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Introduction

The deepest desire of mankind1 has always been to understand the universe. A significant
step toward this undertanding will be achieved when the following question is answered:
What is it made of ? Since the ancient greeks and the four elements, a lot have been learnt
about the structure of matter. It appears to be built with a finite set of elementary particles,
connected through four interactions which are described by the Standard Model. Whereas
the Large Hadron Collider keeps challenging the predictions of the Standard Model at higher
and higher energies, we are still far from completely understanding how these elementary
blocks organize themselves in a proton.

Indeed, in the late 1960s, DIS measurements at SLAC confirmed that the proton is a
composite object made of quarks and gluons. These particles interact through the strong
interaction. At high energy, the strong interaction can be computed using perturbative
quantum chromodynamics (QCD), the associated field theory. Indeed the coupling constant
becomes small and quarks behave as if they were free. It is the so-called asymptotic freedom.
Nevertheless, at long distance (typically the proton size), the coupling constant becomes large
and perturbation theory cannot be applied anymore. In other words, despite the promising
ways of non-perturbative calculations (Schwinger-Dyson equations, lattice QCD,. . . ), the
structure of the hadrons cannot be accessed through calculations yet.

Pieces of information about the nucleon structure have been revealed by scattering ex-
periments. Indeed scattering processes can be split into two parts:

• A hard part/short distance part calculable perturbatively.

• A soft part describing the interaction with the nucleon medium. This part encodes the
nucleon structure.

This splitting method is called factorization. As a consequence the scattering cross section is
parametrized by functions associated to the soft part. From the cross section measurement,
we derive these functions and get some insight about the structure of the hadron. For
instance form factors and parton distribution functions, related to spatial and momentum
distributions, have been studied using elastic and deep inelastic scattering. Unfortunately,
it is not enough to explain the confinement of the quarks inside hadrons, the proton mass
and spin.

In the mid 90’s, new kinds of distributions called generalized parton distributions are
defined. They represent a higher level of information than FFs and PDFs since they en-
capsulate both spatial and momentum information. Using the GPDs, we could derive the
total orbital angular momentum of quarks thanks to Ji’s sum rule. Experimentally they are
related to deep exclusive processes. A worldwide experimental program has been dedicated
to study such processes. This thesis deals in particular with two experiments measuring cross
sections of photon and π0 electroproduction in order to determine the GPDs. The thesis is
articulated as follows:

1It is maybe more exact to say one of the deepest desires.
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• Chapter 1 introduces the theoretical framework of GPDs and how they are involved
in the cross sections of interest. We discuss also GPD models and the existing experi-
mental data.

• Chapter 2 is dedicated to the description of Jefferson Lab, Hall A of Jefferson Lab and
the experimental setup.

• Chapter 3 focuses on the extraction of the DIS cross section in order to perform a
quality check of our data set. It allows us to develop a method for cross section
extraction.

• Chapter 4 is about the data analysis of the E00-110 experiment. All the cuts and
corresponding corrections are presented.

• Chapter 5 is subdivided into three parts: It presents the radiative corrections and the
Monte-Carlo simulation used for acceptance computation. In the last part, we explain
the fitting procedure employed to extract DVCS cross sections and effective CFFs.

• Chapter 6 summarizes the results on photon electroproduction and compares them to
predictions from different GPD-based models.

• Finally Chapter 7 is a condensate of chapters 4,5 and 6 applied on the π0 analysis.
The results of the first Rosenbluth separation performed on the π0 electroproduction
cross section are commented on and compared to two GPD models. A careful study
of systematic errors has been carried out.



Chapter 1

Nucleon structure through deep
exclusive processes

One of the hints that the proton has an internal structure were obtained by studying elastic
scattering off the proton in the late 1950’s at Stanford university by Hofstadter and his team.
The corresponding cross section can be parametrized using form factors (FFs), which are
related to the spatial distribution of charge in the nucleon (proton and neutron). In the late
1960’s at the Standford Linear Accelerator (SLAC), the study of Deep Inelastic Scattering
(DIS) confirmed the existence of quarks and that the proton is a composite particle. The
parton distribution functions (PDFs) parametrize the DIS cross section and are related
to the longitudinal momentum distribution of partons (quark and gluon) in the nucleon.
Nevertheless the correlation between both spatial and momentum information cannot be
derived from FFs and PDFs. It is only in the mid-90’s that was introduced the concept of
Generalized Parton Distributions (GPDs) which are a generalization of the FFs and PDFs.
GPDs are objects that encapsulate a higher level of information since they actually encode the
correlation between momentum and spatial distributions. GPDs obey a set of properties and
sum rules from which modelization is possible. These models are then tested by comparing
observables measured in deep exclusive processes. In particular we will focus here on Deeply
Virtual Compton Scattering (DVCS) and deep π0 electroproduction. After explaining how
GPDs are involved in these processes, we briefly present the current state of the experimental
program. Finally we introduce the experiments of interest in this thesis and what new
information we want to extract from the data.

1.1 Elastic scattering and form factors

A particle a scatters elastically off a particle b when the final state is only composed of
particles a and b. Figure 1.1 shows a diagram of elastic scattering. We note:

• ki = (ki, E) the 4-momentum of the incident electron.

• kf = (kf , E′) the 4-momentum of the scattered electron.

• θe the scattering angle in the lab frame.

• q = ki− kf the 4-momentum of the virtual photon and Q2 = −(kf − ki)2 its virtuality.

In 1911, Rutherford studied the scattering of alpha particles off a gold foil [1]. Assuming
a point-like target with no recoil and a non-relativistic scattered particle, the cross section

4



Chapter 1: Nucleon structure through deep exclusive processes 5

is given by: (
dσ

dΩ

)

Rutherford

=
α

16E2 sin4
(
θe
2

) , (1.1)

where α is the fine-structure constant. If one uses relativistic electrons instead of α-particles,
the cross section reads:

(
dσ

dΩ

)

Mott

=
α

4E2 sin4
(
θe
2

) cos2
(
θe
2

)
, (1.2)

but the experimental cross section deviated from this formula. If the target is an extended
object, the electron cross section is modified and becomes:

dσ

dΩ
=

(
dσ

dΩ

)

Mott

|F (∆)|2, (1.3)

with ∆ = p− p′ and F (∆) the form factor. F (∆) is the Fourier transform of the transverse
spatial distribution of charge ρ(r):

F (∆) =

∫
ρ(r)ei∆rdr3. (1.4)

ik

fk

p p'

q

Figure 1.1: Elastic scattering diagram. Note that in the case of elastic scattering, ∆ = −q.

