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We present a minimal nuclear energy density functional (NEDF) called “SeaLL1” that has the smallest
number of possible phenomenological parameters to date. SeaLL1 is defined by 7 significant phenomenological
parameters, each related to a specific nuclear property. Even in its present form, which is not yet fully optimized,
the SeaLL1 NEDF describes the nuclear masses of 606 even-nuclei from the AME2012 evaluation [1, 2] with
a mean energy error of 0.97 MeV and a standard deviation 1.46 MeV, two-neutron and two-proton separation
energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei [3]
with an rms error of 0.034 fm. SeaLL1 incorporates the equation of state of pure neutron matter from quantum
Monte Carlo calculations with chiral effective field theory two-body (NN) interactions at N3LO level and
three-body (NNN) interactions at the N2LO level. Two of the 7 parameters are related to the saturation density
and the energy per particle of the homogeneous symmetric nuclear matter; one is related to the nuclear surface
tension; two are related to the symmetry energy and its density dependence; one is related to the strength of
the spin-orbit interaction; and one is the coupling constant of the pairing interaction. We identify additional
phenomenological parameters that have little effect on the previous properties, but can be used to fine tune
other nuclear features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and
Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.
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I. INTRODUCTION

Achieving accurate and precise calculations of nuclear masses,
charge and neutron distributions, nuclear matter properties, and
dynamics, from a microscopic approach remain one of the most
challenging problems in quantum many-body theory. Almost a
century ago, Aston [4] realized that a nucleus is not quite the
sum of its parts. This lead Eddington [5] to correctly conjecture
a link between nuclear masses, the conversion of hydrogen
into heavier elements, and the energy radiated by the stars. An
accurate theoretical model of nuclear masses, particularly close
to the neutron drip line and with an uncertainty of better than
100 keV (an accuracy which has not been achieved yet even for
known stable nuclei) will have a great impact on predicting the
origin and the abundances of elements in the Universe [6, 7].
When quantum mechanics was first applied to many-body

systems, Weizsäcker [8] proposed that an energy density ap-
proach could be an effective tool for calculating nuclear binding
energies. This was the first instance of an energy density func-
tional being applied in nuclear physics, several decades before
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av as aI a′I aC a′
C

δ χE
−15.47 16.73 22.87 0 0.699 0 0 3.30
−15.49 16.78 22.91 0 0.700 0 12.29 3.18

−15.32 17.76 24.96 −22.60 0.767 −0.675 0 2.64
−15.34 17.80 25.01 −22.43 0.767 −0.661 11.46 2.50

−15.77 17.50 23.65 0 0.723 0 0 1.87
−15.46 18.29 25.72 −26.00 0.792 −0.773 0 1.53

Table I. Parameters and the energy rms of the mass formulas Eqs. (1)
or (2), with or without the even-odd staggering correction Eq. (2b).
Here χ2

E =
∑|EN,Z − E(N, Z)|2/NE and we fit the NE = 2375

measured (not extrapolated) nuclear masses of nuclei with A ≥ 16
from Audi et al. [1] and Wang et al. [2] and an evaluated uncertainty
less than 1 MeV with the electronic correction. (All quantities ex-
pressed in MeV.) The last two rows show how the mass formulas
Eqs. (1) or (2) fit the theoretical nuclear masses computed using the
SeaLL1 functional.

the foundation of density functional theory (DFT) [9–11]
was formulated. Bethe and Bacher [12] further developed
Weizsäcker’s ideas and introduced the nuclear mass formula
(the Bethe-Weizsäcker formula) for the ground state energies of
nuclei with A = N + Z nucleons (N neutrons and Z protons):

E(N, Z) = avA + asA2/3 + aC
Z2

A1/3 + aI
(N − Z)2

A
. (1)

Unlike electrons in atoms, nuclei are saturating systems with
a nearly constant interior density. This yields the terms in
Eq. (1) referred to as: a volume energy, a surface tension, a
non-extensive Coulomb energy, and a symmetry energy that
favors similar numbers of protons and neutrons. (Due to the
presence of the long-range Coulomb interaction, the terms
“volume” and “surface” do not have a strict thermodynamic
meaning.) As shown in the first row of Table I, these four terms
alone fit the AME2012 evaluated nuclear masses [1, 2] with
a root-mean-square (rms) error of χE=3.30 MeV per nucleus.
This is a remarkable result: the nuclear binding energy of
heavy nuclei can reach 2000 MeV, hence the errors are at the
sub-percent level.
A slightly better fit is obtained using a mass formula with

surface corrections terms to the symmetry and Coulomb ener-
gies, as well as odd-even staggering correction due to pairing:

E(N, Z) = avA + asA2/3 + aC
Z2

A1/3 + a′C
Z2

A2/3

+ aI
(N − Z)2

A
+ a′I
(N − Z)2

A4/3 + ∆. (2a)

∆ =


−δA−1/2 even-even nuclei,
0 odd nuclei,
δA−1/2 odd-odd nuclei.

(2b)

This pairing contribution is significantly smaller than the oth-
ers, with an amplitude ≈ 12 MeV/A1/2. It is also smaller
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Figure 1. (Color online) The differences Eexp − Eth in MeVs between
the evaluated ground state energies [1, 2] of 2375 nuclei with A ≥ 16
and fitted with the 6-parameter mass formula Eq. (2) and ∆ ≡ 0. One
can easily identify the location of closed shells (the blue regions) for
protons and neutrons.
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Figure 2. (Color online) The binding energy per nucleon B/A =
|E(N, Z)|/A and the Coulomb, surface and symmetry energy per
nucleon in Eq. (2) for the measured 2375 nuclei with A ≥ 16 [1, 2].

than contributions arising from shell-correction energies (dis-
cussed below), changing the rms error χE by about at most
150 keV. This fit is shown in Table I and the residuals are
displayed in Fig. 1. The magnitudes of the various terms are
compared in Fig. 2, which shows that the volume, surface,
and Coulomb contributions are dominant, while the symmetry
energy contribution is roughly at the level of 10%.
There are several possible ways to determine the volume,

surface, symmetry, etc. coefficients of (1) or (2). For example,
one may turn off the Coulomb interaction, and extract volume,
surface, and symmetry energy from the asymptotic behavior
of the energy of nuclei with very large numbers of protons
and neutrons [13]. This corresponds to considering the ther-
modynamic limit, which is not realized in real nuclei due to
the presence of the long-range Coulomb interaction among the
protons. We prefer instead a unified approach, determining
the parameters by directly fitting almost all nuclear binding
energies, whether experimental or computed. (See last two
rows of Table I.)
In a parallel development, properties of many-fermion sys-
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tems were understood in mathematical physics by tying together
the roles of the geometry and of the periodic trajectories in
cavities. As early as 1911, Weyl [14, 15, 16, 17, 18, 19, 20] and
others related the wave eigenstate density in boxes of various
shapes and boundary conditions to the geometrical shape of the
box [21–24]. In a manner similar to the nuclear mass formula
Eq. (1), this approach can be applied to saturating systems,
relating the ground state energy to the volume (V), surface
area (A), and mean curvature radius R of the many-particle
system [13]:

E = aVV + aSS + aRR + . . . . (3)

The similarity between (3) and the nuclear mass formula
(1) become apparent after relating the volume to the particle
number n = A/V ≈ const. (The Coulomb repulsion energy
cannot be evaluated separately in a straightforward manner due
to the long-range character of the interaction.) The ground
state energy can thus be rewritten in terms of particle number
A (here for only one kind of particles)

E = bV A + bS A2/3 + bRA1/3 + . . . . (4)

The coefficient bV is the energy per particle in infinite matter
and aS represents the surface tension. These types of expansion
are classical in character: Planck’s constant plays no explicit
role. Their accuracy for many-fermion systems is thus limited
by the lack of quantum effects (often referred to as shell effects).
It appears that for nuclei, the mass formula Eq. (2) is about
as good as one can achieve without introducing the quantum
effects.

There is a long debate in literature ,fueled mainly by studies
of quantum chaos, about whether an expansion in powers of A
can be extended beyond the terms present in Eq. (4). Naïvely,
one might expect the next terms to be proportional to A0, A−1/3,
and so forth, but a a more careful analysis shows that that is
not correct. (See for example Brack and Bhaduri [24].) The
next term is instead proportional to A1/6 [25–28], arising from
the contribution of periodic orbits. Subsequent terms appear
to be stochastic, due to the inherent chaotic character of the
interacting many-body systems [29].
Gutzwiller [30], Balian and Bloch [25, 26, 27], and Berry

and Tabor [31, 32] observed that quantum states in a finite
system can be quite accurately reproduced by quantizing the
periodic classical trajectories. (See also Brack and Bhaduri
[24].) Combining the idea of geometric quantization, with
the Thomas-Fermi model, the Pauli principle, and copious
empirical evidence that strongly interacting fermionic systems
share many similarities with non-interacting systems [33–39],
one can quite accurately construct the single-particle density of
states and binding energies as a function of the particle number,
eventually correcting this by the shape of the system.

The single-particle density of states n(ε) in a given potential
has a smooth and an oscillating components:

n(ε) = nTF(ε) + nosc(ε), (5a)

nosc(ε) =
∑
PO

aPO(ε) sin
(

SPO(ε)
~
+ φPO

π

2

)
+ . . . , (5b)

where the sum is performed over classical periodic orbits (PO)
(diameter, triangles, squares, etc.). Here, aPO(ε) is the stability
amplitude, SPO(ε) the action, and φPO the Maslov index of each
orbit at the energy ε [24–27, 40]. The single-particle density
of states in the Thomas-Fermi approximation nTF [14–24] has
a clear dependence on the size and shape of the system, and
leads to Eqs. (3) and (4) for a square-well potential. At the
same time, the nature of the periodic orbits also depends on the
size and shape of the single-particle potential. Knowing n(ε),
one can calculate the particle number A and shell-corrections
(SC) ESC = E − ETF for a many-fermion system by integrating
up to the chemical potential µ:

A =
∫ µ

−∞
n(ε)dε, ESC =

∫ µ

−∞
εnosc(ε)dε. (6)

The theory of periodic orbits and structure of these shell-
corrections has been studied extensively. For example, in
a 3-dimensional spherical cavity, quantum effects can be re-
produced by including only triangular and square orbits [24–
27, 40]. The emergence of magic numbers, and the role of the
shapes of many-fermion systems have been tested in theory
and validated against experimental results in fermion systems
with up to 3000 electrons [41–43]. In particular, in atomic
clusters, the emergence of super-shells has been predicted the-
oretically [40, 42, 44] and confirmed experimentally [41, 43].
(Nuclei are too small to exhibit of super-shells.)

In nuclear physics, a similar line of inquiry is encapsulated in
the method of shell-corrections, developed by Strutinsky [45–
47] and many others [28, 48–60]. This method shows that n(ε)
has a well defined dependence on the particle number. The
smooth part of the density of states is quite well described
by the Thomas-Fermi approximation (and by the smoothing
procedure introduced by Strutinsky). The leading terms are the
volume (∼ A), surface (∼ A2/3), Coulomb (∼ Z2/A1/3), and
symmetry energy (∼ (N − Z)2/A) contributions encoded in the
Bethe-Weizsäcker mass formula (1). The oscillating part is
dominated by the nuclear shape and the shell effects from the
periodic orbits, where the amplitude depends on the particle
number as A1/6 [28].
The separation of n(ε) into the smooth and oscillating

parts (5a) is a general characteristic of the many fermion
systems. Both the macroscopic-microscopic method [28, 45–
60] and self-consistent approaches [61–66] lead to the same
conclusions about the various contributions described above,
and agree with experimental data [67]. In all previous consid-
erations of mass tables, either in self-consistent approaches or
in microscopic-macroscopic models, the single-particle spec-
troscopic factors are modified only by pairing correlations. It
is well-known, however, that the coupling between collective
degrees of freedom and single-particle degrees of freedom lead
to a significant fragmentation of the single-particle occupation
probabilities, which are measured in pick-up and knock-out
reactions [56, 68]. This fragmentation of the single-particle
occupation probabilities is not taken into account in the single-
particle density of states Eqs. (5) or in the definition of the
single-particle densities Eqs. (10), and is likely to affect the
exact magnitude of the shell-effects. The order of magnitude
of these effects is perhaps a (small) fraction of the rms error
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χE = 3.3 MeV of the Bethe-Weizsäcker mass formula (1). All
of this this begs the question: To what order can one expand the
density of states in powers of the particle numbers and periodic
orbits?
There is a reasonable consensus that, beyond the leading

contributions from the periodic orbits and shell-corrections,
any such an expansion fails due to the effects of quantum
chaos – i.e. contributions from classically chaotic trajectories
through the many-body phase space [29]. Stable periodic orbits
provide the strongest shell effects in quantum systems, evident
for example in the magic numbers (see e.g. Fig. 20). Unstable
periodic orbits also produce shell effects, but typically with
smaller weights. In contrast, chaotic orbits appear to produce
irregular oscillations in the single-particle density of states with
a rather small amplitude. Various estimates suggest that chaotic
fluctuations appear at the level of 0.5 MeV per nucleus [69–
77], noticeably smaller than shell effects contributions due to
periodic orbits and deformations, which are of the order of
several MeVs.
The effect of periodic orbits is not limited to finite sys-

