , and gµν

⊥ is the metric tensor in transverse space. ξ is related
to the Bjorken variable xB = −q2/(2P · q) by xB = 2ξ/(1 + ξ ).

Much theoretical work has been devoted to DVCS in the past few years. For
example, an all-order perturbative proof that DVCS is factorizable has been found.
Belitsky, Müller, and Kirchner have worked out, up to twist-two and -three orders,
comprehensive expressions for cross sections and spin asymmetries involving po-
larized beam and target (63, 64). The time-like virtual-photon (or lepton-pair)
production has recently been studied (65, 66).

Development on the experimental front is also promising. Recently, both ZEUS
and H1 collaborations have announced the first evidence for a DVCS signature,
and the HERMES collaboration at DESY and the CLAS collaboration at JLab
have made the first measurements of the DVCS single-spin asymmetry (67). More
experiments are planned for COMPASS, JLab, and future facilities.

Another process sensitive to GPDs is deep-inelastic exclusive vector-meson pro-
duction. This was studied by Brodsky et al. (68), but they neglected the off-forward
nature of the two gluon exchanges. The scattering amplitude in terms of the
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generalized gluon distribution was first found by Radyushkin (69). With the virtual
photon and vector meson both polarized longitudinally (i.e., determined through a
Rosenbluth separation, with the vector meson polarization measured via its decay
products), one finds

dσL L

dt
(γ ∗N → VN) = 4π�V mV α2

s (Q)η2
V

3αem Q6

×
∣∣∣∣∣∣2xB

1∫
−1

dx

(
1

x − ξ + iε
+ 1

x + ξ − iε

)
Fg(x, ξ, t)

∣∣∣∣∣∣
2

, 84.

where again xB = 2ξ/(1 + ξ ). The above formula is valid for any xB and t smaller
than typical hadron mass scales. Later, Collins et al. (70) showed that exclusive
meson production in DIS is factorizable to all orders in perturbation theory. The
reader can find more detailed results in experiment and theory in Reference (2).

5.2. Lattice QCD

As nucleon matrix elements, GPDs must be calculable in the fundamental theory.
At present, our only way to compute, rather than model, QCD dynamics is lattice
field theory. Such significant breakthroughs in lattice QCD have been made in
the past decade that accurate evaluations of the nucleon matrix elements might be
possible in the near future.

Exploratory calculations for electromagnetic form factors have been made since
the early 1990s. Calculations of the form factors of higher spin operators are
essentially similar. The first lattice calculation of form factor A2(Q2)+B2(Q2) was
performed in the quenched approximation with Wilson fermions (71). The lattice
size was 163 ×24 with coupling β = 6.0 corresponding to lattice spacing of about
1.7 ∼ 2.1 GeV−1. The lattice up and down quark masses were approximately
370, 210, 120, and 80 MeV/c2, and the results were linearly extrapolated to the
chiral limit. The Q2 dependence was fitted to a dipole form and the result was
used to find the form factor at Q2 = 0, which, as discussed above, is the fraction
of the nucleon spin carried by quarks. The result is Jq = 0.30 ± 0.07 at MS scale
1.8 GeV, in which the contribution from the disconnected vacuum polarization
diagram is also included. A2(Q2) + B2(Q2) at Q2 = 0 has also been calculated
directly (72) without using Q2 extrapolation. The result Jq = 0.35 ± 0.09 was
found at the quark mass mq = 210 MeV with similar lattice configurations.

More recently, the QCDSF collaboration has carried out similar quenched calcu-
lations withO(a)-improved Wilson fermions on a slightly larger lattice of 163 ×32
(73). The energy-momentum form factors A2(Q2), B2(Q2), and C2(Q2) were cal-
culated separately as functions of discrete Q2. A common dipole mass was used to
parameterize the Q2 dependence and was fitted to be 1.1(2) GeV. Extrapolation to
the chiral limit and Q2 = 0 yielded Ju+d = 0.33 ± 0.07 without the contribution
from the vacuum insertion.
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Figure 4 The generalized form factors from a dynamical simulation of QCD on the
lattice with a large quark mass (74). The form factors become harder as the spin of the
operator increases.

A first dynamical calculation of the generalized form factors was made by
the LHPC and SESAM collaborations (74). The quarks in the calculations had
quite heavy masses, about 750 and 900 MeV/c2. Form factors An0 for quark spin-
independent twist-two operators and Ãn0 for quark spin-dependent twist-two oper-
ators were calculated for n = 1, 2, 3. The singlet B2 form factor is consistent with
zero within the statistical errors. It was also found that the form factor becomes
harder as the spin of the operators n increases (see Figure 4).