Following the steps of Rutherford, Robert Hofstadter studied the nucleon structure using
elastic scattering ep → e′p′ at SLAC between 1954 and 1957. His work was awarded the Nobel
prize in 1961. In the nucleon case, the cross section can be parametrized by two structure
functions called the Sachs form factors GE and GM . The cross section is written [2]:

dσ

dΩ
=

α

4E2 sin4
(
θe
2

)
E′

E

[
G2

E(∆
2) + τG2

M (∆2)

1 + τ
cos2

(
θe
2

)
+ 2τG2

M (∆2) sin2
(
θe
2

)]
, (1.5)

with τ = −∆2

4M2 and M the mass of the proton. By measuring the cross section at the same ∆2

but two different beam energies, it is possible to extract GE and GM . This way of separating
the two FFs using different beam energies is called a Rosenbluth separation. Later in this
chapter, we will use the Pauli and Dirac FFs defined as:

F1(Q
2) =

GE(Q2) + τGM (Q2)

2τ
(1.6)

F2(Q
2) =

GM (Q2)−GE(Q2)

1 + τ
(1.7)
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In the Breit frame in which the initial and final proton momenta have the same magnitude
but opposite directions, GE and GM are the Fourier transform of the charge and magnetic
distributions of the proton. The proton charge radius can be derived from the knowledge of
GE using the formula:

⟨r2E⟩ = −
6

GE(0)

dGE(Q2)

dQ2

∣∣∣∣
Q2=0

. (1.8)

Applying Eq. 1.8, a charge radius of rp = ⟨r2E⟩ = 0.879(8) fm was derived by extrapolating
GE-measurements performed at low Q2 [3]. This result is in good agreement with the radius
provided by the study of the Lamb shift and the hyperfine structure of electronic hydrogen
atoms [4], giving rp = 0.8768(69) fm. Nonetheless, recent studies of muonic hydrogen’s
Lamb shift [5] gave rp = 0.84184(67) fm, at 7-σ from the value given by the electronic
measurements. This discrepancy has not been understood yet.

1.2 Deep inelastic scattering and parton distribution func-
tions

Let us now consider the inelastic reaction ep → eX. We define two additional variables:

• The Bjorken variable xB = Q2

2Mν , where ν = E − E′.

• W 2 = (p+ q)2 = M2 +Q2
(

1
xB

− 1
)
the invariant mass of the hadronic final state.

The deep inelastic regime is defined by W ≫ M and Q2 ≫ M2. In this regime, the final
state is composed of more particles than the initial state. Under the one-photon exchange
assumption, the DIS cross section is given by the contraction of the leptonic and hadronic
tensors. The information about the proton is encapsulated in the hadronic tensor. In the
case of unpolarized DIS, once symmetries and invariances have been applied, the hadronic
tensor can be parametrized by two dimensionless structure functions depending on Q2 and
xB. As a consequence the cross section is related to these two functions by:

dσ

dΩdE′
=

(
dσ

dΩ

)

Mott

[
F2(xB, Q2)

ν
+

2

M
F1(xB, Q

2) tan2
(
θe
2

)]
, (1.9)

In the late 1960’s at SLAC, Friedman, Kendall and Taylor performed DIS cross section
measurements at several Q2 [6] [7]and were later awarded the Nobel Prize in 1990. From
these measurements they noticed first that F2 was independent of Q2, as if the electron was
scattering off point-like particles. Moreover F1 and F2 were related through the Callan-Gross
relation, indicating that these particles were fermions:

F2(xB) = 2xBF1(xB) . (1.10)

These results validated the theory of Gell-Mann [8] (Nobel Prize 1969) and Zweig [9] in
1964 that the proton was composed of quarks and gluons. Richard Feynman (Nobel Prize
1965) developed the parton model in 1969: In the limit Q2 → ∞ and ν → ∞ but fixed xB
(Bjorken limit), the virtual photon interacts with a single quark in the proton (Figure 1.2).
Within this model, F2 is related to the so-called parton distribution functions (PDFs).

F2(xB) = xB
∑

f

efqf (xB), (1.11)

where ef stands for the quark electric charge in units of the positron charge and qf the PDF
for a quark of flavor f .
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Figure 1.2: Deep inelastic scattering. In the Bjorken limit, the photon interacts with a single
quark.

In the infinite momentum frame, where the proton speed is close to the speed of light
along the z-axis colliding head-on with the virtual photon, xB represents the fraction of
momentum carried by the struck quark. In this frame qf (xB) can be interpreted as the
probability to find a parton with flavor f carrying a fraction xB of the proton momentum.
Since the time scale of the interaction between two partons is much greater than the one
between the photon and the active quark, the DIS cross section can be rewritten as the
product of the probability to find a quark and the probability to scatter off this quark:

d2σDIS

dxBdQ2
=
∑

f

qf (xB)×
d2σeq→eq

dxBdQ2
, (1.12)

=
∑

f

qf (xB)× e2f
2πα2

Q4

[
1 +

(
1−

Q2

xBs

)]
, (1.13)

where s = (p + ki)2. Through this factorized form, the parton model infers the notion of
asymptotic freedom: At high Q2 and therefore small resolved distance, the reaction occurs
as if the electron scatters off a free quark.

By extracting F2 over a larger kinematic domain, the experimentalists noticed that the
scaling becomes violated when moving away from the xB value of first SLAC measurements.
The scaling violation is explained by the active quark emitting gluons (see Figure 1.3), in
other words by QCD radiative corrections. The Q2-evolution of PDFs is driven by the
DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli and Parisi) equations, resulting in a loga-
rithmic Q2-dependence of the PDFs.

1.3 Generalized parton distributions

The FFs and PDFs give information on either the position or the momentum fraction of the
parton in the nucleon, but do not correlate both information. In the quest of understanding
nucleon structure, theorists have been looking for distributions containing the most informa-
tion and related to experimental observables. We are going to define the GPDs starting from
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Figure 1.3: Left: F2 measured at different xB and Q2. There is an apparent scaling at
xB ∼ 0.2 where SLAC performed their first measurements. Right: The green virtual photon
interacts with a quark with a momentum fraction xq. At Q2

1 >Q2
0, the red virtual photon

resolves smaller distances and interact with a quark xq − xg which has emitted previously a
gluon. As a consequence, when going at higher Q2, the quark PDF decreases for xB >0.2
and increases below. The gluon PDFs also increases with Q2.

the Wigner distributions. Then we will describe their support and several of their properties
which may be used to constrain models. At the end of this section, we will present the double
distributions which are convenient ways to build a GPD model given their properties.

1.3.1 From Wigner distributions to generalized parton distributions

In 1932, Wigner (Nobel Prize 1963) defined a new kind of distribution which is a function of
both spatial and momentum coordinates. Taking a wave function ψ(r), Wigner defined the
following distribution:

P (r, k) =

∫ +∞

−∞
dzeikzψ∗(r − z/2)ψ(r + z/2) . (1.14)

The spatial distribution is recovered by simply integrating the Wigner distribution over
the momentum variables. Inversely, we integrate over the spatial variables to recover the
momentum distribution. Adapting this formalism in quantum field theory, we first define
the Wigner operators:

Wf
Γ(r, k) =

∫
d4zeik·zΨ̄f

(
r −

z

2

)
ΓLΨf

(
r +

z

2

)
, (1.15)

where r is the space-time coordinates of the quark with flavor f , k being the associated
4-momentum and Ψ its field. Γ is a Dirac operator. L is a Wilson line which ensures the
gauge invariance.
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ξx+ ξx-

p p'

Figure 1.4: Diagram associated to the matrix element F f
Γ .