tems: the Casimir energy in quantum field theory [78, 79],
critical phenomena [80, 81], and strongly interacting infinite
inhomogeneous systems, e.g. nuclear pasta phase in neutron
stars [82–88], can also be explained and calculated to high
precision by evaluating the contributions from periodic orbits.
This method has become the standard approach for evaluating
the Casimir energy in a variety of fields [89–93].
It is somewhat surprising that shell effects from periodic

orbits appear at the same level as deformation effects in the
energy of nuclear systems. Naïvely one might expect the
deformation energy to be controlled by the surface area of a
saturating system, and thus to contribute as a correction to the
surface term in nuclear mass formulas like Eqs. (1) and (2).
However, the deformation energy in nuclei has a quantum
nature, and is determined by a delicate interplay between the
change in surface area and the shell effects. A similar behavior
has been observed in the case of atomic clusters with up to 3000
electrons [44]. This leads to a leveling of the peaks, which one
would otherwise expect in the absence of deformation, leaving
in place only the large negative shell-corrections for the magic
spherical systems, as seen in Fig. 20 for the case of nuclei.
The shape stability of a many-fermion system is controlled

by the single-particle level density at the Fermi level. In an
open-shell system this level density is high; the system can thus
deform quite easily and single-particle levels can rearrange
until the level density is low enough to render the system stable.
The stabilization process of the nuclear deformation in the
ground state is analogous to the Jahn-Teller effect in polyatomic
molecules [94], where the high degeneracy of the ground state is
lifted by the deformation of the system. This mechanism leads
to new “magic numbers” in deformed systems as Strutinsky
discussed in his seminal papers [45–47]. The increase in
surface area and the energy penalty incurred (deformation
energy) is canceled to a large extent by the shell-corrections
(due to periodic orbits in the deformed potential), unless the
system is “magic” or “semi-magic”. The cancellation between
deformation energy and shell effects suggests that open-shell
systems should be easier to deform than magic systems. This

is consistent with the character of the residuals remaining after
fitting the nuclear binding energies with Bethe-Weizsäcker
formulas like Eqs. (1) and (2) as shown in Fig. 1 and Fig. 20.
The largest residuals appear as large (negative) spikes at the
shell closures for spherical nuclei with magic numbers of either
protons or/and neutrons, while the expected (positive) peaks
in between magic numbers are flattened. From the nature of
the residuals Eexp − Eth in Fig. 1 – sharp negative spikes at the
magic numbers, but roughly constant fluctuations in between
– one can conclude that mass formulas of the type Eq. (2) do
encode the role of the nuclear deformation. For open shell
nuclei it thus appears that the deformation energy is roughly
compensated by the shell-correction energy, and shell effects
only survive near magic and semi-magic nuclei. A sufficiently
accurate theory of nuclear masses may even aim to include
contributions arising from quantum chaos.

A number of corrective termsmight be considered to improve
the accuracy of the nuclear mass formulas Eqs. (1) and (2).
For example, in the Coulomb term, one might replace Z2 with
Z(Z − 1) to correctly count the number of proton pairs, and
one might add an additional term proportional to Z to account
for the Coulomb exchange interaction and screening [95]. Mo-
tivated by Eq. (4), one might also consider including terms
proportional to A1/3 and A0. The symmetry energy terms might
also be “corrected” by replacing (N−Z)2/4withT(T+1)where
T = |N − Z |/2. Finally, one might introduce an additional
correction to account for the Wigner energy ∝ |N − Z |, which
appears as a cusp in the nuclear binding energies as a function
of N − Z (basically only for nuclei with |N − Z | ≤ 2) [96].
However, including these corrections lead to very small im-
provements in the energy rms χE below the value 2.64 MeV
obtained with the main terms of Eq. (2). These corrections are
eclipsed by the shell effects as seen in Fig. 1.
The goal of this paper is to generate a phenomenological

NEDF with the minimal number of physically motivated pa-
rameters required to describe static bulk nuclear properties.
Specifically, we want to follow the spirit of DFT in electronic
structure theory and require that our NEDF depend only on the
local, intrinsic density of nucleons and gradient terms. We will
consider two variants of our NEDF: the first one is in the spirit
of Kohn-Sham [10] and requires using orbital-based techniques,
that are formally similar to the Hartree-Fock-Bogoliubov (HFB)
approximation by design. In nuclear physics such an approach
was pioneered by Fayans [97, 98] and later also by Baldo et al.
[99, 100]. Since working with orbitals is computationally
expensive, we also present a second, orbital-free, variant of our
NEDF in the spirit of Hohenberg-Kohn [9]. It is obtained from
the orbital-based functional by a semiclassical approximation
(with some corrections). The orbital-free functional has only 4
parameters that have all a well-defined physical interpretation
as in the Bethe-Weisäcker formula. Although the orbital-free
theory lacks shell corrections, it still does a remarkable job of
describing nuclei on average, reproducing both binding ener-
gies and charge radii within a simple calculations framework.
The orbital-based functional will be subsequently determined
by a fine-tuning of the parameters of the orbital–free functional,
and the addition of terms needed to describe the relatively
smaller contributions arising from the spin-orbit interaction,
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the pairing effects, and the density dependence of the symmetry
energy.
There are a variety of many-body approaches based

on the Schrödinger equation: the quantum Monte Carlo
(QMC) method [101, 102], the self-consistent Green func-
tion method [103], the coupled-cluster method [104], and the
in-medium renormalization method [105]. In all these ap-
proaches one has to specify the two-body (NN), three-body
(NNN), etc. interactions between nucleons, the form of which is
ambiguous depending on how the theory is regularized. Chiral
effective field theory (EFT) [106, 107] provides a framework
for organizing these interactions using the symmetries of the
underlying theory quantum chromodynamics (QCD) of quarks
and gluons with the hope that physical results are independent
of the cutoff. There is still no guarantee, however, that this
many-body expansion converges.
The DFT approach differs from approaches based on the

Schrödinger equation, even though, in the case ofmany-electron
systems, it has been established that there is a mathematical
one-to-one correspondence between the number density and
the wavefunction of a many-body system [9, 11]. In principle,
this one-to-one correspondence leads to the existence of an
exact energy density functional. In practice, however, this
functional is extremely complicated and establishing a useful
form is more of an art than a science. One particularly suc-
cessful example is the unitary Fermi gas, which shares many
properties with dilute neutron matter. In this case, the form of a
local energy density functional follows using only dimensional
arguments, renormalizability of the theory, Galilean invari-
ance, and symmetries. This functional, called the superfluid
local density approximation (SLDA) has been verified and
validated against QMC calculations and experiments at the
few percent level for a wide range of systems [108, 109]. Our
approach here is motivated by similar considerations, leading
to a simple and compact functional in which time-dependent
phenomena can be computed with a similar computational
cost to time-independent phenomena. Thus, unlike approaches
based on Schrödinger equation which are primarly limited
to static properties, the DFT can be applied to reactions, fis-
sion, time-dependent non-equilibrium phenomena, and for very
heavy systems with remarkable accuracy.
Section II discusses the various components of both the

orbital-based and orbital-free NEDF. Section III discusses
a number of nuclear observables that are used as validation
of the predictive power of the NEDF, such as global mass
tables, density distributions, single-particle spectra, neutron
skin, static fission properties, and properties of the neutron start
crust. Section IV briefly discusses notable differences between
our NEDF and others. Finally, our results are summarized in
Section V.

II. FUNCTIONAL FORM OF THE NEDF

The lesson from our brief historical review is that, since nuclei
are saturating systems with a rather well defined saturation
density, the bulk of the nuclear binding energy should be fixed
by the geometry of the nuclei (volume, surface area, curvature

radius) to sub-percent accuracy. As demonstrated in Table I,
the accuracy of the mass formulas Eqs. (1) and (2) – which
both lack shell effects, deformation, spin-orbit effects, pairing,
etc. – suggests that such a nuclear energy density functional
(NEDF) should be capable of describing at a similar level of
accuracy both the nuclear binding energies, and the proton
and neutron matter density distribution. Therefore, we might
reasonably expect that a NEDF will also describe the nuclear
charge radii, for which there is a large amount of accumulated
data [3]. Quantum effects enter at the level of a few MeVs per
nucleus, reducing the rms energy error χE from around 3 MeV
to about 0.5 MeV [58–60], and are most pronounced for magic
or semi-magic nuclei, see Fig. 1.
We will describe a NEDF that depends on the smallest

number of phenomenological parameters needed to account
for all the contributions in the nuclear mass formulas Eqs. (1)
and (2). First we relate these parameters to various physical
quantities relevant for nuclear physics. For a large nucleus, the
Coulomb energy can be used to estimate the saturation density
n0 by approximating the nucleus as a uniformly charged sphere
with EC = 3Z2e2/5R = aCZ2/A1/3, where R = r0 A1/3 and
r0 ≈ 1.2 fm is a nuclear length scale:

n0 =
3

4πr3
0
, where r0 =

3e2

5aC
. (7a)

One can further estimate the ground-state energy of infinite
nuclear matter per nucleon ε0, the nuclear surface tension σ,
and their dependence on the isospin (N − Z)/2:

ε0 =
E(N, Z)

A
= av + aI

(N − Z)2
A2 , (7b)

σ = as + a′I
(N − Z)2

A2 . (7c)

Finally, one can relate the value of the coefficient a′C (or of the
alternative coefficient of the contribution a′′CZ2/A to the mass
formula [51]) with the nuclear surface diffuseness.

For a NEDF to be as accurate as the mass formula, one thus
expects no more than 5 or 6 significant parameters. As we
shall see, such a functional does exist, requiring as few as 4
parameters, and demonstrating better accuracy than the original
Bethe-Weizsäcker mass formula, with the additional property
of predicting charge radii. That a functional depending on
such a small number of phenomenological parameters can go
beyond the capabilities of the empirical mass formula and also
describe density distributions is truly remarkable.

We postulate a NEDF with three main contributions, which
significantly improves on the Weizsäcker’s original idea [8]:

E[nn, np] =

kinetic︷︸︸︷
Ekin + EC︸︷︷︸

Coulomb

+

interactions︷︸︸︷
Eint . (8)

The first two terms – the kinetic energy and Coulomb energy –
arewellmotivated and have no free parameters. All phenomeno-
logical parameters of the model appear in the interaction term
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Eint:

Eint =

homogeneous︷︸︸︷
Ehomo + E∇n︸︷︷︸

gradients

+

spin-orbit︷︸︸︷
ESO + E∆︸︷︷︸

pairing

+

entrainment︷ ︸︸ ︷
Eentrain, (9)

The Kohn-Sham formulation of the functional is specified in
terms of the single-particle orbitals vkσ(r), vkσ(r) through
the number, anomalous, kinetic, spin-density, current, and
spin-current densities (for both neutron and protons):

n(r) =
∑
k,σ

v∗kσ(r)vkσ(r), (10a)

ν(r) =
∑
k

v∗k↑(r)uk↓(r), (10b)

τ(r) =
∑
k,σ

∇v∗kσ(r) · ∇vkσ(r), (10c)

s(r, r ′) =
∑

k,σ,σ′
v∗kσ(r)σσ,σ′vkσ′(r

′), (10d)

s(r) = s(r, r), (10e)

j(r) =
∑
k,σ

∇ − ∇′
2i

v∗kσ(r
′) · vkσ(r)

����
r=r′

, (10f)

J(r) = ∇ − ∇′
2i

× s(r, r ′)
����
r=r′

. (10g)

See [61, 110] and references therein for details. (Note: In
nuclear physics literature proton and neutron number densities
are typically denoted with the symbols ρn,p(r). In accordance
with thewider physics literature, we reserve ρ formass densities,
which are related to number densities by ρn,p(r) = mnn,p(r).)

Developing an orbital-free version of (9) would require
expressing all the various terms exclusively in terms of the
number density n(r). Whether such a NEDF exists and how it
should be implemented remains an open question. In this work
we will implement an orbital-free functional by approximating
all the auxiliary densities (10) as functions of the number
density; see section II I for details.

A. Kinetic Terms

The kinetic energy density derives from the energy density of
a non-interacting system of protons and neutrons and contains
no free parameters:

Ekin =
~2

2m
(τn + τp) −

δm
2m
~2

2m
(τn − τp) + O

(
δm
2m

)2
, (11)

where τn,p are the kinetic densities in the HFB formulation with
neutron and proton mn,p = m ± δm/2. In principle, one should
include an explicit isospin splitting due to the different proton
and neutron masses, but we follow here common practice in
nuclear theory to use a common average mass m = (mn+mp)/2
and neglect δm = mn − mp. Note that since we are using the
bare masses here, the theory is covariant under Galilean boosts.

The consideration of terms with a more complex dependence
on the kinetic energy densities requires the adding current
terms to restore the Galilean covariance of the theory (see
e.q. [61, 111–114].)

