$\pi\,\text{and}\,\eta\,\text{production}\,\text{at}\,\text{JLab}$ with 6 and 12 GeV

J. Roche (Ohio U.)

JLab 12 meson production experiments:

- ϕ : nucleon gluonic radius : CLAS 12
- π^0 and η : helicity flip GPDs: CLAS12, Hall A
- π^+ and K^+ : factorization tests: Hall C
- J/ ψ near threshold: high-t gluonic FF: Gluex, CLAS12, SOLID

QCD factorization in Deep Meson Electroproduction?

t-channel process

In the limit of small –*t* meson production can be described by the t-channel meson production.

→ Spatial distribution described by form factor.

 $\sigma_{\rm L}/\sigma_{\rm T} \rightarrow 1$

At sufficient high Q², meson production should be understandable in terms of the "handbag" diagram.

- the non-perturbative physics represented by GPDs
- the factorization is only exact for longitudinal photons (Collins, Frankfurt, Strikman, 1997)

Handbag diagram

When the handbag diagram applies

DVCS/DVMP : same GPDs??

Chiral even GPDs: (helicity of the parton is conserved)

+ Chiral-odd GPDs: (helicity of the parton can flip)

Chiral even GPDs

	Meson	Flavor		
<i>H</i>τ , ετ	π^+	$\Delta u - \Delta d$		
	π^{0}	$2\Delta u + \Delta d$		
	η	$2\Delta u - \Delta d + 2\Delta s$		

	Nucle	on Helicity
	conserving	non-conserving
unpolarized GPD	Н	E
polarized GPD	Ĥ	$ ilde{\mathrm{E}}$

Structure function and GPDs

$$\frac{d^{4}\sigma}{dtd\phi dQ^{2}dx_{B}} = \frac{1}{2\pi}\Gamma_{\gamma^{*}}(Q^{2}, x_{B}, E_{e})\left[\frac{d\sigma_{T}}{dt} + \epsilon\frac{d\sigma_{L}}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon\frac{d\sigma_{TT}}{dt}\cos(2\phi)\right]$$

Assuming factorization for transversely polarized photons:

$$\sigma_{\mathbf{T}} = \frac{4\pi\alpha}{2\kappa} \frac{\mu_{\pi}^2}{\mathbf{Q}^4} \left((1-\xi^2) < \mathbf{H}_{\mathbf{T}} >^2 - \frac{\mathbf{t}'}{8\mathbf{m}^2} < \bar{\mathbf{E}}_{\mathbf{T}} >^2 \right) \qquad \qquad \sigma_{\mathbf{T}\mathbf{T}} = \frac{4\pi\alpha}{2\kappa} \frac{\mu_{\pi}^2}{\mathbf{Q}^4} \frac{\mathbf{t}'}{8\mathbf{m}^2} < \bar{\mathbf{E}}_{\mathbf{T}} >^2 \\ < \bar{\mathbf{E}}_{\mathbf{T}} > = 2\tilde{\mathbf{H}}_{\mathbf{T}} + \mathbf{E}_{\mathbf{T}}$$

Transversity GPD models

S. Goloskokov and P. Kroll (Eur.Phys.J A47, 112(2011)) S. Liuti and G. Golstein (Phys.Rev.D79, 054014 (2009))

Twist 3 DA couple with transversity GPDs. Twist 3 DA are associated to a kinematical factor:

$$\mu_{\pi}=rac{m_{\pi}^2}{m_u+m_d}\simeq 2.5\,\, ext{GeV}$$

The dominant contribution is not the leading twist contribution.

$$\frac{d^{4}\sigma}{dtd\phi dQ^{2}dx_{B}} = \frac{1}{2\pi}\Gamma_{\gamma^{*}}(Q^{2}, x_{B}, E_{e})\left[\frac{d\sigma_{T}}{dt} + \epsilon\frac{d\sigma_{L}}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon\frac{d\sigma_{TT}}{dt}\cos(2\phi)\right]$$

DVCS2 @ Hall A π^0 production

M. Defurne et al. PRL 117, 26 (2015)

x_B=0.36 t-t_{min}=0.025 GeV²

DVCS2@Hall A results: fully separated contributions

The measured Q dependence is 9+/-2 for σ_{T} , 4+/-2 for σ_{TT} and 26+/-5 for σ_{TL} .

More on L/T separations in meson electroproduction

Not following the leading twist prediction: $\sigma_L \sim 1/Q^6$ (ok), $\sigma_T \sim 1/Q^8$ (not quite right) $\sigma_L > \sigma_T$ (not on the right panel)

Contribution from the pole production?