From the Wigner operators, the Wigner distributions are given by:

W f
Γ (r, k) =

1

2M

∫
d4q

(2π)4

〈
p′
∣∣∣Wf

Γ(r, k)
∣∣∣ p
〉
, (1.16)

where p and p′ are the inital and final momenta of a proton, with q = p′ − p. The Wigner
distributions encapsulate all the information about the momentum and spatial distributions
of partons, including their correlations. In the infinite momentum frame where the proton
moves along the z-axis, the interacting parton is mainly on the light cone + component
(see Appendix C for definitions). Therefore the k− and k⊥ components are very small and
difficult to access. By integrating over k− and both components of k⊥ and chosing a light
cone gauge, we obtain the so called generalized parton distributions (GPDs):

F f
Γ (x, ξ, t) =

P+

4π

∫
dz−eixP

+z−⟨p′|Ψ̄q

(
−
z

2

)
ΓΨq

(z
2

)
|p⟩
∣∣
z+=z⃗⊥=0

. (1.17)

The GPDs F f
Γ are associated to the diagram illustrated by the Figure 1.4: x is the average

longitudinal momentum fraction carried by the active quark, −2ξ the longitudinal momentum
transfer and P the sum p+p′. ξ is approximately given by xB

2−xB
. t is the squared momentum

transfer to the proton |p − p′|2. Note that, in the case of GPDs and PDFs, the Wilson line
reduces to unity when chosing a light-cone gauge.

Taking Γ = γ+ or Γ = γ+γ5, we obtain the chiral-even GPDs (same helicity for the
emitted and reabsorbed parton):

F f
γ+(x, ξ, t) = Hf (x, ξ, t)N̄(p′)γ+N(p) + Ef (x, ξ, t)N̄(p′)σ+ν ∆ν

2M
N(p), (1.18)

F f
γ+γ5

(x, ξ, t) = H̃f (x, ξ, t)N̄(p′)γ+γ5N(p) + Ẽf (x, ξ, t)N̄(p′)γ5
∆+

2M
N(p), (1.19)

The correlator with Γ = σ+⊥γ5 is parametrized by four chiral-odd GPDs called also
transversity GPDs HT , H̃T , ET and ẼT . Unlike E-GPDs, H-GPDs are not sensitive to the
parton helicities. When they are tilded, GPDs are involved in processes with a flip of the
nucleon helicity. The variables x and ξ evolve between [-1 ; 1]. By comparing x and ξ, we
may interpret the process in different ways:
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• For x < −ξ an antiquark exits and is reabsorbed in the nucleon. Same thing with a
quark for x > ξ. These two regions are called the DGLAP regions since the GPDs
evolve in this region like the PDFs, i.e. according to the DGLAP equations.

• For −ξ < x < ξ: the nucleon emits a quark-antiquark pair. This region is called the
ERBL (Efremov, Radyushkin, Brodsky and Lepage) region.

1.3.2 Properties of GPDs

The chiral-even GPDs are generalizations of PDFs and FFs just by looking at their associated
correlator. Indeed, for a flavor f , we have when the squared momentum transfer to the proton
t → 0:

Hf (x, 0, 0) = qf (x), (1.20)

H̃f (x, 0, 0) = ∆qf (x) . (1.21)

Moreover the elastic form factors are obtained from the first moment of the corresponding
GPDs:

∫ 1

−1
Hf (x, ξ, t) dx = F f

1 (t) ∀ξ, (1.22)

∫ 1

−1
Ef (x, ξ, t) dx = F f

2 (t) ∀ξ, (1.23)

∫ 1

−1
H̃f (x, ξ, t) dx = Gf

A(t) ∀ξ, (1.24)

∫ 1

−1
Ẽf (x, ξ, t) dx = Gf

p(t) ∀ξ . (1.25)

Finally the total angular momentum of quark Jf can be accessed through Ji’s sum
rule [10, 11]: ∫ 1

−1
x
[
Hf (x, ξ, 0) + Ef (x, ξ, 0)

]
dx = Jf ∀ξ . (1.26)

The chiral-odd GPDs are almost unknown compared to the chiral-even GPDs from the
experimental and theoretical points of view. Although the chiral-odd GPDs also describe
the nucleon structure, they are more difficult to interpret. No model-independent relations
with orbital angular momentum of quarks involves the transversity GPDs. The only existing
constraint is the forward limit of HT .

Hf
T (x, 0, 0) = δT qf (x), (1.27)

where δT qf (x) is the transversity distribution function. In a transversely polarized proton,
δT qf (x) represents the difference between the densities of partons with parallel and antipar-
allel spins with respect to the proton spin. The chiral-odd GPDs might be necessary to
describe several exclusive processes, especially pseudo-scalar meson production.

We finish this exhaustive list of GPD properties with the polynomiality. This property
states that the nth moment of GPDs is an even polynomial in ξ.

if n even :

∫ 1

−1
dxxnH(x, ξ, t) = a0 + a2ξ

2 + a4ξ
4 + · · ·+ anξ

n , (1.28)

if n odd :

∫ 1

−1
dxxnH(x, ξ, t) = a0 + a2ξ

2 + a4ξ
4 + · · ·+ an+1ξ

n+1 . (1.29)
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Note that the coefficients ai depend on t. The same property applies to E, H̃ and Ẽ. The
coefficient an+1 of E has the opposite sign of the one of H. In the case of odd n, the highest
power is n−1 for GPDs H̃ and Ẽ. Polynomiality is a consequence of the Lorentz invariance.

1.3.3 GPDs and double distributions

Previous properties constrain the GPD models. The polynomiality condition is the most
complicated to respect. Nevertheless A. Radyushkin [12, 13] and D. Mueller [14] noticed that
the double distributions (DDs) are a convenient way to naturally obey the polynomiality.
We first define two variables α and β such that:

(x+ ξ)P+ = βP+ −
1

2
(1 + α)∆+, (1.30)

where ∆+ is the longitudinal component of the transferred momentum ∆. α plays the same
role as ξ, except that it is not relative to P+. As −2ξ = ∆+

P+ , we have x = β+αξ. The GPDs
is then constructed from the DDs by:

GPDf (x, ξ) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dαδ(x− β − ξα)DDf (α,β), (1.31)

The integration boundaries are constrained by x between [-1;1] and ξ between [0;1].
When the momentum transfer ∆ = 0, we recover the usual PDF. In the limit P = 0 and

∆ ̸= 0, the matrix element becomes:

⟨P +∆|Ψ̄q

(
−
z

2

)
ΓΨq

(z
2

)
|P ⟩
∣∣
z+=z⃗⊥=0

→ ⟨∆|Ψ̄q

(
−
z

2

)
ΓΨq

(z
2

)
|0⟩
∣∣
z+=z⃗⊥=0

, (1.32)

which is a distribution amplitude (DA) representing the probability to produce a meson from
a quark-antiquark pair carrying respectively a longitudinal momentum fraction 1 + α and
1− α. A. Radyushkin [12, 13] found a profile which respects these two limits:

DD(β,α) = h(β,α)q(β), (1.33)

h(β,α) =
Γ(2b+ 2)

22b+1Γ2(2b+ 1)

[(1− |β|)2 − α2]b

(1− |β|)2b+1
, (1.34)

where q(β) is a PDF and h(β,α) a profile function allowing to recover a DA when α → 0.
The parameter b is a free parameter which tunes the ξ-dependence: when b → ∞, the DD
looks like a PDF.