B. Coulomb Terms

The direct Coulomb energy and exchange contribution in the
Slater approximation are:

EC(r) =
1
2

VC(r)nch(r) −
e2π

4

(3np(r)
π

)4/3
, (12a)

VC(r) = e2
∫

d3r ′
nch(r ′)
|r − r ′ | , (12b)

where e is the proton charge, and nch is the charge density,
which is obtained from the proton and neutron densities by
convolution (here noted as “*”) with the appropriate charge
form factors (see Sec. VI for details):

nch = Gn
E ∗ nn + Gp

E ∗ np . (12c)

Including the form factors does not significantly improve the
mass fits, but improves somewhat the fit of the charge radii.
In principle, one might allow the coefficient of the Coulomb
exchange term to vary; this is done, for example, in atomic
physics to obtain better estimates of the Coulomb exchange
energy. We find, however, that fitting the nuclear binding
energies leads with high accuracy to the same coefficient
presented in Eq. (12a), so we leave it fixed and do not include
this as a parameter in our model.
We require our energy density functional to be an isoscalar

and include no isospin breaking terms other than those due to the
neutron-proton mass difference (which we neglect here) and the
Coulomb interaction. Additional isospin violation due to up and
down quark mass differences and electromagnetic effects [115–
119] beyond these two contributions are much smaller and are
partly responsible for the Nolen-Schiffer anomaly [120], to
which the screening of the Coulomb exchange also contributes
at a comparable level [95, 121].

C. Homogeneous Terms: Infinite Nuclear and Neutron Matter

We parameterize the nuclear equation of state as:

Ehomo =

2∑
j=0
E j(n)β2j (13a)

E j(n) = εj(n)n = ajn5/3 + bjn2 + cjn7/3, (13b)

where n is the total density, and β is the asymmetry:

n = nn + np, β =
nn − np

nn + np
. (13c)

We have considered terms with powers of the density n8/3 ∼ nτ
and higher, but in all our fits of the nuclear masses, we found
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Figure 3. (Color online) The QMC results of Wlazłowski et al.
[122] for the interaction energy per neutron displayed as the ratio
1/nnεn/εFG defined in Eq. (15b) (with β = 1), where εFG =

3~2(3π2nn)2/3/(10mn). If an = 0 in Eq. (15b), the ratio εint/εFG

would tend to 0 for nn → 0. For densities n1/3
n |ann | < 1 (where

ann = 18.9 fm is the s-wave neutron-neutron scattering length) the
leading order correction to the kinetic energy density per particle
contribution would be instead linear in density 4π~2annnn/mn.

such terms to be unconstrained in magnitude, barely improving
the quality of the fits.

In infinite homogeneous nuclear matter, as might be found in
a neutron star for example, the gradient, spin-orbit, entrainment,
and Coulomb terms vanish (charge neutrality is maintained by
a background of electrons). The semiclassical expansion of
the kinetic energy density Ekin becomes exact in the leading
Thomas Fermi term τ = τTF . Thus, neglecting the small
neutron-proton mass difference mn ≈ mp ≈ m, the functional
acquires the simple form:

E(nn, np) =
3~2(3π2)2/3

10m
(n5/3

n + n5/3
p )

+

2∑
j=0

(
ajn5/3 + bjn2 + cjn7/3

)
β2j, (14)

This portion of the functional is essentially an expansion in
powers of the Fermi momenta kF : kn,p = (3π2nn,p)1/3 with
only three terms k5

F , k6
F , and k7

F . This type of expansion is
ubiquitous in many-body perturbation theory, and also applies
to fitting the neutron matter equation of state (np = 0, β = 1):

En(nn) =
3~2

10mn
(3π2nn)2/3nn + Eint(nn), (15a)

Eint(nn) = ann5/3
n + bnn2

n + cnn7/3
n , (15b)

The coefficients an, bn, and cn are fixed by fitting the neutron
matter equation of state (EoS) as calculatedwithQMC including
up to N3LO two-body and up to N2LO three-body interactions
from chiral perturbation theory [122]:

an = a0 + a1 + a2 = −32.6 MeV fm2,

bn = b0 + b1 + b2 = −115.4 MeV fm3,

cn = c0 + c1 + c2 = 109.1 MeV fm4.

(16)

A
0 50 100 150 200 250 300

(N
-Z

)/
A

-0.3
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-0.1
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0.3

0.4

0.5

Figure 4. (Color online) The contribution to the ground state energies
of the terms quartic in isospin density δEI4 =

∫
d3r E2(n)β4, evalu-

ated perturbatively with NEDF-1, see Table IV. In the lower panel we
display the ratio (N − Z)/A for the nuclei we have considered. Among
the 2375 nuclei we have considered, there are 33 nuclei with N = Z ,
78 nuclei with Z > N , and 70 nuclei with |N − Z |/A > 1/4.

As shown in Fig. 3, all three terms are needed in Eq. (15b) for
an accurate reproduction of the neutron EoS (see Sec. VD).
We include the j = 2 quartic terms in Eq. (14) by determining
the values of a2, b2, and c2 from the values of an, bn, and cn
describing the QMC results (16), without adding additional
free parameters to the NEDF.1
As we shall discuss in section II H, adding the quartic β4

( j = 2) terms does not significantly impact the quality of the fits.
However, the best fit functional with only quadratic β2 ( j = 1)
terms, does not reproduce the neutron matter equation of state,
especially near n ≈ 0.1 fm−3 (see Fig. 23). The contribution
of this term to nuclear masses is small (typically less than
1 MeV) since in most nuclei β < 0.25, see Fig. 4. These
results demonstrate two important points: 1) quartic terms
∝ β4 ( j = 2) appear to be needed to reproduce the neutron
matter equation of state, 2) nuclear masses do not constrain
these quartic terms. Thus, quartic terms provide a direct (and
independent) way to incorporate the equation of state of neutron
matter into the NEDF.
At this time we do not have an equally accurate QMC

calculation of nuclear matter with varying isospin composition,
so we must rely instead on a phenomenological approach. Our
main assumption is that we can describe both the isoscalar
( j = 0, β0) and isovector ( j = 1, β2) parts of the nuclear

1 We also performed a fully self-consistent mass fit for spherical even-even
nuclei with additional powers of densities

∑
j=0,1(a jn

5/3+b jn
2+c jn7/3+

d jn
8/3)β2 j . While this leads to a lower energy rms χE ≈ 1.2 MeV, the

charge radii rms increases to χr ≈ 0.1 fm and the value of the compressibility
K0 ≈ 170 MeV is very low. Typically in these cases the parameter a0
becomes significant and acquires relatively large negative values, similar to
the behavior seen in Fig. 7. The terms d jn

8/3 are not very significant. See
also the discussion in section II H.
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equation of state using the same three powers of Fermimomenta
Eqs. (15b) and (16) as required to fit the equation of state of pure
neutron matter. This approach differs from typical Skyrme-like
parameterizations, which include terms with higher powers of
densities, e.g. n8/3 arising from τn type of terms, where τ is
kinetic energy density.

One could in principle consider additional terms of the type
τn1/3 ∝ n2, τn2/3 ∝ n7/3, and τn ∝ n8/3, but the contribution
to the bulk energy of such terms would be practically indis-
tinguishable from terms n2, n7/3, and n8/3. Their contribution
might become important only in the surface region, and since

τn1/3 − 3
5
(3π2)2/3n2 ∝ |∇n|2

n2/3 , (17a)

τn2/3 − 3
5
(3π2)2/3n7/3 ∝ |∇n|2

n1/3 , (17b)

τn − 3
5
(3π2)2/3n8/3 ∝ |∇n|2, (17c)

most of these terms could be incorporated effectively in gradient
corrections, see sections II D and II I.
The terms ajn5/3 are somewhat unexpected and are not

included in Skyrme-like parameterizations. Tondeur [123]
introduced only a term a1 (without theoretical justification), but
it makes sense to include the other aj for several reasons. First,
the QMC calculations of Wlazłowski et al. [122], Gezerlis
and Carlson [124], and Gandolfi et al. [125] (see Fig. 3) are
consistent with the existence of a non-vanishing parameter
an in the neutron equation of state, which implies that an =∑2

j=0 aj , 0. Then, these terms also appear naturally in the
case of the unitary Fermi gas [126], which has been confirmed
to high precision in many experiments. The unitary Fermi
gas is a system of two species of fermions, interacting with an
s-wave interaction with zero range and infinite scattering length.
In response to the Many-Body X challenge posed by Bertsch
in 1999, Baker [127] showed that the system was stable. The
energy density of the unitary Fermi gas scales exactly like the
kinetic energy density of a free Fermi gas E ∝ n5/3. Since both
neutron and protons have similar s-wave interaction properties,
one expects the nuclear energy density to behave somewhat
like the unitary Fermi gas.

Although the energy density of the unitary Fermi gas scales
as the kinetic energy, this is not necessarily due to a mass renor-
malization as one might naïvely suspect. QMC calculations of
the single quasi-particle dispersion [128] and spectral weight
function [129, 130] both find almost the effective mass in the
unitary Fermi gas to be close to the bare mass ≈ m. However,
this does not preclude the interpretation that some part of the
energy arises from the kinetic energy density τ as is the case in
the unitary Fermi gas [108, 114, 131]. The QMC calculations
are simply not yet of sufficient accuracy to confirm or exclude
an effective mass different from unity.

D. Gradient terms

We include a gradient term of the following form, similar
to terms considered in the past [123, 132] and in Skyrme

NEDFs [133]:

E∇n = ηs
∑
q=n,p

~2

2m
|∇nq |2. (18)

One might consider a more general term of the form

E∇n = η0
~2

2m
|∇nn + ∇np |2 + η1

~2

2m
|∇nn − ∇np |2. (19)

Note that this form of gradient term alone in an orbital-free
theory leads to unphysical density profiles with a discontinuity
in ∇n at a finite radius, beyond which the density vanishes
exactly. However, in the presence of Ekin in an orbital-based
approach the density is well behaved. We have found that
the nuclear mass fits are basically insensitive to the linear
combination ηm = η0 − η1, and we use ηs = (η0 + η1)/2 and
ηm = (η0−η1)/2 = 0. The linear combination ηm = (η0−η1)/2
can instead be used to independently fit the static isovector
dipole polarizability of nuclei, as it favors a small separation
between the neutron and proton surfaces if η1 > 0.

Additionally, one could consider density-dependent terms of
the type arising in Eqs. (17a),

Eτ ∝ τnσ − j2nσ−1 − 3
5
(3π2)2/3n5/3+σ ∝ |∇n|2

n1−σ . (20)

The presence of the current density here is required in order to
restore Galilean covariance [111]. Since the density gradients
are peaked at the nuclear surface the dependence of these
coupling constants on density are not expected to lead to any
noticeable changes in the quality of nuclear mass fits and the
corresponding coupling constants would play a subdominant
role (see section II H).

E. Spin-Orbit Coupling

Related to the gradient term is the spin-orbit coupling, which
we include in the same form as in the Skyrme NEDF [133]:

ESO = W0J · ∇n (21)

where J = Jn + Jp is the total spin current. Alternatively, one
can introduce a more general form of the spin-orbit coupling

ESO = W0J · ∇n +W1(Jn − Jp) · (∇nn − ∇np) (22)

but following Fayans [97], we only include the isoscalar portion
here as the isovector contribution is small. The isovector
dependence of the spin-orbit interaction could be used to
independently fine-tune proton and neutron single particle
spectra near the Fermi level however.

F. Pairing interaction

The pairing energy depends on the anomalous density:

E∆ =
∑
q=n,p

∫
d3r geff(r)|νq(r)|2 (23)
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and the effective pairing coupling strength geff(r) is obtained
via a renormalization [134–136] of the bare pairing strength,
which may depend on neutron and proton densities.

In the case of pairing one can consider volume, surface,
or mixed pairing coupling constants, but previous studies of
large sets of nuclei have shown [135, 137] that there is little
evidence preferring one form to another. Phenomenological
studies [137] also show that the proton pairing coupling is
stronger than the neutron pairing coupling, a result at odds with
the naïve expectation that the proton pairing coupling should
be weaker due to the Coulomb interaction [138–140].
It would also be peculiar to find that isospin invariance is

broken by the pairing interaction in this manner as well, when
no other more important terms of the NEDF break isospin
symmetry. This likely points to the fact that the pairing
coupling can have a more complex structure, which conserves
the charge symmetry,

E∆ =
∫

d3r geff(r)
(
|νn(r)|2 + |νp(r)|2

)
+

∫
d3r heff(r)

(
|νn(r)|2 − |νp(r)|2

)
β, (24a)

where β = (nn − np)/(nn + np). The dependence on neutron
and proton densities of the bare coupling constants should
satisfy isospin symmetry:

g
(
nn(r

)
, np(r)) = g

(
np(r), nn(r)

)
, (24b)

h
(
nn(r

)
, np(r)) = h

(
np(r), nn(r)

)
. (24c)

Since in measured nuclei one has predominantly N ≥ Z , see
Fig. 17, a phenomenological analysis that leads to an apparent
coupling for protons larger than the one for neutrons can be
reconciled with renormalized coupling constants geff(r) < 0
and heff(r) > 0. We will neglect for now this additional type
of pairing coupling controlled by the coupling constant heff(r).
For now, we will also not account for the role of the Coulomb
interaction on the pairing of the protons.
In an orbital-free approach the role of pairing is revealed

only by the presence of the odd-even staggering of the energy
term. As shown in Table I, it has a small effect on the overall
quality of global mass fits and it may be omitted as a variational
parameter.