$\pi^{\scriptscriptstyle +}$ 12 GeV Hall C proposal

 π^0 data:

E12-13-010 (Horn, Hyde, Munoz, Paremuzyan, JR)

Kaon data: E12-09-011 (Horn, Huber, Markowitz)

Slide from V. Kubarosky, 3D nucleon structure, March 2017

Experiment E12-06-118 : π^0 and η production at 11 GeV Data taking started, Kyungseon Joo can provide more info.

Comparison π^0/η

- $\sigma_U = \sigma_T + \epsilon \sigma_L$ drops by a factor of 2.5 for η
- σ_{Π} drops by a factor of 10
- The GK GPD model (curves) follows the experimental data
- The statement about the transversity GPD dominance in the pseudoscalar electroproduction becomes more solid with the inclusion of η data $$_{\rm 8}$$

From structure functions to flavor decomposed GPDs

Consider π^0 and η data simultaneously

- assume transversity GPDs dominance,
- assume no phase between the u and d quarks amplitudes.

$$\frac{d\sigma_T}{dt} = \Lambda \left[\left(1 - \xi^2 \right) \left| \langle H_T \rangle \right|^2 - \frac{t'}{8M^2} \left| \langle \bar{E}_T \rangle \right|^2 \right]$$
$$\frac{d\sigma_{TT}}{dt} = \Lambda \frac{t'}{8M^2} \left| \langle \bar{E}_T \rangle \right|^2 .$$
$$\bar{E}_T = 2\tilde{H}_T + E_T$$

V. Kubarosky, arXiv:1601.04367

Q²=1.8 GeV², x_B=0.22

DVCS2 results neutron data M. Mazouz PRL 118 (2017) 22, 222002

At $Q^2=1.75$ GeV² and $x_B=0.36$, half of the data taken on a LD2 target.

Below the two pions threshold:

 $D(e,e'\pi^0)X = d(e,e'\pi^0)d + n(e,e'\pi^0)n + p(e,e'\pi^0)p.$

DVCS2n results: fully separated contributions

DVCS2n results: flavor separation

$$\left| \langle H_{T}^{p,n}
angle
ight|^{2} = rac{1}{2} \left| rac{2}{3} \left\langle H_{T}^{u,d}
ight
angle + rac{1}{3} \left\langle H_{T}^{d,u}
ight
angle
ight|^{2}$$

account for the unknown phase variation between u and the d amplitude $\gamma^*q \rightarrow q'\pi^0$ convoluted with $(H,E)_T$

Goloskokov and Kroll Eur Phys J A47 (2012)

u quark

d quark

Some 12 GeV outlook

Proposal	Title	Spokespersons	Hall	Rating
E12-06-114	Measurement of Electron-Helicity	C. Hyde	Α	Α
	Dependent Cross-Sections of	B. Michel		
	Deeply Virtual Compton Scattering	C. Munoz-Camacho		
	with CEBAF at 12 GeV	J. Roche		1
E12-06-108	Hard Exclusive Electroproduction	P. Stoler	В	В
	of π^0 and η with CLAS12	K. Joo		
		V. Kubarovsky		
		M. Ungaro		
		C. Weiss		
E12-06-119	Deeply Virtual Compton Scattering	F. Sabatié	В	Α
	with CLAS at 11 GeV	A. Biselli		
		H. Egiyan		
		L. Elouadrhiri		
		M. Holtrop		
		D. Ireland		
		W. Kim		
E12-11-003	Deeply Virtual Compton Scattering	S. Niccolai	В	Α
	on the Neutron with CLAS12 at 11 GeV	V. Kubarovsky		
		A. El Alaoui		
		M. Mirazita		
E12-12-001	Timelike Compton Scattering and J/ψ	P. Nadel-Turonski	В	A-
	photoproduction on the proton in e^+e^- pair	M. Guidal		
	production with CLAS12 at 11 GeV	T. Horn		
	-	R. Paremuzyan		
		S. Stepanyan		
E12-12-007	Exclusive ϕ Meson Electroproduction	P. Stoler	В	B+
	with CLAS12	C. Weiss		
		FX. Girod		
		M. Guidal		
		V. Kubarovsky		
E12-12-010	Deeply Virtual Compton Scattering	L. Elouadrhiri	В	Α
	at 11 GeV with a transversely polarized target	V. D. Burkert		
	using the CLAS12 detector	M. Lowry		
	-	M. Guidal		
		S. Procureur		
E12-07-105	Scaling Study of the L-T Separated	T. Horn	С	A- 🚿
	π Electroproduction Cross-Section at 11 GeV	G. Huber		
E12-07-105	Studies of the L-T Separated	T. Horn	С	B+
	Kaon Electroproduction Cross Section	G Huber		
	Raon Electroproduction Cross-Section	G. Huber		

E12-13-010: Exclusive Deeply Virtual Compton and Neutral Pion Cross-Section Measurements in Hall C, Horn, Munoz, Paremuzyan, Roche

Hall A E12-06-114: early 12 GeV experiment

Hall A : Trigger with *at least one* cluster in the calo.