Concerning the t-dependence, it was first included in a factorized manner, i.e. such as
H(x, ξ, t) = HDD(x, ξ)F1(t) where F1(t) is the form factor and HDD(x, ξ) computed with
Equation 1.31. Nowadays it is incorporated in the double distribution such as:

DD(β,α, t) = h(β,α)q(β)× exp (p(β)t) , (1.35)

where p(β) is a profile function. A usual choice is p(β) = a lnβ + c with a and c parameters
but more complex forms exist [15]. Later we will compare our results with several GPD
models based on double distributions.

1.4 Deep exclusive processes to access GPDs

GPDs are accessible through the study of deep exclusive processes: they are a rare subset of
deep inelastic processes where all particles in the final state are detected as shown in Fig. 1.5.
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Figure 1.5: Left: Diagram of electroproduction off a proton. Right: Definition of φ, the angle
between the leptonic and the hadronic plane. On this figure, Ph = q′, l = ki and l′ = kf .

We focus on the photon and π0 electroproduction for which the final state is composed of
the scattered electron, the recoil proton and a photon or a π0.

We define φ the angle between the leptonic plane, formed by the scattered electron and
the virtual photon, and the hadronic plane defined by the virtual photon and the recoiled
proton (Fig. 1.5). We follow the Trento convention [16] defined such as:

cosφ =
(q× ki)

|q× ki|
·
(q× q′)

|q× q′|
, (1.36)

sinφ =
(ki × q′) · q

|q× ki||q× q′|
, (1.37)

The GPDs parametrize the cross sections of deep exclusive processes but in a more
involved way than PDFs for DIS. Indeed we have seen that the DIS cross section factorizes
into two parts: a term describing the electron-quark scattering and the PDF related to the
quark content in the nucleon. GPDs are related to deep exclusive processes based also on
the concept of factorization. We will sketch the principle of factorization and derive another
essential property of the GPDs. Finally we will describe how GPDs enter the photon and
π0 electroproduction cross sections.

1.4.1 Light cone dominance

When computing the amplitude for DVCS (but also DVMP or DIS), we obtain a δ function
for momentum conservation involving the 4-momentum of the virtual photon.

δ4(q) =
1

(2π)4

∫
d4zeiqz . (1.38)

Applying the equality 1.38 to this δ function, the amplitude is given as an integral of eiqz.
In the proton rest frame, with the z-axis going in the opposite direction with respect to the
virtual photon, we have:

q =

(
Q2

2MxB
, 0, 0,−

Q2

2MxB

√
1 + 4MxB/Q2

)
. (1.39)

In the Bjorken limit, Eq. 1.38 gives a non-vanishing result only when:

z− ∼ 1/MxB , (1.40)

z+ ∼ MxB/Q2 . (1.41)
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As causality ensures that z2 > 0, we have z⊥ < z−z+ ∼ 1
Q2 . Therefore, in the Bjorken

limit, only the space-time regions close to the light cone contribute to the amplitude.

1.4.2 Factorization and twist

The factorization has been proven rigorously at leading-twist for DVCS. In the case of deep
virtual meson production, only with longitudinally polarized photon. The following short
explanation of factorization is based on DVCS which is the simplest process.

The DVCS amplitude is given by:

TDV CS = i

∫
d4zeiqz⟨p′|T{jµ(z)jν(0)}|p⟩, (1.42)

with jµ(z) the electromagnetic current of quarks defined such as:

jµ(z) =
∑

f

ef Ψ̄f (z)γµΨf (z), (1.43)

In the Bjorken limit, z2 → 0 and the correlator of the electromagnetic currents becomes
singular. To describe the singularity of the product of operators, Wilson derived the operator
product expansion (OPE). It is a Taylor expansion of the product of currents using local
operators. Therefore we can write the correlator:

T{jµ(z)jν(0)}
z2→0∼

∞∑

τ=2

∞∑

n=0

Cτ,n(z
2)zµ1zµ2 ...zµnÔτ

µ1...µn
(0), (1.44)

Ôτ
µ1...µn

(0) are a basis of local operators, z(µ1zµ2 ...zµn) traceless homogeneous polynomi-
als. Cτ,n(z2) are coefficients carrying the singularity. They evolve as:

Cτ,n(z
2)

z2→0∼
(

1

z2

)(n−dO−2dj)/2

(1.45)

with dO the mass dimension of the operator Ôτ
µ1...µn

, and n its spin. τ = dO−n is called twist

and the most important singularities are carried by operators with the minimal twist τ=2.
The GPDs introduced in the previous section are associated with the lowest twist operators.
The soft part, or the nucleon medium, is described by the operators. The hard/high energy
part is given by the coefficients Cτ,n(z2) which are calculated perturbatively in powers of αs

(Figure 1.7).
To separate the soft part from the hard part, a factorization scale µF is introduced. The

GPDs and the coefficient describing the hard part depends on it such that the observable is
µF -independent.

Therefore, the difference between all the exclusive reactions such as DVCS or DVMP lies
in the hard scattering kernel, the GPDs being factorized in the soft part. The GPDs are
therefore considered universal. As a consequence, we can combine the different reactions to
get a unified picture of the nucleon.

When Q2 → ∞, the leading-twist contribution dominates and higher-twist contributions
can be safely neglected. In practice, the experiments run at Q2-values of a few GeV2 and
higher-twist contributions might appear with increasing ratios M2

Q2 and −t
Q2 .



Chapter 1: Nucleon structure through deep exclusive processes 14

Figure 1.6: The factorization separates a hard scattering kernel computable perturbatively
from a low energy part described by the GPDs with respect to a factorization scale µF .

Figure 1.7: The hard scattering kernel is computed perturbatively in αs.
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1.4.3 Deeply virtual Compton scattering

Photon electroproduction arises from the interference of two processes:

• The Bethe-Heitler (BH) process where the photon is emitted by either the incoming or
outgoing electrons. In this well-known process, the structure of the nucleon is encoded
by the FFs.

• The DVCS process where the photon is emitted by the nucleon. At leading-twist and
leading-order, it is described by the handbag diagram (Fig 1.8).

As a consequence, the photon electroproduction cross section reads:

d5σ(λ,±e)

dQ2dxBdtdφdφe
=

dσ0
dQ2dxB

1

e6
×
[∣∣T BH

∣∣2 +
∣∣T DV CS

∣∣2 ∓ I
]
, (1.46)

where TDV CS is the DVCS amplitude, TBH the BH amplitude and I the interference term
between the two processes. e is the electron charge, λ the beam helicity. Then we have:

dσ0
dQ2dxB

=
α3

16π2(s−M2)2xB

1√
1 + ϵ2

, (1.47)

ϵ2 = 4M2x2B/Q
2 , (1.48)

s = 2ME +M2 . (1.49)

γ γ

 (t)1F
 (t)2F  (t)1F

*
γ *

γ

-e

-e

-e

-e

p' p'pp

+
 (t)1F
 (t)2F

Figure 1.8: On the left, diagram of DVCS at leading-twist, traditionally called handbag
diagram. The virtual photon interacts with a single quark inside the nucleon, which then
emits a real photon. All vertices in the short distance part are electromagnetic, making the
DVCS the golden channel to extract information about GPDs. The two diagrams on the
right represents the Bethe-Heitler process with the photon emitted by the electron.