G. Entrainment

Entrainment (the Andreev-Bashkin effect) was predicted by
Andreev and Bashkin [141] to occur in superfluid mixtures
of 3He and 4He, and is rather surprising at first sight, since
superfluids are expected to flowwithout resistance. In particular,
one might have expected that if somehow one would bring
into motion only one superfluid component, superfluidity will
have the consequence that the other component remains at
rest. The entrainment term (25) is indeed dissipationless, and
thus it does not violate superfluidity, but allows the motion of
one superfluid to influence (entrain) the other. It is natural to
expect a similar phenomenon to arise in nuclei, where proton

and neutron (super)fluids can coexist. Entrainment should also
plays a role in neutron stars and has been studied intermittently
since 1975 [142–150].

The formalism describing these systems is called three fluid
hydrodynamics – two superfluids and one normal component
– and is a generalization of Landau’s two fluid hydrodynamic
phenomenological model of superfluids at finite temperatures
below the critical temperature. Since in nuclear systems
both neutron and proton subsystems can have a superfluid
and a normal component at finite temperatures, and since
the normal components can move independently in isovector
modes, a proper generalization of the superfluid dynamics to
nuclear systems would be a four fluid hydrodynamics, with two
superfluid and two normal components, thus a somewhat more
complex system than the superfluid mixtures considered so far
in literature.

When moving to a new frame, both protons and neutrons ex-
perience the same boost vn,p → vn,p+v . We can thus introduce
an additional Galilean invariant term in the two-component
system proportional to |vn − vp |2, which we parameterize as:

Eentrain(ψn, ψp) = gent
(nnnp

n2

) n
2m

���� jnnn
−

jp

np

����2 , (25)

where jn,p = mnn,pvn,p and the function gent(x) controls the
entrainment of the neutron and proton fluids. The presence of
such a term leads to a renormalization of the isovector reduced
mass of the collective flow, since the collective flow energy has
the form

Eflow =
mnnv2

n

2
+

mnpv
2
p

2
+ gent

(nnnp

n2

) mn|vn − vp |2

2
(26)

=
m(nnvn + npvp)2

2n
+

[nnnp

n2 + gent

(nnnp

n2

)] mn|vn − vp |2

2
.

Since this type of coupling between neutron and proton
fluids is absent when either density vanishes we require that
gent(0) = 0. The requirement that the total kinetic energy is
always positive leads to the condition x + gent(x) > 0. The
significant effect of this term is seen in the dynamics only,
when the motion of one fluid will drag along the other, and
therefore the presence of such an additional term will affect
strongly the excitation energies of isovector modes such as the
giant dipole resonances (GDRs) and the Thomas-Reiche-Kuhn
sum rule. The simplest choice for this coupling is gent(x) = αx
with 1 + α > 0, however Borumand et al. [145] recommend
gent(x) ∝ x2/3.

H. SeaLL1 NEDF

We characterize the parameters of the theory according to their
significance for mass fits and dynamics. We define a parameter
as dominant if varying this parameter by less than 5% or so
reduces the χE of the best fit by 0.1 MeV per nucleon. We
define a parameter as subdominant if it can be varied by 10%
or more with a similar decrease in the quality of the fit. We
define a parameter as unconstrained if it can be set to zero at
this level of accuracy.
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Our analysis shows that a minimal orbital-free NEDF has 4
dominant parameters, and 2 subdominant parameters, consis-
tent with the analysis presented above.

Kinetic (none): The kinetic energy density Ekin Eq. (11) con-
tains no free parameters - just ~ and the bare nucleon
masses mn and mp and the kinetic densities τn,p. How-
ever, since the orbital-free approach depends on densities
alone, an approximation of the kinetic energy densities
in terms of densities introduces a single parameter κ.
This is discussed in section II A and II I

Coulomb (none): The Coulomb interactions EC Eq. (12) also
contains no free parameter in either formulation. In
principle, the proton and neutron form-factors can be
included, but these have only a small effect. This is
discussed in section II B.

Homogeneous (3 dominant, 1 subdominant): The homoge-
neous portion of the functional Ehomo Eq. (13) adds only
3 significant parameters. In principle, up to 9 parameters
aj , bj , and cj for j ∈ {0, 1, 2} describe the equation of
state for homogeneous nuclear matter. However, three of
these nine (for j = 2) are fixed by the equation of state
of neutron matter as determined in ab initio calculations.
Two of the remaining six parameters (a0, and the com-
bination of a1 − b1n1/3

0 , where n0 is symmetric matter
saturation density) are found to be unconstrained at the
level of changing the energy rms by δχE < 0.1 MeV
and are thus set to 0. In our full SeaLL1, we keep c1
as a fitting parameter, although it is significantly less
dominant than the others. We fix c1 sometimes in the
orbital-free theory to provide a reasonable description of
the neutron skins, see section VB. Either c1 or the linear
combination a1 − b1n1/3 can be used to tune the density
dependence of the symmetry energy.
This counting echoes the dominant and subdominant
roles of the various nuclear saturation and symmetry
properties in fitting masses. In particular, the dominant
parameters fix the saturation density n0, saturation energy

ε0, and quadratic symmetry energy S2. The slope of
the quadratic symmetry energy L2 is subdominant as far
as mass fits are concerned, but important for properties
such as the neutron skin thickness, which is why we keep
an additional parameter in the SeaLL1 functional.

Gradients (1 dominant): The gradient corrections E∇n
Eq. (18) add a single new parameter ηs .

Spin-orbit (1 subdominant): The spin-orbit coupling term
ESO Eq. (21) add a single new parameter W0. This
parameter is subdominant for the mass fits, but is crucial
for producing the shell structure of nuclei. In the orbital-
free approach this term is practically incorporated in the
gradient contribution.

Pairing (1 parameter): The pairing interaction E∆ Eq. (23)
adds an additional parameter g0 in the orbital-based ap-
proach. Its contribution is practically incorporated in
the homogeneous isoscalar terms in the orbital-free ap-
proach. A different parameter δ measuring the odd-even
staggering is required for the orbital-free formulation.
However, as is seen for the liquid drop models in Table I,
this additional parameter is quite unconstrained.

Entrainment (1 for dynamics): The entrainment interaction
Eentrain Eq. (25) adds an additional parameterα important
for isovector dynamics only, such as the GDR mode.

The orbital-based approach is specified by 7 parameters: b0,
c0, characterizing isoscalar nuclear properties, a1, b1, defin-
ing the isovector nuclear properties, ηs defining the surface
tension, W0 the strength of the isoscalar spin-orbit interaction,
and bare (unrenormalized) pairing coupling constant g. In
the orbital-free approach, we are left with only 4 significant
phenomenological parameters: ηs, b0, c0, and a linear combi-
nation a1 = b1n1/3, since c1 is unconstrained. The orbital-free
approach has the additional parameter κ controlling the Padé
gradient approximation of the kinetic energy density.
The full form of the functional SeaLL1 is:

E[nn, np] =

kinetic︷         ︸︸         ︷
~2

2m
(τn + τp)+

homogeneous︷                                    ︸︸                                    ︷
2∑
j=0

(
ajn5/3 + bjn2 + cjn7/3

)
β2j +

gradient︷                  ︸︸                  ︷
ηs

∑
q=n,p

~2

2m
|∇nq |2

+W0J · ∇n︸     ︷︷     ︸
spin-orbit

+
∑
q=n,p

geff(r)|νq(r)|2︸                   ︷︷                   ︸
pairing

+
e2

2

∫
d3r ′

np(r)np(r ′)
|r − r ′ | −

3e2

4

(
np(r)

3π

)4/3

︸                                                  ︷︷                                                  ︸
Coulomb

. (27)

The parameter values for the SeaLL1 functional are summa-
rized in Table II. The 7 shaded parameters b0, c0, b1, c1, ηs,
W0 and g are significant for fitting nuclear masses and radii.

The other parameters are either fixed independently (e.g. by
the properties of neutron matter) or have been determined to
be unconstrained for mass fits through a principle component
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SeaLL1 hydro Comments

n0 0.154 0.154 Adjusted (see Fig. 5)
a0 0 same Insignificant
b0 −684.5(10) −685.6(2)

c0 827.26 828.76 2c0n
2
3
0 = −

3~2

10m

(
3π2

2

) 2
3− 3

2 b0n
1
3
0

a1 64.3 50.9 a1 = n1/3
0 b1

b1 119.9(61) 94.9(14)
c1 −256(25) −160.0 Fixed in orbital-free theory
a2 −96.8 −83.5 a2 = an − a0 − a1
b2 449.2 475.2 b2 = bn − b0 − b1
c2 −461.7 −559.6 c2 = cn − c0 − c1
an −32.6 same from neutron matter EoS (16)
bn −115.4 same from neutron matter EoS (16)
cn 109.1 same from neutron matter EoS (16)
ηs 3.93(15) 3.370(50)
W0 73.5(52) 0.0 Fixed in orbital-free theory
g0 −200 N/A g0 fit in Ref. [135]
κ N/A 0.2 Semi-classical (see section II I)

~2

2m 20.7355 same units (MeV = fm = 1)
e2 1.439 96 same cgs units (4πε0 = 1)

χE 1.74 3.04 606 even-even nuclei
2.86 2375 nuclei

χr 0.034 0.038 345 charge radii
0.041 883 charge radii

Table II. Best fit parameters for the SeaLL1 functional (in bold) and the
orbital-free approximation (next column in italic when different). The
errors quoted for the fit parameters should be interpreted as estimating
by how much this parameter can be independently changed while
refitting the other and incurring a cost of at most δχE < 0.1 MeV.

analysis described in Appendix VB.
Our fitting strategy is described in details in Appendix VB

and we only recall here its most important characteristics. First,
we explored the parameter space with a simplified version of
the orbital-free NEDF. This NEDF is characterized by seven
parameters (a0, a1, b0, b1, c0, c1, and ηs) which we fitted on
NE = 2375 experimentally-measured atomic masses and Nr =

883 nuclear charge radii as listed in Audi et al. [1] and Wang
et al. [2]. From this series of fits and its statistical analysis,
we found that (i) the parameters a0 and c1 are unconstrained
and can be set to zero; (ii) the mass and radii are sensitive
only to a single linear combination of the parameters a1 and b1.
The parameter c1 can be used interchangeably with the linearly
independent combination a1 − n1/3

0 b1 to control the slope L2
of the symmetry energy, which also controls the neutron skin
thickness of neutron rich nuclei, see below Eq. (36b) and the
related discussion in section III D. We will fix here a1 = n1/3

0 b1,
where n0 = 0.154 fm−3 is the saturation density (see discussion
below).
The next step consists in minimizing the residuals χ2

E =∑|EN,Z − E(N, Z)|2/NE over the NE = 196 spherical even-
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Figure 5. (Color online) Saturation density n0 dependence of the
energy residual χE and charge radii residual χr of the SeaLL1
functional. After holding n0 fixed (through the parameter c0), the
remaining 5 shaded parameters in Table II were fit by minimizing
only χ2

E =
∑|EN,Z − E(N, Z)|2/NE over the NE = 196 spherical

even-even nuclei with A ≥ 16 measured (not extrapolated) from Audi
et al. [1] and Wang et al. [2]. The value n0 = 0.154 fm−3 fixed in the
SeaLL1 functional represents a compromise between these residuals
here both χE and χr increase by about 10%.

even nuclei with A ≥ 16measured (not extrapolated) fromAudi
et al. [1] and Wang et al. [2] with the full orbital-based func-
tional. This involves adjusting the 5 dominant parameters
shaded in Table II – the saturation density having been fixed
from the study of charge radii. Note that the pairing parameter
g0 is fixed at the value suggested in Ref. [135]: Although
this is in principle a fitting parameter, it plays only a minor
role in global mass fits as discussed in the introduction. The
SeaLL1 parameters of the orbital-based NEDF (in bold) yield
χE = 1.51 MeV over the NE = 196 spherical even-even nu-
clei, while the orbital-free NEDF yield χE = 2.86 MeV over
NE = 2375 nuclei.2 The pairing fields were treated using the
renormalization procedure described in Refs. [134, 135] with
a cut-off energy of 100 MeV.

As discussed in Appendix VB, we find that fitting the binding
energies alone in the orbital-free approach results in quite a
low saturation density n0 ≈ 0.14 fm−3, and a poorer fit to both
charge radii and density profiles. To explore the influence of
saturation density n0 on the quality of the fit, we performedmass-
only fits for the remaining 5 parameters with various saturation
densities n0 ranging from 0.15 fm−3 to 0.16 fm−3. For each
fit, we also calculate the rms radii residuals χ2

r =
∑|δr |2/Nr

for the Nr = 123 corresponding nuclei in [3]. These results
are shown in Fig. 5, which demonstrates that the charge radii
strongly prefer n0 ≈ 0.155 fm−3 in contrast to the rather weak
lower bias from the mass fits. To incorporate this preference

2 At first sight it is surprising that the value of χE in the orbital-free
approach over 606 even-even nuclei is larger than the value obtained for
2375 nuclei. The reason is simple and related to the compensation of
the shell-correction energies with the deformation energies discussed in
Introduction and Ref. [44].
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in our fits, we fix the saturation density n0 = 0.154 fm−3 by
adjusting c0 using the Eq. (54). This represents a compromise
between the two biases where both χE and χr increase by
about 10%. With this fixed value of n0, we fit the remaining 5
parameters of the SeaLL1 functional by minimizing only χE
over the NE = 196 spherical even-even nuclei as summarized
in Table II.