One of the primary goals of lattice simulation is to bring down the quark masses
to the physical ones so that the Goldstone boson (pion) physics can be correctly
and fully incorporated.

5.3. GPDs from Nucleon Models and Parameterizations

Given a nucleon model with quark degrees of freedom, one can calculate the gen-
eralized quark distributions in the model. This has been done, for example, in
the MIT bag model (75), the chiral-quark soliton model (76, 77), and more re-
cently in the nonrelativistic quark models (78). These calculations may provide
some guidance on the functional dependence of GPDs, particularly if a model is
constrained to reproduce electromagnetic form factors and ordinary parton dis-
tributions. However, the quarks in these models are not the QCD quarks, even at
low renormalization scale, and no rigorous relation between the two has ever been
established.

A more phenomenological approach is to parameterize the (light-cone) wave
functions and fit the parameters to various nucleon observables. There is no
Lagrangian or Hamiltonian involved, and therefore the dynamical origin of these
wave functions is unclear. However, this is a very economical way to correlate
hadronic observables.
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This subsection mainly focuses on a GPD parameterization that takes into ac-
count a set of constraints (1). An approach like this one is important to extract
information about GPDs from experimental data, just as in the case of Feynman
parton distributions. All or some of the known conditions can be imposed on a
parameterization—for example, the large and small x and t behavior, positivity con-
straint, polynomiality condition, sum rules, etc. Finally, one can fit the parameters
to experimental data or lattice QCD results.

The simplest way to satisfy the polynomiality condition is to relate it to a double
distribution F(y, x, t) (80) and the D-term (77):

H (x, ξ, t) =
1∫

−1

dy

ξ
�(y|x, ξ )F

(
y,

x − y

ξ
, t

)
+ θ (ξ > |x |)D

(
x

ξ
, t

)
. 85.

The “step”-function kernel in Equation 85 has the form

�(y|x, ξ ) = θ (x > ξ )θ

(
x + ξ

1 + ξ
≥ y ≥ x − ξ

1 − ξ

)
+ θ (−ξ > x)θ

(
x + ξ

1 − ξ
≥ y ≥ x − ξ

1 + ξ

)
+ θ (ξ > |x |)θ

(
x + ξ

1 + ξ
≥ y ≥ x − ξ

1 + ξ

)
.

The q-flavor double distribution Fq = Fval
q + F sea

q , including both valence and sea,
is assumed to be related to the non-forward quark distribution fq (y, t) through a
profile function π (y, z, b):

Fval
q (y, z, t) = f val

q (y, t)θ (y)π (|y|, z; bval), 86.

F sea
q (y, z, t) = ( f̄ q (y, t)θ (y) − f̄ q (−y, t)θ (−y))π (|y|, z; bsea), 87.

where at t = 0 the function fq (y, t = 0) reduces to the conventional parton
distribution functions. The profile function with a single parameter b is assumed
to be universal for valence- and sea-quark species, and reads (80)

π (y, z; b) = � (b + 3/2)√
π�(b + 1)

[(1 − y)2 − z2]b

(1 − y)2b+1
. 88.

To proceed further, one designs a nonfactorized ansatz (4, 41, 81) for the func-
tions fq (y, t) with intertwined t and y dependence. The model is based on the
Gluck-Reya-Vogt (GRV) leading-order quark distributions (82) with discarded
flavor asymmetry of the sea, and it reads

f val
u (y, t) = 1.239y−αv−α′

v (1−y)1/2t (1 − 1.8
√

y + 9.5y)(1 − y)2.72, 89.

f val
d (y, t)=0.761y−αv (2y−α′

v (1−y)1/2t −y−β ′
v (1−y)t )(1 − 1.8

√
y + 9.5y)(1 − y)3.62,

f̄ u(y, t) = f̄ d (y, t) = 0.76y−αs−α′
s (1−y)3/2t (1 − 3.6

√
y + 7.8y)(1 − y)9.1.
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These models naturally reduce to the quark form factors with the dipole parame-
terization of proton and neutron Sachs form factors. The valence d-quark function
has a more complicated structure, since the corresponding form factor Fd

1 has a
node at |t | ≈ 4M2/|2κn + κp + 1|: It is positive below this value and is negative
above it. The Regge intercepts and slope parameters are taken as

αv = 0.52, α′
v = 1.1 GeV−2, β ′

v = 1.0 GeV−2, 90.

αs = 0.85, α′
s = 0.3 GeV−2.