1.4.3.1 Compton Form Factors

The GPDs parametrize the DVCS amplitude but are not directly accessible through the cross
section. Indeed, whereas ξ and t are kinematic variables defined by the scattered electron and
photon, x is integrated over. The DVCS amplitude is given, at leading-order, by integrals of
the form: ∫ 1

−1

H(x, ξ, t)

x− ξ + iϵ
dx = P

∫ 1

−1

H(x, ξ, t)

x− ξ
dx− iπH(ξ, ξ, t) , (1.50)
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where 1
x−ξ+iϵ is the bare quark propagator. By taking into account the crossed diagram, we

define the Compton Form Factors such as:

H =

∫ 1

−1
H(x, ξ, t)

(
1

ξ − x− iϵ
−

1

ξ + x− iϵ

)
dx . (1.51)

By reducing the integration range from [-1,1] to [0,1] and gathering imaginary and real parts,
we define 8 GPD-related quantities directly connected to the DVCS amplitude (same sign
conventions for E and Ẽ):

ℜeH(ξ, t) = P
∫ 1

0
[H(x, ξ, t)−H(−x, ξ, t)]C+(x, ξ)dx, (1.52)

ℑmH(ξ, t) = π (H(ξ, ξ, t)−H(−ξ, ξ, t)) , (1.53)

ℜeH̃(ξ, t) = P
∫ 1

0

[
H̃(x, ξ, t) + H̃(−x, ξ, t)

]
C−(x, ξ)dx, (1.54)

ℑmH̃(ξ, t) = π
(
H̃(ξ, ξ, t) + H̃(−ξ, ξ, t)

)
, (1.55)

(1.56)

where C± is :

C±(x, ξ) =
1

x− ξ
±

1

x+ ξ
. (1.57)

1.4.3.2 Higher twists and CFF extraction from DVCS

The photon electroproduction cross section depends on the angle φ. Mueller and Belitsky
performed an harmonic expansion of |TDV CS |2, |TBH |2 and I as a function of φ up to twist-3.
Since it is central to our analysis, we are going to review this expansion for the unpolarized
and beam helicity dependent cross sections. Further details can be found in [17].

1.4.3.2.1 The squared Bethe-Heitler amplitude The Bethe-Heitler process is a pure
QED process. Its cross section has been calculated and expressed as a harmonic expansion
as a function of φ [18]:

|TBH |2 =
e6

y2x2B[1 + 4x2BM
2/Q2]2tP1(φ)P2(φ)

{

cBH
0 +

2∑

n=1

cBH
n cos(nφ)+sBH

1 sin(φ)

}

, (1.58)

with

J =
(
1− y −

yϵ2

2

)(
1 +

t

Q2

)
− (1− xB)(2− y)

t

Q2
, (1.59)

P1(φ) = −
1

y(1 + ϵ2)
{J + 2K cos(φ)}, (1.60)

P2(φ) = 1 +
t

Q2
+

1

y(1 + ϵ2)
{J + 2K cos(φ)}, (1.61)

where y = ν
E and ϵ = 2MxB

Q . The kinematic coefficients can be found in [18].

1.4.3.2.2 The squared DVCS amplitude The squared DVCS amplitude contribution
has been calculated up to twist-3. When performing the harmonic expansion as a function
of φ, it reads:

|TDV CS |2 =
e6

y2Q2

{

cDV CS
0 +

2∑

n=1

cDV CS
n cos(nφ) + λsDV CS

n sin(nφ)

}

(1.62)
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where λ refers to the beam helicity. The cDV CS
i and sDV CS

i coefficients are given by bilinear
combinations of CFFs. For example we have:

cDV CS
0 = 2

2− 2y + y2 + ϵ2

2 y
2

1 + ϵ2
CDV CS
unp (F ,F∗), (1.63)

CDV CS
unp (F ,F∗) = 4(1− xB)HH∗ + 4

(
1− xB +

2Q2 + t

Q2 + xBt

ϵ2

4

)
H̃H̃∗ + · · · (1.64)

The different functions contributing to the squared DVCS amplitude for an unpolarized
target are listed in the table 1.1.

Order φ-dependence

CDV CS
unp (F ,F∗) twist-2 constant

CDV CS
unp (Feff ,F∗

eff ) twist-3 constant

ℜe[CDV CS
unp (Feff ,F∗)] twist-3/twist-2 cosφ

ℑm[CDV CS
unp (Feff ,F∗)] twist-3/twist-2 sinφ

Table 1.1: GPD content of the DVCS2 term up to twist-3.

1.4.3.2.3 The interference between the Bethe-Heitler and the DVCS processes
The DVCS squared amplitude is given by bilinear combinations of CFFs. In other words
we mainly get information about the modulus of the CFFs. We need information about the
phase to extract the CFFs and it cannot be provided by the squared DVCS amplitude. The
Bethe-Heitler/DVCS interference term makes the photon electroproduction unique because
it is parametrized by the real and imaginary parts of the CFFs. For instance, the unpolarized
cross section is sensitive to the real part of H whereas we extract its imaginary part from
the difference of cross sections for opposite beam helicities.

Using the same method as for the squared amplitude of DVCS and BH, we write:

I =
±e6

xBy3tP1(φ)P2(φ)

{

cI0 +
3∑

n=1

cIncos(nφ) + λsInsin(nφ)

}

. (1.65)

The Fourier coefficient are then given by:

cIn = C++(n) ℜeCI
++(n|F) + C0+(n) ℜeCI

0+(n|Feff ), (1.66)

sIn = S++(n) ℑmSI
++(n|F) + S0+(n) ℑmSI

0+(n|Feff ). (1.67)

The C++(n), S++(n), C0+(n) and S0+(n) are only kinematical factors depending on Q2, t,
xB, φ. And CI

0+(n|Feff ) and CI
++(n|F) are defined such as:

CI
++(n|F) = CI(F) +

CV
++(n)

C++(n)
CI,V (F) +

CA
++(n)

C++(n)
CI,A(F), (1.68)

CI
0+(n|Feff ) =

√
2

2− xB

K̃

Q

[
CI(Feff ) +

CV
0+(n)

C0+(n)
CI,V (Feff ) +

CA
0+(n)

C0+(n)
CI,A(Feff )

]
, (1.69)
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Finally, the CFFs are encapsulated in CI , CI,V , CI,A:

CI
unp(F) = F1H−

t

4M2
F2E +

xB
2− xB + xB

t
Q2

(F1 + F2)H̃, (1.70)

CI,V
unp(F) =

xB
2− xB + xB

t
Q2

(F1 + F2)(H+ E), (1.71)

CI,A
unp(F) =

xB
2− xB + xB

t
Q2

(F1 + F2)H̃. (1.72)

We notice that the form factors F1 and F2 are associated with the CFFs because they
parametrize the Bethe-Heitler process.