I. Orbital-Free Functional

Although we advocate working with the full orbital-based
SeaLL1 functional presented above, for tasks such as globally
fitting mass parameters, one can work with a much simpler
orbital-free formulation. The main challenge in formulating
an orbital-free theory is to express terms with the auxiliary
densities τn,p, Jn,p, and jn,p by an appropriate functional of
the number densities nn,p. Although formally possible, it is
still an open research question as to how best reduce an orbital-
based DFT to an orbital-free version. We discuss in more
detail our approach based on a semiclassical approximation in
Appendix VA. To summarize here, we suggest using the fol-
lowing combination for the kinetic and spin-orbit contributions
in an orbital-free theory:

Ekin[nn, np] + ESO[nn, np] = (orbital-free)

=
~2

2m

∑
q=n,p

τTF [nq]F(Xq) −
W2

0
2

2m
~2 n(∇n)2. (28a)

where

F(X) = 1 + (1 + κ)X + 9κX2

1 + κX
, X =

τ2[n]
τTF [n]

, (28b)

τTF [n] = 3
5 (3π

2)2/3n5/3, τ2[n] =
1
9
|∇
√

n|2. (28c)

The ratio X characterizes the size of the gradients in the system
in terms of the leading τTF and subleading τ2 terms of the
semiclassical expansion [11, 24, 151] of the kinetic density τ.
The Padé approximant F(X) suggested by DePristo and Kress
[152] and advocated in [11] interpolates between the semiclas-
sical limit X � 1 valid in the core of large nuclei, and the
approximation τ ≈ τTF + |∇

√
n|2 introduced byWeizsäcker [8]

which correctly reproduces the asymptotic fall off of the density
when X � 1. When spin-orbit is missing, τTF [nq]F(Xq) gives
a semi-classical approximation of the kinetic density τ. This
approximation requires a single additional parameter κ. The
value of κ can be chosen approximately by comparisons be-
tween τ and τTF [nq]F(Xq), and between their resulting kinetic
energies Ekin, for the same set of single-particle wavefunc-
tions. We found κ ≈ 0.2 will give a reasonable semi-classical
approximation for τ and Ekin.
The semi-classical spin-orbit contribution is suggested by

Brack et al. [49], which brings a parameter W0 corresponding
to the one in Eq. (21). Like the full self-consistent theory, this
parameter is also subdominant for the mass fits and its contri-
bution can be incorporated in the gradient term. Furthermore,

due to the missing of shell structure in the orbital-free theory,
this parameter is even more unconstrained.
The orbital-free formulation of the NEDF requires the ad-

ditional parameter κ to approximate the gradient corrections.
As discussed above we choose κ = 0.2. Following SeaLL1,
we fix the saturation density n0 = 0.154 fm−3, and fit the 3
parameters b0, b1 and ηs shaded in Table II. The spin-orbit
contribution was absorbed in the gradient term and if desired
the unconstrained parameter c1 can be used to fix the neutron
skin thickness. The parameter values are determined by per-
forming the same least squares minimization of the binding
energy residuals as SeaLL1, but over all NE = 2375 nuclei
(including the deformed and odd-even, odd-odd ones) with
A ≥ 16 measured from Audi et al. [1] and Wang et al. [2].
The parameter values and rms residuals of orbital-free theory

are also summarized in Table II. As expected, the rms residuals
χE = 2.67 MeV is larger than the χE of SeaLL1 due to the lack
of shell corrections in the orbital-free theory, but are comparable
with results from the liquid-drop formula in Table I.

J. Principal Component Analysis

The parameters listed in Table IV are highly correlated. To ana-
lyze these, we consider as significant changes δχE ≈ 0.1 MeV
since this is the typical level of sensitivity of the mass fits. We
keep the changes relatively small because otherwise the model
is not well approximated by a quadratic error model if δχE >
0.1 MeV. Numerically we find that even 0.1 MeV is too large,
but yields qualitatively correct information after a full refitting.
Note that δ(χ2

E ) = (χE + δχE )2 − χ2
E = 2 χE δχE + (δχE )2,

so we must normalize δ(χ2
E ) by 2 χE · 0.1 MeV in order to

consider changes δχE ≈ 0.1 MeV.
To compare the parameters in a meaningful way, we must

make them dimensionless and of order unity. We do this by
scaling them with appropriate powers of n0 = 0.154 fm−3 and
εF =

~2

2m (3π2n0/2)2/3 = 35.294 20 MeV, which we take as
fixed parameters close to the saturation values:

ãj =
ajn

2/3
0

εF
, b̃j =

bjn0

εF
, c̃j =

ajn
4/3
0

εF
. (29)

(It is important to retain a significant number of digits for
isoscalar quantities, as it will be come clearer below.) In
particular, we consider the covariance matrix C such that the
residual deviation is

δ(χ2
E )

2χE · 0.1 MeV
≈ δT · C−1 · δ =

∑
n

(δpn)2

λ2
n

. (30a)

where δ is the deviations vector of the dimensionless parameters
Eq. (29) from their best fit values as listed in Table IV, and
we have diagonalized Cvn = λ2

nvn to obtain the principal
components pn

pn = vn ·
(
ã0 b̃0 · · · η̃s W̃0

)
. (30b)

Since the parameters are of order unity, we may directly
consider the λn as a measure of the errors: changing pn by λn
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λ0 = 0.00058

λ1 = 0.001

b̃0 b̃1 η̃s

λ2 = 0.0097

λ0 = 0. 00049

λ1 = 0. 0053

λ2 = 0. 017

λ3 = 0. 062

b̃0 b̃1 c̃1 η̃s W̃0

λ4 = 0. 071

Figure 6. The principal component analysis of the SeaLL1 NEDF
in the case of the orbital-free (upper) and orbital-based (bottom)
approach.

will affect the fit on the scale of δχE ≈ 0.1 MeV. Therefore, the
smaller the value of the parameter λn, the more precisely the
fit to nuclear masses constrains the value of the corresponding
linear combination of NEDF parameters. A similar approach
was used by Bertsch et al. [153] in the analysis of Skyrme-type
NEDFs.
In Fig. 6 we show a principal component analysis of the

SeaLL1 functional. The orbital-based analysis includes only
196 spherical even-even nuclei used the fine-tune the parameters
of the functional, while the analysis of the orbital-free functional
includes all 2375 nuclei as described in Table I. Their features
can be understood in terms of the saturation and symmetry
parameters, see Eqs (35).

S =
E(n0, 0) − E(n0/2, n0/2)

n0
, (31)

L = 3n
d

dn

(
E(n, 0)

n

)����
n0

= 3n0ε
′
n(n0) (32)

=
6
5
~2

2m
(3π2n0)2/3 + 2ann2/3

0 + 3bnn0 + 4cnn4/3
0 .

where εn(n) is the energy per particle of the neutron equation
of state (15a). Since the saturation density n0 minimizes the
energy of symmetric matter, the slope of the full symmetry
energy L at n0 depends only on the equation of state of pure
neutron matter. Thus, the QMC neutron equation of state alone
fixes the global density dependence of the symmetry energy
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Figure 7. (Color online) The changes in χE and χr for the NE = 196
even-even spherical nuclei with A ≥ 16, similarly to Fig. 5 as a
function of the fixed parameter a0, while the rest of the 7 parameters
of SeaLL1 specified in Table II are optimized.

L = 3n0ε
′
n(n0) ≈ 30 MeV. We may express these as follows:

ε0
εF
=

3
5
+ ã0+ b̃0 + c̃0, (33a)

0 =
3
5
+ ã0+

3
2

b̃0 +2c̃0, (33b)

K0
εF
= −6

5
− 2ã0 + 4c̃0, (33c)

S
εF
=

3
5
(22/3 − 1) + (ã1 + b̃1 + c̃1) + (ã2 + b̃2 + c̃2), (33d)

L
εF
=

6
5

22/3 + 2ãn + 3b̃n + 4c̃n, (33e)

where K0 is the isoscalar compressibility, see Eq. (35). The
most significant component p0 in both fits is the sum of the
j = 0 coefficients ã0 + b̃0 + c̃0 which fixes the saturation energy
ε0 Eq. (33a), see also Fig. 22. (Remember that we have chosen
a0 = 0 and that c0 is determined from Eq. (33b).) Next are
mixtures of ηs and the symmetry energy S, Eq. (33d), which
are correlated by the finite size of the nuclei; the latter is the
sum of the j = 1 coefficients ã1 + b̃1 + c̃1. While we have
chosen to keep the value of the parameter a0 = 0, its value
can be varied without affecting significantly the quality of the
overall mass and charge radii fit, see Fig. 7. By changing
adopted the value a0 = ±20 fm−3 and keeping ε0 and the
saturation density fixed one can change the compressibility
by δK0 = ±2δã0εF = ±2δa0n2/3

0 ≈ ±23 MeV. The power of
this kind of analysis resides in formulating a “power-counting”
scheme, which organizes the various linear combinations of
parameters in the order of relevance in the mass fit.
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III. PHYSICAL PROPERTIES

A. Global mass table

Since our orbital-based NEDF was fit on spherical even-even
nuclei only, we validate its predictive power by performing a
fully microscopic calculation of the nuclear binding energies
of 606 even-even nuclei with A ≥ 16 in [1, 2]. We used an
extension of the axial DFT solver hfbtho code [154–156]
that includes the SeaLL1 and the regularization of the pairing
channel [134]. Calculations were performed in a deformed
basis of 20 harmonic oscillator shells. In the pairing channel, a
cut-off of 100 MeV was adopted in accordance with [135].
Fig. 8 shows the residuals of the nuclear masses calcu-

lated with SeaLL1 with respect to the experimental values
of these even-even nuclei, which yields a rms residual of
χE = 1.74 MeV. Besides the larger residuals in the light
nuclei region, the residuals show the typical arc-like features
common to many NEDF calculations, for both isotonic and
isotopic chains. The poor performance of SeaLL1 for light
nuclei is likely related to the center-of-mass corrections (not
accounted for here) and is also observed in the UNEDF func-
tionals [66, 157]. Since the unaccounted for center-of-mass
corrections are larger for light nuclei, our parameter fit limited
to spherical nuclei leads to an underestimate of the masses
of heavier spherical nuclei, see Fig. 8. In the case of the
heavier deformed nuclei our neglect of the angular momentum
projection corrections leads to an overestimate of their masses.
Overall the masses have a bias εE = 〈δE〉 = 0.97 MeV and
a standard deviation σE = 1.46 MeV, see Fig. 9. This bias
enters the rms error χ2

E = σ2
E + ε

2
E which leads to a value

of χE = 1.46 MeV. This σE is an upper estimate of the rms
energy χE we expect if the SeaLL1 parameters would have
been instead fitted to all even-even nuclei.

The residuals for the two-nucleon separation energies for the
same set of even-even nuclei are shown in Fig. 10 and they are
naturally less affected by the errors induced by the neglect of the
center-of-mass corrections and angular momentum projection
corrections in deformed nuclei.

B. Charge radii and density distribution

The residuals of radii for 345 matching even-even nuclei in [3]
is also calculated, which gives a rms residual of χr = 0.034 fm,
as shown in Fig. 11.

Using the parameters determined from the mass fits, SeaLL1
also models the neutron and proton densities in the nuclei,
allowing us to extract the charge densities for these nuclei
using Eq. (12c). As a good benchmark, in Fig. 12 we compare
the proton and charge densities of 48Ca and 208Pb calculated
with SeaLL1 with the charge densities extracted from electron
scattering experiments [158]. The calculated 208Pb has a
slightly larger radius and slightly smaller diffuseness compared
to those extracted from data, which is consistent with the charge
radii comparison between SeaLL1 and experiment in Fig. 11.
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Figure 8. Mass residuals between SeaLL1 and measured masses for
606 even-even nuclei, of these 410 deformed nuclei and 196 spherical
nuclei, plotted with red squares and blue bullets respectively.

C. Spherical shell structure

Shell structure is a fundamental property of atomic nuclei.
In an independent-particle picture, the shell structure can be
associated with the single-particle spectra of the mean-field
potential. Reproducing the correct ordering and distribution of
single-particle levels is essential for nuclear structure theories,
and also important for the application of the NEDF in nuclear
dynamics, such as nuclear fission and collision. Fig. 13 and
14 display the single-particle levels for neutrons and protons
in 48Ca and 208Pb, respectively. Compared with the empirical
values, the N = 28 and Z = 20 gaps in 48Ca are clearly too small
with SeaLL1. The single particle proton levels in 208Pb show
that the Z = 82 gap is also smaller in SeaLL1. Such patterns are
also observed in UNEDF2 functional which, however, included
single-particle spin-orbit splittings in their fit [159]. This might
point to the need to consider the contribution from the isovector
spin-orbit contribution in Eq. (22) proportional to W1.
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Figure 9. The histogram of the mass residuals between SeaLL1 and
experiment for 606 even-even nuclei.
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connected by lines.