Triggers if a group of 2*2 blocks is above threshold

DVCS3- kin	1 cluster	2 clusters
36_1	100	23
36_2	100	27
36_3	100	26

In some case, this trigger is by-passed

	16	_														400
lbei	10	- 15	31	47	63	79	95	111	127	143	159	175	191	207		400
E E		- 14	30	46	62	78	94	110	126	142	158	174	190	206		050
Ň	14	- 13	29	45	61	77	93	109	125	141	157	173	189	205	_	350
ĕ	10	- 12	28	44	60	76	92	108	124	140	156	172	188	204		
	12	- 11	27	43	59	75	91	107	123	139	155	171	187	203		300
	10	- 10	26	42	58	74	90	106	122	138	154	170	186	202		
	10	- 9	25	41	57	73	89	105	121	137	153	169	185	201	_	250
		- 8	24	40	56	72	88	104	120	136	152	168	184	200		
	8	- 7	23	39	55	71	87	103	119	135	151	167	183	199		200
		- 6	22	38	54	70	86	102	118	134	150	166	182	198		
	6	- 5	21	37	53	69	85	101	117	133	149	165	181	197	_	150
		-4	20	36	52	68	84	100	116	132	148	164	180	196		
	4	- 3	19	35	51	67	83	99	115	131	147	163	179	195		100
		- 2	18	34	50	66	82	98	114	130	146	162	178	194		
	2	- 1	17	33	49	65	81	97	113	129	145	161	177	193	_	50
		= o_	16	32	48	64	80	96	112	128	144	160	176	192		
	0)		2		4		6	Ę	3	1	D	1	2		•
													Col. n	umber		

Target-Calorimeter distance such that 2γ from π^0 are separated by 3 blocks

E12-06-114: *π*⁰ **VERY** preliminary results

0.17

GeV

ę

$$\frac{d^{4}\sigma}{dtd\phi dQ^{2}dx_{B}} = \frac{1}{2\pi}\Gamma_{\gamma^{*}}(Q^{2}, x_{B}, E_{e}) \Big[\frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon \frac{d\sigma_{TT}}{dt}\cos(2\phi)\Big]$$

JLab12: kaon production Slide from T. Horn

E12-09-011: Separated L/T/LT/TT cross section over a wide range of Q² and t *spokespersons: T. Horn, G. Huber, P. Markowitz*

JLab 12 GeV Kaon Program features:

- First cross section data for Q² scaling tests with kaons
- Highest Q² for L/T separated kaon electroproduction cross section
- First separated kaon cross section measurement above W=2.2 GeV

approved for 40 PAC days and

scheduled to run in 2018/19

x	Q ²	W	-t
	(GeV ²)	(GeV)	(GeV/c) ²
0.1-0.2	0.4-3.0	2.5-3.1	0.06-0.2
0.25	1.7-3.5	2.5-3.4	0.2
0.40	3.0-5.5	2.3-3.0	0.5

[blue points from M. Carmignotto, PhD thesis (2017)]

First Exclusive Kaons from 2018 Data! Slide from T, Horn

E12-13-010 GeV in Hall C: π⁰ production

Outlook

- Detailed inspection of π^0 and η electro-production data at 6 GeV reveals that the hand-bag approach is a serious candidate to describe them.
- The dominance of the contribution of transverse photon opens new and unique opportunities for accessing the transversity GPDs.
- The simultaneous consideration of different meson allow for a flavor decomposition of the GPDs. Using a neutron target also helps (but it's tought)
- 12 GeV experiments have started taking data.

From Quarks to Nuclei in Photonuclear Reactions August 5 - 10, 2018

Apply Now

Holderness School 33 Chapel Lane Holderness, NH, US

https://www.grc.org/photonuclear-reactions-conference/2018/

Photo-nuclear Reactions is a forum for the presentation and discussion of the most recent and exciting results in a wide range of subatomic physics topics. Since 1959, the Photo-nuclear Gordon Research Conference has been a preeminent meeting for the discussion of new ideas and results, even at the preliminary stage, providing ample and unique opportunities for young scientists and leading researchers to interact in the most scientifically stimulating environment. Participation from students and junior researchers is particularly encouraged.