Order φ-dependence

ℜe CI
unp(F) twist-2 cosφ

ℜe CI,V
unp(F) ”twist-3” constant

ℜe CI,A
unp(F) ”twist-3” cosφ

ℜe CI
unp(Feff ) twist-3 cos 2φ

ℑm CI
unp(F) twist-2 sinφ

ℑm CI,V
unp(F) ”twist-3” sinφ

ℑm CI,A
unp(F) ”twist-3” sinφ

ℑm CI
unp(Feff ) twist-3 sin 2φ

Table 1.2: GPD content of the interference term up to twist-3. ”twist-3” means kinematically

suppressed like a twist-3.

1.4.4 Deep π0 electroproduction

1.4.4.1 Deeply virtual meson production

Deeply virtual meson production is also a key process to study the nucleon. The DVMP
cross section can be decomposed into responses according to the polarization states of the
virtual photon and their interferences.

d4σ

dtdφdQ2dxB
=

1

2π
Γγ∗(Q2, xB, Ee)

[
dσT
dt

+ ϵ∗
dσL
dt

+
√

2ϵ∗(1 + ϵ∗)
dσTL

dt
cos(φ) + ϵ∗

dσTT

dt
cos(2φ)

]
,

(1.73)

Γγ∗(Q2, xB, Ee) =
α

8π

Q2

M2E2
e

1− xB
x3B

1

1− ϵ∗
, (1.74)

ϵ∗ =
1− y − Q2

4E2
e

1− y + y2

2 + Q2

4E2
e

, (1.75)

where Γγ∗(Q2, xB, Ee) represents the flux of virtual photons, and ϵ∗ its degree of polarization.
σL and σT are the responses to a photon with longitudinal and tranverse polarizations. σTL is
the interference between the longitudinal and the transverse responses, σTT the interference
between the two transverse polarizations.

Unlike DVCS, the hard part involves strong vertices and an additional non-perturbative
object, the distribution amplitude, to describe the structure of the produced meson.

Φπ(x) =

∫
dz−

2π
ei(2x−1)P+ z−

2 ⟨π, P |Ψ̄
(
−
z

2

)
γ · nγ5Ψ

(z
2

)
|0⟩
∣∣
z+=z⃗⊥=0

. (1.76)



Chapter 1: Nucleon structure through deep exclusive processes 19

Figure 1.9: Two factorizations are needed to describe π0 electroproduction with GPDs. The
factorization scales µF1 and µF2 are not necessarily equal.

Figure 1.10: One of the diagrams for π0 electroproduction at leading-twist, leading-order.
Unlike DVCS, there are strong vertices in the hard part and one needs to introduce another
non-perturbative object called distribution amplitude (DA), which describes the structure
of the meson. Note that factorization has been proven only for longitudinally polarized
photons.
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Because of this additional subtlety, the factorization theorem has been proven only for lon-
gitudinally polarized virtual photons. At leading-twist, the longitudinal amplitude involves
the unpolarized GPDs H and E for vector mesons, H̃ and Ẽ for pseudoscalar mesons. For
π0 at leading-twist and leading-order, the longitudinal amplitude reads:

ML
π0 = −ie

4

9

1
√

Q2
4παS

[∫ 1

0
dz

Φπ0(z)

z

]
×

1

2

∫ 1

−1
dx

[
1

x− ξ + iϵ
+

1

x+ ξ + iϵ

]

{
H̃p

π0(x, ξ, t)N̄(p′)/nγ5N(p) +
ξ

2M
Ẽp

π0(x, ξ, t)N̄(p′)γ5N(p)

}
, (1.77)

where Φπ0 is the neutral pion twist-2 asymptotic distribution amplitude, (H̃p
π0 , Ẽ

p
π0) linear

combinations of u/d-GPDs in proton defined such as:

Φπ0(z) =
√
2fπ6z(1− z), (1.78)

H̃p
π0(x, ξ, t) =

1√
2

{
2

3
H̃u/p

π0 −
(
−
1

3

)
H̃d/p

π0

}
, (1.79)

Ẽp
π0(x, ξ, t) =

1√
2

{
2

3
Ẽu/p

π0 −
(
−
1

3

)
Ẽd/p

π0

}
, (1.80)

with fπ=0.0924 GeV and z = (p · q′)/(p · q).
Using models of H̃ and Ẽ adjusted on DVCS data, the longitudinal response for π0

electroproduction is expected to be small.

1.4.4.2 Beyond leading-twist: Twist-3 DA and transversity GPDs

Although factorization has not yet been proven for transverse virtual photons in DVMP,
Goloskokov et al. have elaborated a model [19][20] involving the transversity GPDs. As the
transversity GPDs are chiral-odd, they cannot couple to the twist-2 DA of the pion which is
chiral-even. Chiral-odd DAs appear at twist-3 when considering the transverse momentum
of the quark entering the meson, with respect to the meson momentum. Although the twist-
3 contributions are kinematically suppressed with respect to twist-2 ones, the twist-3 DAs

include a factor µπ = m2
π

mu+md
(with mu and md are the bare quark masses) which does not

appear in the twist-2 DA. As a consequence, this factor boosts the transverse response and
significantly increases the π0 electroproduction cross section. It is interesting to note that,
within this model, we can directly access the information on HT , H̃T and ET by measuring
σT and σTT .

dσT
dt

=
4πα

2k′
µ2
π

Q8

[
(1− ξ2)|⟨HT ⟩|2 −

t′

8m2
|⟨2H̃T + ET ⟩|2

]
, (1.81)

dσTT

dt
=

4πα

2k′
µ2
π

Q8

t′

16m2
|⟨2H̃T + ET ⟩|2, (1.82)

where k′ is a phase space factor given by:

k′ =
16π

Q2

(
1

xB
− 1

)√
(W 2 −m2)2 +Q4 + 2W 2Q2 + 2Q2m2 . (1.83)

Finally ⟨F ⟩ stands for the following convolution of a GPD F with the hard scattering kernel
Dµ′λ′µλ summed over the incoming quark helicity λ.

⟨F ⟩ =
∑

λ

∫ 1

−1
dxDµ′λ′µλF, (1.84)

λ, λ′ are the helicity of the incoming and outgoing quarks, µ the helicity of the incident
electron. µ′ is the helicity of the produced meson which is 0 for pseudo-scalar mesons.
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1.5 Experimental status

1.5.1 DVCS results

A worldwide experimental program has been developed in order to measure DVCS observ-
ables in different kinematical regions (Figure 1.11). In this review, we are not going to talk
about the Jefferson Lab-Hall A experiments since they are the topic of this thesis.

Figure 1.11: Q2 versus xB for the past and future experiments [21]. Unpolarized and beam-
helicity dependent cross sections have recently published by the CLAS [22] and Hall A [23]
collaborations.

1.5.1.1 H1 and ZEUS

The H1 and ZEUS experiments were located at DESY laboratory in Hamburg, Germany
and ran until 2007. They were collider experiments between an electron/positron beam
and a proton beam provided by the HERA (Hadron-Elektron-Ring-Anlage) accelerator. H1
and ZEUS measured total ([24][25]) and t-differential ([26][27]) cross sections for Q2 up to
25 GeV2 and W up to 100 GeV. Thanks to the ability to use both electrons and positrons,
the H1 collaboration also extracted beam charge asymmetries [28].