D. Symmetry Energy and Neutron Skin Thickness

The isoscalar parameters j = 0 and quadratic isovector param-
eters j = 1 (β2) may be directly related to the saturation and
symmetry properties respectively by expanding the energy per
nucleon of homogeneous nuclear matter Eq. (14) about the
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Figure 11. Radii residuals between SeaLL1 and experiment for 345
even-even nuclei. Isotonic (upper) and isotopic (lower) chains are
connected by lines.
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Figure 12. (Color online) The calculated proton np(r) (solid) and
charge nch(r) (dotted) densities for 48Ca (red) and 208Pb (blue),
calculated with SeaLL1 compared to charge densities (black) extracted
from electron scattering experiments [158].

symmetric saturation point nn = np = n0/2:

E(nn, np)
n

= ε0(n) + ε2(n)β2 + ε4(n)β4 + O(β6). (34)

The saturation density n0, energy per nucleon ε0, and incom-
pressibility K0 are then defined by the minimum ε′0(n0) = 0,
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Figure 14. (Color online) Same as Fig. 13 but for 208Pb.

and depend only on the j = 0 isoscalar parameters a0, b0, and
c0. Expanding about n0 in δ = (n − n0)/3n0 and in powers of
β = (nn − np)/n, one can define various “local” contributions
to the symmetry energy S2,4, its density dependent slope L2,4,
etc.:

ε0(n) = 6
5εF + a0n2/3 + b0n + c0n4/3

= ε0 + 1
2 K0δ

2 + O(δ3),
ε2(n) = − 4

15εF + a1n2/3 + b1n + c1n4/3

= S2 − L2δ + 1
2 K2δ

2 + O(δ3),
ε4(n) = S4 − L4δ + 1

2 K4δ
2 + O(δ3)

(35)

Since we include also quartic terms β4, we must differentiate
between these local symmetry parameters S2, L2, etc. and the
full symmetry parameters defined as the difference between
symmetric matter and pure neutron matter (see also the discus-
sion of Lattimer [161]). Using a1 = b1n/30 , see Table II, we

obtain the values for S2 and L2 given by relations:

S2 =
1
3
εF + 2a1n2/3

0 + c1n4/3
0 , (36a)

L2 =
2
3
εF + 5a1n2/3

0 + 4c1n4/3
0 . (36b)

As shown in Table III, the binding energy of nuclear matter
and the symmetry energy predicted by SeaLL1 fit agrees well
with the value obtained with the mass formula (2), see also
the discussion in the Appendix section VB and Table V. Our
fits generally estimate the slope of the symmetry energy L2
from 29 MeV to 36 MeV. However, our fits with orbital-free
functionals (NEDF-E, NEDF-En, NEDF-Er, and NEDF-Enr,
see section VB) demonstrate that this quantity is not well
constrained by the masses and can be adjusted independently
with the combination a1 − b1n1/3

0 and/or coefficient c1.
We also compute the neutron skin thickness of 48Ca and
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Neutron skin
NEDF ρ0 −ε0 K0 S L L2

208Pb 48Ca
[fm−3] [fm] [fm]

SeaLL1 0.154 15.58 230.0 31.7 32.4 31.6 0.131 0.155

Table III. Saturation, symmetry, and neutron skin properties for
SeaLL1. All values in MeV unless otherwise specified.

208Pb, for which precision measurements CREX and PREX3

are underway, see [162] for details. For NEDF-1 through
NEDF-3rn, the neutron skin of 208Pb ranges from 0.07 fm to
0.09 fm while the 48Ca skin ranges from 0.106 fm to 0.125 fm.
The 208Pb neutron skin appears quite a bit thinner than the value
0.156+0.025

−0.021 fm of Tamii et al. [163] extracted from measure-
ments of the dipole polarizability using the method suggested
by Reinhard and Nazarewicz [164] based on observed correla-
tions between these two quantities in Skyrme models, and with
the recent measurement of 0.15(3) fm [165], but the results of
NEDF-E, NEDF-Er, NEDF-En, and NEDF-Enr demonstrate
that this is also controlled by the same combination a1 − b1n1/3

0
as L2, and hence unconstrained by the masses.

Since the slope of the symmetry energy L = L2 + L4 + · · · ≈
30 MeV is fixed by the neutron matter equation of state, see
Appendix, requiring a larger value of L2 ≈ 60 MeV to explain
the neutron skin thickness of 208Pb also suggests that at least
quartic terms are required in the functional.

E. Fission pathway of 240Pu

One of the long term goals of developing a NEDF is to predict
and describe fission observables in heavy nuclei. In this context,
fission pathways are often used as a benchmark for NEDFs. To
this end, we computed the potential energy surface of 240Pu
with SeaLL1 by performing a constrained HFB calculation
with constraints of mass quadrupole moment Q20 and octuple
moment Q30 on the plane 0 ≤ Q20 ≤ 200 b, 0 ≤ Q30 ≤ 40 b3/2,
as shown in Fig. 15. The definitions and units of Q20 and Q30
are consistent with Ref. [166]. Fig. 16 displays the potential
energy curve of 240Pu as a function of Q20 on the (asymmetric)
fission pathway with SeaLL1, SkM* [167], and UNEDF1-
HFB [168]. The characteristics of the HO basis used in the
calculation are the same as in [169].

Since all these calculations were done with the hfbtho DFT
solver, triaxiality is not included and the height of the first
fission barrier is typically overestimated for all 3 functionals by
about 2 MeV [169]. Compared with SkM* and UNEDF1-HFB,
SeaLL1 gives a lower excitation energy of the fission isomer
(EI = 0.54 MeV) and lower heights of both fission barriers
(EA = 6.84 MeV, and EB = 4.20 MeV respectively for inner
and outer barriers). This discrepancy is not too surprising
since we do not include the deformation properties of heavy

3 Proposals and related information available at http://hallaweb.jlab.
org/parity/prex

nuclei into the optimization of SeaLL1, unlike SkM* and
UNEDF1-HFB [157].
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Figure 15. (Color online) Potential energy surface of 240Pu with
SeaLL1 on the plane 0 ≤ Q20 ≤ 200 b, 0 ≤ Q30 ≤ 40 b3/2. The most
likely, asymmetric, fission path is denoted as white dashed line.
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Figure 16. (Color online) Fission pathway for 240Pu along the mass
quadrupole moment Q20 calculated using hfbtho with SeaLL1,
SkM*, and UNEDF1.

F. Neutron and Proton Drip Lines

In Fig. 17 we compare the proton and neutron drip lines
obtained with SeaLL1 against the predictions of UNEDF1, as
well as those obtained with other Skyrme parametrizations
extracted from the supplemental data of Erler et al. [170] and
using FRLDM [58]. SeaLL1 predicts that there are 7716
stable nuclei with Z ≤ 120, as compared with 8450 in case of
UNEDF1, 7212 for SLy4. The position of the neutron drip line
may dramatically impact the astrophysical r-process, which
is predicted to follow lines of constant separation energy in
close proximity to the neutron dripline [174, 175]. Meyer
[174] considered neutron star ejecta as the site of r-process
nucleosynthesis, and determined that the reaction flow is very

http://hallaweb.jlab.org/parity/prex
http://hallaweb.jlab.org/parity/prex
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Figure 17. (Color online) Fully self-consistent calculations of the proton and neutron driplines for the SeaLL1 NEDF (thick blue line)
compared with predictions of the functionals SLy4 and UNEDF1 extracted from Ref. [170], and FRLDM [58]. The vertical axis is shifted
by the approximate β-stability line Zβ(N) which minimizes Eq. (1) at constant A with parameters from Table I: ∂ZE(A − Z, Z)|Z=Zβ = 0,
Zβ = A/(2 + aC A2/3/2aI ). The inset shows the usual Z vs. N plot, with the Z = Zβ(N) curve as a solid (yellow) line. The 2375 nuclear
masses from [1, 2] are displayed as dots. We have plotted possible r-process trajectories predicted to be realized in the case of two neutron star
mergers [6, 7] (red circles), in a classical hot (n, γ) ↔ (γ, n) in equilibrium r-process [171] (green circles) with the FRDM model [58] and
neutron star merger with the UNEDF1 functional [66] (blue circles). With pink and green bands we display the r-process paths obtained by
Mendoza-Temis et al. [172] under various conditions using the FRDM model [58] and the Duflo-Zuker model [173].

close to the dripline. One should keep in mind also that the
precise position of the drip lines is difficult to pinpoint, since
the fluctuations, comparable to the theoretical errors, in the
separation energies have large fluctuations in their vicinity.
Even though his simulations were performed for relatively
cold matter (recent simulations seem to indicate that the star
material is somewhat heated [176, 177]), it will be interesting
to simulate the r-process using SeaLL1. The predicted position
of the neutron dripline will likely affect the structure of the
neutron star crust inferred from older studies [82–84, 178–183].
The corresponding increase in the neutron skin thickness will
also affect the profile and the pinning energy of quantized
vortices in the neutron star crust [184–190].

Fusion cross sections [191, 192] will also be significantly
altered, particularly in stellar environments where neutron rich
nuclei fuse via pycnonuclear reactions [193, 194], and where
the neutron gas surrounding nuclei leads to their swelling [195].
A thicker neutron skin with further enhance this effect.

G. Neutron star crust

The baryon matter in the Universe organizes itself based on the
short-range nuclear attraction and the long-range Couloumb
repulsion. At densities much lower than the nuclear saturation
density, n ≈ 0.16 fm−3, the nuclear and atomic length scales
are well separated, nuclei in matter are expected to form the
Coulomb lattice embedded in the neutron-electron seas that
minimizes the Coulomb interaction energy. At subsaturation
baryon densities, 0.1n0 < n < 0.8n0, conditions expected in
the bottom layers of the inner crust of neutron star, there is
a strong competition between the Coulomb and strong inter-
actions, which leads to the emergence of various complex
structures with similar energies that are collectively referred to
as “nuclear pasta” [181, 196, 197]. Pasta nuclei are eventually
dissolved into uniformmatter at a certain nucleon density below
n0. Existence of pasta phases would modify some important
processes by changing the hydrodynamic properties and the
neutrino opacity in core-collapse supernovae [198, 199] and
proto-neutron stars [200, 201]. Also, the pasta phases may
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Figure 18. (Color online) Top panel: energy per baryon in the pasta
phase (Epast), energy per neutron in pure neutron matter (Epnm), and
energy per baryon in uniform nuclear matter (Euni) as a function of
average baryon density. Middle panel: Charge ratio of the nuclear
pasta as a function of average baryon density. Bottom panel: the energy
per nucleon difference between the uniform and the inhomogeneous
matter configurations in β-equilibrium as a function of the average
baryon density.

influence neutron star quakes and pulsar glitches via the change
of mechanical properties of the crust matter [202–204].
Since its prediction, significant progress has been made in

simulating the pasta phases [205–207]. In this section, we
use the hydrodynamics model to simulate the pasta phases
at average baryon densities 0.045 ≤ n ≤ 0.07 fm−3. In the
nuclear-pasta system, the chemical potentials of baryons and

electrons satisfy the β-equilibrium condition

µn = µp + µe (37)

where µq is the chemical potential of species q = n, p, e
for neutrons, protons, and electrons, respectively, and ∆m =
mn−mp is the neutron-protonmass difference. The total energy
is the sum of the baryon energy Ebaryon, the electron density
Eelec, and the proton-neutron mass difference

Epasta = Ebaryon + Eelec − ∆mc2Z . (38)

For the baryon energy, we use the hydrodynamicsmodel defined
in Sec. VB with the SeaLL1 parametrization. The electron
energy is the Thomas-Fermi energy for relativistic electrons

Eelec =

∫
d3r (3π2ne)4/3

~c
4π2 (39)

where the electron density is determined from Eq. (38) as

ne(r) = Θ(µn − µp + Vc(r) + ∆mc2)

× 1
3π2

(
µn − µp + Vc(r) + ∆mc2

~c

)3

. (40)

where Vc(r) is the Coulomb potential experienced by electrons,
which includes both the direct and the relativistic exchange
parts [11] (notice the positive sign, opposite from the non-
relativistic Slater approximation)

Vc(r) = e2
∫

d3r ′
nc(r ′)
|r − r ′ | +

1
2

e2
(

3
π

ne(r)
)1/3

(41)

where nc(r) = np(r) − ne(r) is the charge density. Through
solving the hydrodynamics equation similar to Eq. (50a) for
baryons and Eq. (40) for electrons, the charge number Z =∫

d3r ne(r) is determined self-consistently for a given baryon
number A = Nn + Np where Np = Z is satisfied for charge
neutrality. Numerically, we perform this calculation in a 3D
cubic lattice with periodic boundary conditions at average
baryon densities n = 0.045, 0.05, 0.055, 0.06, 0.065 and
0.07 fm−3. To explore the role of finite size effect, the size of
cubic lattice is chosen as Lx = 32, 48, 64 and 96 fm respectively
for all ns. The lattice constant is fixed as dx = 1.00 fm.
In Fig. 18 we compare the energy of uniform pure neutron
matter, with uniform matter in β-equilibrium, and allowing for
the formation of inhomogeneities. Even though for various
size cubic boxes the spatial distribution of the matter at a
given average density is not identical, the gain in energy and
the proton/neutron ratios are practically the same and at an
average density slightly above 0.07 fm−3 the matter distribution
becomes homogeneous.