The Regge parameters of the valence quarks are numerically close to those of ρ-
reggeons, and the sea quarks being generated by gluon radiation are analogous to
that of the pomeron. The form factor asymptotics at large t is governed by the large-
y behavior of f (y, t). If the latter has the form f (y, t) ∼ y−α−α′(1−y)pt (1 − y)N ,
then the corresponding form factor is F(t → ∞) ∼ |t |−(N+1)/(p+1). The pQCD
asymptotics for valence quarks requires p = 1. However, p = 1/2 is used for them
because this value better fits the form factor at small and moderate t. For p = 1,
one can get decent behavior at moderate t with α′

u = 1.6 GeV2. The estimates
bval = bsea = 1 are used here. The D-term is parameterized as

D(z, t) =
(

1 − t

m2
D

)−3

(1 − z2)(d0 C3/2
1 (z) + · · ·), 91.

with the mass scale m2
D = 0.6 GeV2 and the parameter d0 computed within the

chiral quark soliton model (χQSM) (4, 76) and on the lattice (73, 74). The results
are as follows:

dχQSM
0 = −4.0

1

N f
, d latt

0 = du
0 ≈ dd

0 ≈ −0.5, 92.

respectively, where N f is the number of active flavors. In the lattice case, the
effect of disconnected diagrams was not calculated, but they are known to produce
a sizable negative contribution (72). Once they are properly taken into account,
the lattice result might approach the model calculation. For the present estimate
an intermediate value, d0 = −1.0, is chosen.

According to Section 3, the phase-space charge distribution ρ+(�r , x) is simply
the Fourier transformation of the GPD,

ρ
q
+(�r , x) =

∫
d3�q

(2π )3
e−i �q·�r Hq (x, ξ, t), 93.

where ξ = qz/2Eq , Eq =
√

M2 + �q2/4, and t = �q2. Let us now consider the
result of the quark densities from the above parameterization.

Figures 1 and 5 show the up-quark charge distributions calculated from
Hu(x, ξ, t) for various values of x = {0.01, 0.4, 0.7}. The intensity of the plots
indicates the magnitude of the positive distribution; the lighter areas below the
ground-zero contours indicate negative values. The plots show significant change in
the distribution on the longitudinal momentum fraction x. The image is rotationally
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Figure 5 The u-quark phase-space charge distribution at different values of the Feyn-
man momentum for a nonfactorizable parameterization of H (x, ξ, t). Shown here are
the shapes of three-dimensional isodensity contours (ρ = const) at x = 0.01, 0.4, and
0.7.

symmetric in the �r⊥-plane. At small x, the distribution extends far beyond the nom-
inal nucleon size along the z direction. The physical explanation for this is that the
position-space uncertainty of the quarks is large when x is small, and therefore the
quarks are delocalized along the longitudinal direction. This delocalization reflects
a very peculiar part of the nucleon wave function and shows long-range correla-
tions as verified in high-energy scattering. In a nucleus, the parton distributions at
small x are strongly modified because of the spatial overlap between the nucleons.
However, at larger x, the momentum along the z direction is of order nucleon mass,
and the quarks are localized to within 1/MN . The quantum mechanical nature of
the distribution becomes distinct because there are significant changes in the sign
in different spatial regions.

6. SUMMARY

This article is an introduction to quantum phase-space parton distributions and
generalized parton distributions. These novel distributions are important because
of the deficiencies of the traditional nucleon observables—elastic form factors and
Feynman parton distributions—neither of which contain any position or momen-
tum space correlations. The new distributions encode precisely this information.

The new distributions are obtained by generalizing the concept of the Wigner
distribution to relativistic quarks (and gluons) in QCD. Although the theoretical
construction is by no means unique, one finds a class of six-dimensional distribu-
tions relevant for high-energy experiments. When integrating over the spatial co-
ordinates, one has TMD (transverse-momentum-dependent) parton distributions.
When integrating over the transverse momentum, one arrives at four-dimensional
phase-space distributions. Fourier transformation of these distributions leads to
GPDs.
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This review has discussed several interesting properties of GPDs, including their
connection to the quark orbital angular momentum and the spin structure of the
nucleon. GPDs can be measured experimentally through hard-exclusive processes
such as DVCS (deeply virtual Compton scattering). I presented a model GPD
that satisfies a number of known constraints and provides a new and interesting
visualization of the quarks in the quantum phase-space.

In the future, the most important goal in this field is to find ways to learn
about these distributions. In addition to new experimental facilities and technology,
lattice field theory will be an important complementary approach. Of course, any
new theoretical method that helps to understand bound states in QCD will have a
significant impact on our knowledge of the new distributions.
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