The factorization of the cross section and the dominance of gluon GPDs at low xB were
demonstrated with these data.

1.5.1.2 HERMES

The HERMES spectrometer also installed on the HERA accelerator was a fixed target ex-
periment using an internal gaseous target. The HERMES collaboration measured DVCS
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observables in the Q2 range from 1 to ∼6 GeV2 and xB from 0.04 to 0.2. For the first
measurements, exclusivity was ensured by a missing-mass cut M2

ep→eγX . For the last run
period until June 2007, a recoil detector was added to the spectrometer in order to reduce
systematic errors related to exclusivity [29].

The target could be polarized both longitudinally and transversely. Combining the tar-
get and beam polarizations, using electron and positrons, HERMES measured an almost
complete set of asymmetries, but no cross sections. This very complete set of observables is
a convenient way to unfold the different CFF contributions [30][31][32] (see section 1.4.3.2).

1.5.1.3 JLab-CLAS results

CLAS (CEBAF large acceptance spectrometer) is installed in the Hall B of Jefferson Labo-
ratory in Virginia, USA. As its name indicates, CLAS covers a large solid angle, compared
to Hall A for instance, albeit at a reduced luminosity. The CLAS collaboration measured
DVCS observables over a wide range in Q2 (between 1 and ∼4.8 GeV2) and xB (between
0.1 to almost 0.6). The longitudinally polarized electron beam from the accelerator inter-
acts with a liquid hydrogen target to study beam spin asymmetries [33]. Later, data on
longitudinally polarized NH3 target were taken to extract target spin [34] and double spin
asymmetries [35]. Very recently, the CLAS collaboration released unpolarized and beam-
helicity-dependent cross sections [22].

Within their statistical accuracy, HERMES and CLAS data are well described by leading-
twist predictions. Note that there is a disagreement between CLAS and HERMES data
concerning the sin 2φ harmonic of the asymmetry unpolarized beam on a longitudinally
polarized target (AUL): whereas CLAS find a result compatible with 0, HERMES finds a
sizeable sin 2φ harmonics which cannot be reproduced by only considering the leading-twist
contribution [36].

1.5.1.4 Future experiments

As seen on figure 1.11, available data are spread over a large kinematic area but there are
some domain with no data:

• A large area between xB=10−3 and xB=10−2 where no data are available yet. But
in 2016, the Common Muon and Proton Apparatus for Structure and Spectroscopy
(COMPASS) experiment will measure DVCS cross sections in this region, connecting
the fixed target domain to the high energy collider one. A 160 GeV muon beam
interacts with a 2 m-long liquid hydrogen target. A recoil detector, CAMERA, detects
the proton. The photon will be detected in a set of three calorimeters. The scattered
muon will be detected in the standard COMPASS spectrometer.

• The high xB-region suffers from a lack of statistically significant data. Nevertheless the
upgrade of CEBAF to 12 GeV allows for high accuracy experiments in this kinematical
region. In particular, a dedicated experiment started in Hall A at the end of 2014. After
the CLAS spectrometer is upgraded with a new detector package and new magnets, a
number of experiments will also take data in this enlarged kinematical domain. Finally,
Hall C of Jefferson Laboratory will perform the Rosenbltuh separation of photon and
π0 electroproduction cross sections around 2020, accessing higher Q2 and xB values
thanks to the High Momentum Spectrometer.

• Last but not least, it is the strong desire of the hadronic physics community worldwide
to build the ultimate accelerator in order to study nucleon structure: The Electron-
Ion Collider (EIC) will use intense and polarized beams of electrons and ions in order



Chapter 1: Nucleon structure through deep exclusive processes 23

Q2=1.15 GeV2

xB=0.13

-300

-200

-100

0

100

200

300

400
Q2=1.61 GeV2

xB=0.19

-300

-200

-100

0

100

200

300

400

Q2=1.74 GeV2

xB=0.22

-300

-200

-100

0

100

200

300

400
Q2=2.21 GeV2

xB=0.28

-300

-200

-100

0

100

200

300

400

-t [GeV2]

Q2=2.71 GeV2

xB=0.34

-300

-200

-100

0

100

200

300

400

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-t [GeV2]

Q2=3.22 GeV2

xB=0.41

-300

-200

-100

0

100

200

300

400

0 0.2 0.4 0.6 0.8 1 1.2 1.4
dσ

/d
t
[n
b
/G

eV
2
]

dσ
/d

t
[n
b
/G

eV
2
]

Figure 1.12: σT + ϵ∗σL (back points), σTT (blue points) and σTL (red points) extracted by
the CLAS collaboration [38]. The solid curves represent Goloskokov and Kroll’s model [20],
able to reproduce the behaviour of the cross sections. The dashed lines represent prediction
of the model developed by Goldstein and Liuti [39].

to study gluon-dominated matter. In particular, the ability to transversally polarize
protons will help tremendously to pinpoint the elusive GPD E.

1.5.2 Pion electroproduction data

Measurements of pion electroproduction cross sections have been carried out in the different
JLab experimental hall. We focus on the unpolarized cross section results of π0. We also
dedicate a section to the Rosenbluth separation performed on the π+ electroproduction.

1.5.2.1 π0 electroproduction data

Two experiments have measured π0 electroproduction cross sections in the valence region.
First results were published by the Hall A collaboration [37]. These measurements have then
been extended in a wider kinematical range by the CLAS collaboration [38] (Figure 1.12).
Whereas σL is expected small by twist-2 GPD models, both experiments measured high
unpolarized cross sections potentially indicating a large transverse contribution.

The large transverse-transverse interference term σTT also supports the assumption of a
large σT -contribution.

1.5.2.2 Rosenbluth separation on π+ electroproduction cross section

A L/T separation has been performed on ep → enπ+ in the Hall C of Jefferson Lab [40].
The longitudinal and transverse contributions have both been found significant (Figure 1.13),
even at high Q2, whereas the transverse response is supposed to be suppressed by 1/Q2 with
respect to the longitudinal one. Although σL is expected to be small for π0, it is enhanced
in the case of π+ by an additional channel. This channel consists of an exchange of a virtual
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Figure 1.13: γ∗p → nπ+ extracted at two ϵ∗’s values [41]. Because σL and ∆ϵ are important,
the cross section has increased significantly.

π+ between the virtual photon and the nucleon. It can be seen as virtual photon scattering
off the pion cloud in the proton. As a consequence, the associated amplitude has (t −mπ)
in its denominator, coming from the pion propagator, enhancing the longitudinal response.
Finally, the Q2-dependence of σL was in agreement with the model whereas σT was found
to scale down much slower than the expected 1

Q8 .

1.6 The E00-110 and E07-007 experiments

In this thesis, we will describe and analyze two experiments which ran in the Hall A of
Jefferson Lab. We may consider them as two run periods of a same experiment. They both
studied photon and π0 electroproduction. We first introduce the 2004 [42] and then the
2010 [43] run periods.