IV. COMPARISONWITH OTHER NEDFs

The accuracy of the ground state binding energies obtained
using SeaLL1 NEDF compares extremely well with other
approaches.
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Figure 19. (Color online) The energy per nucleon for pure neutron
matter and symmetric neutron matter used in SeaLL1, compared
to the corresponding energies used by Fayans [97] and Baldo et al.
[99, 100, 208]. For comparison we have shown with a dashed line the
results of the QMC calculation of Wlazłowski et al. [122], with 2N
and 3N interactions as well the result with the 2N interactions alone.

The UNEDF1 nuclear energy functional introduced by Ko-
rtelainen et al. [66] has a residual of χE = 1.91 MeV per
nucleus for 555 even-even nuclei from AME2013 [209] and an
rms of 0.75 MeV and 0.79 MeV for the S2n and S2p compared
to χE = 1.74 MeV, 0.69 MeV and 0.59 MeV for S2n and S2p
respectively fin case of SeaLL1. The UNEDF2 functional of
Kortelainen et al. [159] depends on 14 parameters. It is also
characterized by a larger pairing coupling constant for protons
than for neutrons. As mentioned in section II F, this result is
in agreement with large-scale surveys of the odd-even mass
differences [137], but stands in contrast with isospin invariance
and the expectation that Coulomb effects should reduce pro-
ton pairing as discussed Lesinski et al. [138], Hebeler et al.
[139], and Yamagami et al. [140]. A natural solution might
be to include in the NEDF a pairing contribution of the form
specified in Eq. (24a).

Baldo et al. [99, 100] introduced an energy density functional
based on information extracted from Brueckner-Hartree-Fock
calculations of neutron and symmetric nuclear matter [208],
and a few additional parameters to describe pairing and spin-
orbit interaction and finite range effects. This approach is
similar to the one suggested by Fayans [97, 98], in the spirit of
the Kohh-Sham DFT [10]. They assume that no quartic terms
in isospin β4 are present in the NEDF, as their equation of state
for neutron matter is softer than the equation of state determined
in QMC calculations of Wlazłowski et al. [122], see discussion
in section VD. These authors find a χE = 1.58 MeV for 579
even-even nuclei in AME2003 [209] and a χr = 0.027 fm for
313 nuclei.

Goriely et al. [62, 64] have produced over the years a series
of high-accuracy mass models based on Skyrme NEDFs. Their
best model gives an average rms slightly lower than 0.5 MeV for
the entire mass table. However, in contrast with the UNEDF and
BPCM family, and our own work, this result was obtained by
adding a number of phenomenological corrections, a procedure

which so far has not been adopted by the other practitioners
using microscopic approaches.

Finally, we also mention work with the relativistic mean-field
theory (RMFT) of nuclei. State-of-the-art parametrizations
of the relativistic NEDF yields a χE between from 2 MeV to
3 MeV for even nuclei using the AME2012 data set [210, 211].

V. CONCLUSIONS

The nuclear energy density functional (NEDF) developed in this
work, which we call SeaLL1, contains 7 significant parameters,
each clearly related to specific properties of nuclei. Even in
its present form, which has not yet been fully optimized, the
SeaLL1 NEDF describes the nuclear masses of 606 even-nuclei
from the AME2012 evaluation [1, 2] with a mean energy error
of 0.97 MeV and a standard deviation 1.46 MeV, two-neutron
and two-proton separation energies with rms errors of 0.69 MeV
and 0.59 MeV respectively, and the charge radii of 345 even-
even nuclei [3] with an rms error of 0.034 fm. SeaLL1 also
incorporates the equation of state of pure neutron matter from
quantum Monte Carlo calculations with chiral effective field
theory NN interactions at N3LO level and NNN interactions at
the N2LO level.

TheNEDFpresented here is physically intuitive, and provides
a clear strategy for improving the quality of mass fits by
separating contributions of various energy scales in the χE of
nuclear masses. In this respect, the approach outlined here
and used before by Bertsch et al. [153], is similar in spirit
to an effective field theory. Here we have identified the bulk
properties, and shown that they can be properly accounted for
with a minimal number of 7 parameters.

As in the mass formulas Eqs. (1) and (2), one needs two
parameters b0 and c0 to reproduce the symmetric nuclear
binding energy and saturation density. With these parameters,
the isoscalar nuclear compressibility also acquires a reasonable
value, although the saturation density is a little low. The
saturation density is not well constrained by the mass fits alone,
but can be constrained by also considering the charge radii as
discussed in Fig. 5.
Two other parameters, a1 and b1, control the symmetry

properties of nuclear matter. This is similar to the parameters
aI and a′I in nuclear mass formula Eq. (2), but we find that
the linear combination a1 − b1n1/3

0 is poorly constrained by the
masses. This gives one an essentially independent control of
the “local” symmetry energy slope L2 (not the full L, which is
fully determined by the neutron equation of state), along with
neutron skin thicknesses.

Correlatedwith these two parameters (see Fig. 6) is a gradient
term with parameter ηs that controls the diffuseness of the
nuclear surface. This defines the strength of the gradient
correction term needed in the NEDF that characterizes the
nuclear surface tension and surface properties.
The addition of quartic isovector terms ∝ β4 permit the

NEDF to match the neutron matter equation of state without
significantly affecting the global mass fit. We thus find that
nuclear masses and the neutron matter equation of state are
essentially uncoupled.
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Two additional parameters are required,W0 and g, to describe
the spin-orbit interaction and the pairing correlations.

In its orbital-based formulation, the SeaLL1 NEDF contains
several new elements with respect to commonly used Skyrme-
like density functional theories:

• Terms proportional to n5/3, similar to those found in the
study of the unitary Fermi gas.

• There is a need to consider quartic terms in isospin
density (nn − np)4 in the NEDF if one aims to describe
correctly both nuclei and neutron matter within the same
unified framework, and in particular the neutron star
crust. The binding energies, charge radii, and neutron
skin thickness appear to be insensitive to the properties
of the neutron equation of state, which can essentially be
fit independently. The position of the neutron dripline
appears to be controlled by the full symmetry energy S
and its density dependence L, unlike the neutron skin
thickness, which is controlled by the “local” density
dependence of the symmetry energy L2. The properties
of nuclear matter in stellar environments (when N � Z)
will therefore be controlled by S and L, influencing for
example the reaction flow in the r-process, the structure of
the neutron star crust, and the vortex pinning mechanism
in neutron star crust.

• Entrainment terms

Eentrain = gent
(nnnp

n2

) n
2m

���� jnnn
−

jp

np

����2 , (Eq. 25)

where jn,p are the density currents (10f), do not appear
in any standard theory of large amplitude collective
motion in nuclear physics [56, 212, 213], despite being
allowed by symmetry. They have direct analogues in
superfluid mixtures – the Andreev-Bashkin effect – and
are as natural to consider in the presence of mixed proton
and neutron superfluids in neutron stars as they are in
mixtures of 3He and 4He superfluids [141–143]. These
terms have little influence on ground state properties,
but a strong effect on excited isovector modes. Such
terms have been discussed in the physics of neutron
stars where they are relevant for describing glitches, the
damping of gravitational instabilities, and other collective
modes [144–150]. The parameterα can be determined by
fixing the excitation energy of the giant dipole resonance
and the correct value of the Thomas-Reiche-Kuhn sum
rule.

• A second type of entrainment contribution can be intro-
duced as well, with which one can control the Gamow-
Teller transitions and β-transition matrix elements.

Ẽspin entrain = g̃ent

(nnnp

n2

) n
2m

���� Jnnn
−

Jp

np

����2 , (42)

where Jn,p are the spin-density currents (10g).

By using a principal component analysis, we establish that a
number of parameters play an insignificant role in the mass fit,

and their values can be varied significantly without affecting
the quality of the χE . We refer to these as insignificant or
subdominant parameters, and identify how they can be used to
fine-tune the values of other observables.
For example, although not included in our fit, we obtain a

reasonable value of the nuclear compressibility K0 = 230 MeV,
see Table III. However, its value could be even further fine-
tuned by changing the value of the insignificant parameter a0,
which vanishes in our SeaLL1 fit, while keeping saturation
density and binding energy of symmetric nuclear matter fixed:

K0 =
6
5
εF − 12ε0 + 2a0n2/3

0 , (43)

see also Eq. (33c) and Table II.
Although the full symmetry energy S and its density depen-

dence L at saturation are fixed by the properties of pure neutron
matter, the values of the local symmetry energy S2, and its
density dependence L2 can be independently controlled by the
insignificant parameters a1 − b1n1/3

0 and c1,

S2 =
1
3
εF +

(
a1 + b1n1/3

0

)
n2/3

0 + c1n4/3
0 , (Eq. 36a)

L2 =
2
3
εF +

5
2

(
a1 + b1n1/3

0

)
n2/3

0 (Eq. 36b)

− 1
2

(
a1 − b1n1/3

0

)
n2/3

0 + 4c1n4/3
0 .

This allows one the freedom to control the neutron skin thickness
without affecting the quality of the mass fits.

Additional control may be obtained by introducing general-
izations of the terms included in SeaLL1. These may be used
to refine other nuclear properties, including the static electric
dipole polarizability, nucleon effective masses, single-particle
spectra, proton and neutron pairing gaps, fission barriers and
the second fission isomer energies.
For example,

E∇n = η0
~2

2m
|∇nn + ∇np |2 + η1

~2

2m
|∇nn − ∇np |2 (Eq. 19)

with η0 , η1 would allow one to adjust the neutron skin thick-
ness somewhat independently from the symmetry properties of
the functional. The single-particle spectra for 48Ca and 208Pb
obtained with SealLL1 have a larger neutron gaps and smaller
proton gaps than measured experimentally (see Figs. 13 and 14).
This could be remedied by tuning independently tuning the
parameters W0 , W1 in the spin-orbit term:

ESO = W0J · ∇n +W1(Jn − Jp) · (∇nn − ∇np). (Eq. (22))

One could further tune the single-particle spectra by judiciously
introducing terms of the type

Eτ ∝ τnσ − j2nσ−1 − 3
5
(3π2)2/3n5/3+σ ∝ |∇n|2

n1−σ , (Eq. (20))

with obvious isospin structure not explicitly illustrated, which
affect the nucleon effective masses. For example, until now it
was not realized that a standard term in Skyrme-like functionals
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terms τnσ can be used in the combination (20) and would play
a subdominant role in mass fits.

Similarly, a long standing feature of standard NEDFs requires
breaking the isospin symmetry of the pairing contribution, even
needing stronger proton pairing than neutron pairing [137, 157]
despite the Coulomb repulsion. This can easily remedied
instead by using a modified pairing form of the type:

E∆ =
∑
q=n,p

∫
d3r geff(r)|νq(r)|2

+

∫
d3r heff(r)

[
|νn(r)|2 − |νp(r)|2

]
β, (Eq. (24a))

with heff(r) , 0.
An additional subdominant term of the type

Ẽspin = α1

(
s2
n + s2

p

)
+ α2 sn · sp, (44a)

should be considered as well. The contribution of spin densities
is typically much smaller than the contributions of the densities
in nuclei,

∫
d3r nn,p(r) �

��∫ d3r sn,p(r)
��, as in even-even

nuclei sn,p(r) ≡ 0, and thus these terms will play a noticeable
role in odd A and odd N-odd Z nuclei mainly [214]. The term
proportional to α2 will be important mostly in odd-odd nuclei.
These type of contributions will affect in particular β-decay
matrix elements.
The structure of the double-humped fission barriers also

depends critically on the character of shell-corrections (see
Fig. 16, and is thus sensitive to the single-particle spectrum
structure. Hence, fission properties may be tuned by adjusting
all of the subdominant terms discussed abovewithout degrading
the ability of the functional to fit masses and charge radii. Thus,
while the fission properties of the simple SeaLL1 functional as
presented are quite reasonable without any fine tuning, there
is room for substantial improvement through these 10 or so
subdominant parameters: the more complicated spin-orbit
terms (22) with W0 , W1, gradient terms (19) with η0 , η1,
gradient terms modifying the nucleon effective masses (20),
density dependent pairing terms (24a) with both couplings
geff and heff non-vanishing, subdominant corrections to the
symmetry energy (36a) and (36b) with a1 − b1n1/3

0 , 0 and
c1 , 0 and even the compressibility K0 (43) for non-vanishing
values of the parameter a0, and spin-density terms (44a) in
particular for odd A nuclei and odd Z-odd N nuclei.