Topics for the 2018 conference are: Nucleons in Nuclei, QCD for Neutrino Physics, Movement of Partons in the proton, Innovative Tools for the Study of Hadrons, Hadron Spectrum and QCD, Imaging the Proton in 3D, Long Range Structure of Hadrons, and **Origin of the Proton Mass.** The full program is posted on the conference webpage.

A unique format: The conference is structured around invited morning and evening talks, and poster sessions. The afternoons are left free on purpose to promote discussions, exchange of new ideas, and connections among colleagues, while enjoying the many outdoor activities offered by the area.

Poster competition: A two-day poster competition will be organized at the beginning of the conference, and the best theory poster and experimental poster presenters will be rewarded with the chance to present their research in a short talk during the conference.

Financial Support: Limited but substantial support is available to help defray the registration or travel costs. Inquire with the conference Chairs about this opportunity.

Registration is on-going. The deadline for application is July 8th, 2018.

Conference Chairs: J. Roche (rochej@ohio.edu), N. d'Hose (nicole.dhose@cea.fr) and H-W. Lin (hwlin@pa.msu.edu).

We strongly encourage our junior attendees to also consider participating in the "Frontiers & Careers" workshop that is organized immediately before the Photo-nuclear Reactions GRC in Boston. http://frontiers.mit.edu/.

Movement of Partons in the Proton

Discussion Leader: Elke Aschenauer

- Emanuele Nocera "Unpolarised an Polarised PDFs Today: Needs, Issues and Challenges"
- Andrea Bressan "The SIDIS Path to TMDs"
- Jaroslav Adam "Ultra-Peripheral Collisions in the STAR Experiment"
- Marcia Quaresma "Measurement of Transverse-Spin-Dependent Asymmetries in the Drell-Yan Process by COMPASS"
- Jiunn-Wei Chen "Towards the Determination of Nucleon Parton Distributions from Lattice QCD"
- Nobuo Sato "Universal QCD Analysis of Parton Densities and Fragmentation Functions"

Imaging the Proton in 3D

Discussion Leader: Cédric Lorcé

- Barbara Pasquini "Wigner Distributions"
- Silvia Niccolai "Exploring Nucleon Structure with Generalized Parton Distributions"
- Marc Vanderhaeghen "Spatial Tomography of the Proton from Present Data"
- Yi-Bo Yang "A Glimpse of the Proton Spin and GPD from Lattice QCD"

The Hall A detector scheme

2-clusters events used for DVCS analysis

Monitoring and fine adjusting of energy calibration

- First pass: elastic calibration p(e,e'p'): invasive about every 4 weeks
- Second pass: π⁰ calibration with about 1 day of data parasitic to DVCS data taking

Hard Exclusive Meson cross-section

$$\frac{d^{4}\sigma}{dtd\phi dQ^{2}dx_{B}} = \frac{1}{2\pi}\Gamma_{\gamma^{*}}(Q^{2}, x_{B}, E_{e})\left[\frac{d\sigma_{T}}{dt} + \epsilon\frac{d\sigma_{L}}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon\frac{d\sigma_{TT}}{dt}\cos(2\phi)\right]$$

At first thought, if QCD factorization applies: σ_L expected to dominate with σ_T suppressed by 1/Q.

DVCS1 results

Fuchey et al. Phys Rev C 83.025201 (2011)

Q²= 2.3 GeV² x_B =0.36 ϵ =0.61

Similar results at:

- CLAS with π^0
- HERMES & Hall C with π^+

Events with missing mass squared below 0.95 GeV²:

• are divided in 12 x 2 x 5 x 30 bins in ϕ , E, t and M_x^2

 $\varphi,$ E allow for L, T, LT and TT separation $M_{\rm x}{}^2$ allows for the n/d separation

• fitted with eight cross-section function structure

 $d\sigma^{n,d}_{\Lambda}(t)$ $\mathbf{\Lambda} = \mathrm{T}, \mathrm{L}, \mathrm{LT}, \mathrm{TT}$ Q^2 =1.75 GeV² and x_B=0.36 E=4.45 GeV E=5.55 GeV <t'>= 0.025 GeV² <t'>=0.021 GeV² (µb/GeV²) 0.4 <u>20.3</u> 0.2 dtd ∳ 2π -0.1 100 200 300 100 200 30 $\widetilde{\phi}$ (deg) (deg)