1.6.1 The E00-110 experiment: the 2004 run period

The first run period was in 2004. Its purpose was to perform a Q2-scan at fixed xB of
the beam helicity dependent DVCS cross section to test the scaling of DVCS [44]. The
kinematical settings are listed in Table 1.3. In addition, an extra set of unpolarized cross
sections for the kinematics with the highest value of Q2 was extracted. Indeed it was possible
to evaluate the π0 contamination (explained later in the thesis) for the highest Q2 setting,
hinting that π0 electroproduction could be extracted.

Setting k′ (GeV/c) θe (◦) Q2 (GeV2) xB θq (◦) W (GeV) Eγ (GeV)
2004-Kin1 3.53 15.6 1.5 0.36 −22.3 1.9 2.14
2004-Kin2 2.94 19.3 1.9 0.36 −18.3 2.0 2.73
2004-Kin3 2.34 23.8 2.3 0.36 −14.8 2.2 3.32

Table 1.3: Experimental ep → epγ kinematics, for incident beam energy Eb = 5.7572 GeV.
θq is the central value of the q-vector direction. Eγ is the photon energy for t = tmin. Note
that only the average kinematic values for each setting are listed in this table : in order to
minimize systematic bin centering effects, we actually used the kinematic of each bin in xB,
Q2 and t according to their average value in the bin.

A CFF extraction was performed on the polarized and unpolarized results. From the
polarized cross section, hints of scaling was found since the extracted combinations of CFFs
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showed no Q2-dependence (Figure 1.14). Assuming a negligible contribution of |TDV CS |2,
the three lowest twist CFFs parametrizing the interference contribution have been extracted
using the unpolarized data. However, the large size of the extracted interference terms raised
doubts concerning the hypothesis of a negligible |TDV CS |2.

Figure 1.14: Left: Beam helicity dependent and unpolarized photon electroproduction cross
sections at t = −0.28 GeV2, Q2 = 2.3 GeV2 and xB = 0.36 from [44]. Right: Compton form
factors extracted from the 2004 experiment, assuming a negligible DV CS2 contribution.

From the same run period, π0 electroproduction cross sections have been extracted [37].
Almost instantly, π0’s decay into two photons with a branching ratio of 98.8%. As this
experiment was suited to detect the photon in the DVCS process, it was sensitive to π0’s
through the decay photons. However the threshold set on the energy of the photon at
∼ 1 GeV reduced the phase space of the π0 detection, possible only with 2-photon detection.
As the π0 energy decreases with decreasing Q2, this phase space was too small for 2004-Kin1
to extract π0 electroproduction cross section. However it was large enough for 2004-Kin3
and 2004-Kin2 [37]. They also studied the xB-dependence by defining new kinematics from
the 2004-Kin2 and 2004-Kin3 data set.

An interesting point is that π0 electroproduction cross sections have been extracted for
2004-Kin2. It implies that the π0 contamination can be estimated for 2004-Kin2 data. A
chapter of this thesis is dedicated to the full reanalysis of DVCS data from the E00-110
experiment.

1.6.2 The E07-007 experiment: the 2010 run period

The conclusion of the 2004 run period was that both photon and π0 electroproduction un-
polarized cross sections were higher than predicted. But we did not know the size of the
different contributions, nor did we understand the discrepancy with the predictions. It was
the goal of the 2010 experiment to perform a complete separation of photon and π0 electro-
productions. Similarly to 2004, the goal of the 2010 run period was to extract DVCS and
π0 electroproduction cross section but at two different beam energies E for each kinematical
setting (Table 1.4). The idea is to combine the dependences in φ and E to disentangle all con-
tributions. Indeed the kinematical factors in front of the dominant terms of interference and
DV CS2 do not depend on φ but have different beam energy dependences (see the tables 1.1
and 1.2). For π0, as shown explicitely in Eq 1.73, we have to measure the cross section at two
different values of ϵ∗ in order to disentangle the transverse and the longitudinal responses.

The experiment ran from October to December 2010, at the same time as the Q-weak
experiment in Hall C. Because of constraints on the beam energy due to Q-weak, kinematics
were slightly different compared to the E00-110 experiment.
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Figure 1.15: Results of π0 electroproduction from Hall A [37]. The lines represent predictions
based on t-channel meson exchange [45].

Name Q2 (GeV2) xB W 2 (GeV2) E (GeV) ϵ∗

2010-Kin1 1.5 0.36 3.55 (3.355 ; 5.55) (0.52 ; 0.84)
2010-Kin2 1.75 0.36 3.99 (4.455 ; 5.55) (0.65 ; 0.79)
2010-Kin3 2 0.36 4.44 (4.455 ; 5.55) (0.53 ; 0.72)

Table 1.4: Table of kinematics for the 2010 experiment.
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As explained in section 1.4.4, σL is expected to be very small and the lever arm in ϵ∗ is
rather small. It makes this measurement a technical challenge, with a dire need to reduce as
much as possible the systematic uncertainties.



Chapter 2

The experimental setup

Jefferson laboratory is located in Newport News (Virginia, USA) and was founded in 1985.
Its primary mission is to investigate the structure of nuclei and nucleons. To accomplish
this mission, a continuous electron beam accelerator facility (CEBAF) has been built and
has provided a longitudinally polarized electron beam to three experimental halls since 1995.
Both experiments of interest in this thesis took place in the Hall A of Jefferson laboratory,
dedicated to high luminosity and high precision experiments. Except for a few details which
will be presented in their dedicated chapters, the E07-007 and E00-110 experiments are
identical.

First, we are going to introduce CEBAF and then the Hall A of Jefferson Lab. We will
then describe the experimental setup of both experiments.

2.1 Continuous electron beam accelerator facility

The electron source is a stressed gallium arsenide crystal, placed in an ultra-vacuum chamber.
Using optical pumping, the conduction band of the crystal is filled with electrons from the
valence band [46]. By choosing the polarization of the pumping laser, we can choose the
polarization state of the electrons in the conduction band. To increase the probability for
the electron to go in the vacuum, a layer of cesium fluoride is deposited at the interface to
lower the potential barrier between the vacuum and the conduction band. Once the electron
escapes from the crystal, a difference of potential extracts it. Instead of a unique laser
illuminating the GaAs cathode, there are three lasers functionning at 499 Mhz each. Each
experimental hall is synchronized with its own laser.

Until 2014, CEBAF was composed of two superconducting linacs made of 20 cryomodules,
each cryomodule composed of 8 radio-frequency cavities in pure Niobium (see Figure 2.1).
The electromagnetic magnetic field in the cavities is a stationary sinusoidal field synchronized
with the injector (1497 MHz). The resulting increase for each cavity in energy is ∼7 MeV/m.
The two linacs were connected by recirculating arcs allowing to reinject the beam 5 times in
each linac for a maximal beam energy of ∼6 GeV. To avoid the spatial spread of the electron
bunches, the electrons from the source have to be accelerated by a first set of cavities up
to 45 MeV before entering the linacs. Using RF separators and magnets, the beam is then
sent in the 3 experimental Halls. Hall A and C could receive up to 150 µA of beam current,
whereas Hall B was limited to 200 nA.
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