We now have a clear path to refine the structure of the NEDF,
systematically adding physically motivated parameters in order
to better describe nuclear physics observables, such as the static
dipole polarizability, the energies of the giant dipole and of the
Gamow-Teller resonances, the Thomas-Reiche-Kuhn sum rule,
the neutron skin thickness, finer details of the shell structure,
nucleon effective mass, pairing gaps, fission, etc. The next
step is to account for correlation energies; the center-of-mass
corrections, which, in the case of self-bound systems, present
some challenges [215–222]; the particle number; and angular
momentum projections [223]. Previous results indicate that
accounting for these should reduce the rms energy from about
1.7 MeV to about 0.5 MeV [28, 45–60]. Further improvement
will likely require a proper accounting for quantum chaos [69–
77].
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APPENDIX

A. Orbital-Free Functional

Herewe discuss some details of the orbital-free theory described
in section II I.
As mentioned there, the main challenge in formulating an

orbital-free theory is to express terms with the auxiliary densi-
ties τn,p, ν, Jn,p, and jn,p by an appropriate functional of the
number densities nn,p. One approach is to start with a semi-
classical expansion. Neglecting the spin-orbit interaction (21),
the kinetic density τ admits the following semiclassical expan-
sion [11, 24, 151]:

τ ≈

τTF [n]︷           ︸︸           ︷
3
5 (3π

2)2/3n5/3 +

τ2[n]︷     ︸︸     ︷
1
9

��∇√n
��2 +τ4[n] + · · · (45)

The factor of 1/9 can be derived rigorously for smoothly
varying densities, along with higher order terms discussed
in Eq. (48) below. This should be compared with the factor
of unity originally suggested by Weizsäcker [8], later shown
to be valid only if the density has small amplitude rapid
oscillations [11, 24, 151]. For nuclei, the semiclassical result
is relevant for the bulk, but gives incorrect asymptotic behavior,
while Weizsäcker’s result reproduces the correct asymptotic
behavior, but is a poor approximation in the bulk, see [49] for a
discussion. Resolving this tension is an active area of research
in DFT, and many suggestions have been compared [224].
The simplest option is to treat the coefficient 1/9 = η as a

phenomenological parameter, since gradient terms can also be
generated by interactions [225–227]. Fitting the nuclear masses
yields values of η close to 0.5, roughly half-way between the
semiclassical and Weizsäcker values (see the discussion in the
supplement refsec:suppl-mater). Stocker et al. [228] used a
similar approach in order to discuss the anomaly in the nuclear
curvature energy – the term in the nuclear mass formula ∝ A1/3.

Another appealing approach suggested byDePristo andKress
[152] and advocated in [11] is to use a Padé approximant F(X)
to interpolate between the semiclassical and asymptotic results:

τ ≈ τTF [n]F(X), X =
τ2[n]
τTF [n]

. (46)

DePristo and Kress [152] motivate a rather complicated form
F(X), but for nuclei, we find little improvement over the
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following single-parameter form:

F(X) = 1 + (1 + κ) + 9κX2

1 + κX
=

{
1 + X X � 1
9X X � 1.

(47)

Note: the approximation η ≈ 1/9 mentioned above is imple-
mented with F(X) = 1 + 9ηX .
The next order in the semiclassical expansion of non-

interacting fermions [11, 24] is:

τ4[n] =
1

810(3π2)2/3
f (n), (48)

f (n) = n1/3
[(
∇n
n

)4
− 27

8

(
∇n
n

)2 ∇2n
n
+ 3

(
∇2n

n

)2]
.

This type of correction has been studied in nuclear physics and
shown to lead to quite accurate estimates of the kinetic energy
density within the extended Thomas-Fermi approximation [24,
49, 229]. Within a DFT, such terms can also arise due to
the finite range of the interactions in a matter similar to some
Skyrme interactions [225–227]. However, these terms – even
with adjustable parameters – do not significantly change the
quality of the mass fits, so we do not consider them in our main
analysis. Including them perturbatively in the fit, however,
does improve the fit of the charge radii. For example, fitting
the overall coefficient reduce the charge radii residual χr (see
details in Section VB) from χr ≈ 0.14 fm to χr ≈ 0.09 fm.
Fitting each of the three terms independently further reduces the
residuals to χr ≈ 0.06 fm. Fourth-order terms are neglected as
they can lead to a complex behavior of the emerging equation
for the densities, which can be difficult to rationalize. (See,
for example, the analysis of fourth order differential equations
arising in case of non-local potentials by Bulgac [230].) Higher
order gradient corrections than Eq. (48) lead to an unphysical
behavior of the densities in the classically forbidden regions.
Furthermore, the semiclassical expansion has an asymptotic
character [151], and corrections beyond second order do not
always improve the functional. Finally, when using a properly
fit Padé approximant Eq. (28b), we find that

∫
τTF [n]F(X) −

τTF [n] − τ2[n]d3x ≈
∫
τ4[n]d3x for many nuclei. Thus, the

Padé approximant Eq. (28b) seems to incorporate the qualitative
effects of the τ4[n] term. For these reasons, we do not include
fourth-order corrections τ4[n] in our orbital-free theory.
When spin-orbit interactions are included, they modify the

semiclassical expansion. Thus, to properly express the orbital-
free theory, we must consider both terms together. The correct
semiclassical expansion of this combined energy density to
second order is [49, 229]:

Ekin + ESO =
~2

2m
(τn + τp) +W0J · ∇n

≈ ~
2

2m
(
τTF [nn] + τTF [np] + τ2[nn] + τ2[np]

)
−

W2
0

2
2m
~2 n(∇n)2. (49)

Note that the sign of the last term differs from the expression (7)
in [229] which contains only the kinetic component. The result

here combines both the kinetic and spin-orbit contributions,
altering the sign. (The remaining terms in the functional only
alter the mean-field potential, and so they do not affect this
result.)
This expansion suffers the same problems as the pure semi-

classical expansion of the kinetic energy Eq. (45). Thus, for
the reasons discussed above, we replace τTF + τ2 with the
Padé approximant Eq. (28b). In principle, a similar correction
could be used with the spin-orbit term, however, this term
has the form n(∇n)2 instead of τ2 ∝ (∇n)2/n. It is therefore
suppressed in the tails and does not effect the asymptotic be-
havior of the nuclear density profile. Note that the scaling is
similar to the gradient correction. For this reason we keep the
semiclassical form, but refit the coefficient ηs to compensate
for any inaccuracies.
The equations that determine the equilibrium densities of a

nucleus in the orbital-free theory are obtained by minimizing
the energy of a given nucleus E(N, Z) =

∫
d3r E[nn, np] with

respect to the densities, while constraining the total numbers of
neutrons N and protons Z with two chemical potentials µn,p:

− ~
2

2m
∇ ·

(
F ′(Xq)

9
∇n1/2

q

)
+Uqn1/2

q = µqn1/2
q , (50a)

Uq =
∂E[nn, np]

∂nq
, for q ∈ {n, p}. (50b)

We present these here as the inclusion of F(X) acts as a density-
dependent effective mass. No such complication appears in the
HFB formulation, which proceeds as described in [110].

B. Orbital-Free NEDF parameters

We start by considering the functional with the simplified
kinetic energy

Ekin[nn, np] =
~2

2m

∑
q=n,p

τTF [nq]F(Xq), (51)

where τTF , Xq , and F(X) are given in Eqs. (46) and (47).
As discussed above, when using the simplified form F(X) =

1 + 9ηX , the best fit value of η ≈ 0.5. One might naïvely
think that this corresponds to a dynamical theory of superfluid
neutron and proton pairs with an effective nucleon pair mass
meff ≈ 2m (see i.e. [231] and references therein). Such a theory
with η = 0.5, however, leaves the potentials Uq wrong by
a factor of 2. To correctly describe a dynamical theory of
superfluid neutron and proton pairs, one would need a value
of η = 1/4. Thus, in this approximation, the parameter η
must simply be interpreted as an approximate way to control
the falloff of the densities in the surface region where the
interaction effects are still strong.

We now consider our NEDF as an hydrodynamic model for
nuclei and fit the parameters to the same NE = 2375 measured
nuclear masses with A ≥ 16 from [1, 2] used to fit the liquid
drop models in Table I. However, unlike the liquid drop model,
our hydrodynamicmodel allows us also to consider properties of
the density distribution. Thus, we also fit the Nr = 883 nuclear
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NEDF η ηs W0 a0 a1 a2 b0 b1 b2 c0 c1 c2 δ χE χr
[fm3] [MeV fm5] [MeV fm2] [MeV fm2] [MeV fm2] [MeV fm3] [MeV fm3] [MeV fm3] [MeV fm4] [MeV fm4] [MeV fm4] [MeV] [MeV] [fm]

0 0.4719 0 0 0 131.1 0 −741.570 −143 0 940.50 0 0 11.46 2.59 0.14
1 0.4742 0 0 0 122.6 0 −738.302 −128 0 934.38 0 0 11.47 2.58 0.13
2 0.4743 0 0 0 120.1 0 −740.226 −123 0 938.26 0 0 0 2.71 0.14
1r 0.4807 0 0 0 135.9 0 −702.003 −157 0 861.33 0 0 11.75 2.71 0.05
3 0.4800 0 0 −10 125.0 0 −695.08 −130 0 892.1 −0.0 0 11.41 2.58 0.14
3n 0.4739 0 0 −7.59 195.7 −220.7 −707.006 −322 913.194 902.50 100 −873.8 11.57 2.57 0.13
3nr 0.4815 0 0 −7.63 195.4 −220.4 −674.608 −317 876.220 837.29 75 −803.21 12.45 2.67 0.05
E 0.4885 0 0 0 34.60 0 −740.950 65.1 0 938.63 0 0 11.21 2.64 0.13
Er 0.4957 0 0 0 32.98 0 −707.394 62.1 0 870.91 0 0 12.71 2.74 0.05
En 0.4866 0 0 0 34.01 −66.60 −741.546 64.0 562.093 940.02 0 −830.90 11.26 2.62 0.13
Enr 0.4970 0 0 0 32.54 −65.13 −707.031 61.2 530.344 870.15 0 −761.03 12.51 2.74 0.05

En-rho 1/9 4.9731 0 0 29.71 −62.29 −672.625 55.9 501.277 934.85 0 −825.73 11.78 2.64 0.05
Enr-rho 1/9 5.0397 0 0 29.52 −62.11 −672.986 55.6 501.986 934.85 0 −825.73 13.72 2.68 0.05
En-so 1/9 5.4751 76.20 0 136.8 −169.4 −669.776 51.5 502.814 934.85 0 −825.73 11.73 3.18 0.05

κ
En-pade-1 0.07 5.0941 0 0 30.14 −62.73 −672.785 56.7 500.620 802.20 0 −693.08 10.40 2.82 0.07
En-pade-2 0.15 4.6365 0 0 30.37 −62.96 −672.213 57.2 499.610 801.41 0 −692.29 11.49 2.89 0.07
En-pade-3 0.20 4.4318 0 0 30.33 −62.91 −671.889 57.1 499.374 800.97 0 −691.85 11.94 2.93 0.07
En-pade-4 0.30 4.2098 0 0 31.50 −64.09 −672.625 59.3 497.894 801.98 0 −692.86 12.07 3.11 0.07
Hydro 0.20 3.3696 0 0 50.88 −83.47 −685.597 94.9 475.237 828.76 −160 −559.64 0 2.86 0.04

g0 [MeV fm3]
SeaLL1 N/A 3.93 73.50 0 64.30 −96.80 −684.50 119.90 449.20 827.26 −256 −461.70 −200 1.74 0.03

Table IV. Fit parameters and residuals for the various NEDFs. The top set of functionals down use the simplified form F(X) = 1 + 9ηX while
the second set use the form in Eq. (47) with the parameter κ instead. The SeaLL1 parameters are shown in the last row for comparison.

Neutron skin
NEDF n0 −ε0 K S L L2

208Pb 48Ca
[fm−3] [fm] [fm]

0 0.136 15.24 222.5 26.8 34.1 32.8 0.082 0.118
1 0.136 15.22 222.4 26.7 35.9 34.7 0.087 0.123
2 0.136 15.21 222.2 26.7 36.8 35.6 0.089 0.125
1r 0.148 15.48 227.7 27.1 30.9 29.6 0.078 0.116
3 0.136 15.21 216.5 26.7 34.7 33.4 0.088 0.124
3n 0.137 15.20 218.2 30.0 29.3 16.7 0.068 0.107
3nr 0.147 15.44 222.9 31.0 31.2 15.5 0.068 0.107
E 0.136 15.28 223.1 29.7 68.2 66.9 0.159 0.174
Er 0.147 15.53 228.1 30.6 70.2 68.9 0.161 0.176
En 0.136 15.27 222.9 30.1 29.1 66.1 0.152 0.172
Enr 0.147 15.53 228.2 31.1 31.1 68.3 0.156 0.174

En-rho 0.160 15.85 234.4 32.3 33.5 68.9 0.138 0.149
Enr-rho 0.160 15.87 234.6 32.4 33.5 68.6 0.138 0.149
En-so 0.160 15.74 233.1 32.2 33.5 65.4 0.120 0.139

En-pade-1 0.160 15.86 234.5 32.4 33.5 69.6 0.157 0.176
En-pade-2 0.160 15.83 234.2 32.3 33.5 69.9 0.166 0.189
En-pade-3 0.160 15.82 234.1 32.3 33.5 69.8 0.170 0.194
En-pade-4 0.160 15.85 234.4 32.3 33.5 71.6 0.181 0.206

Table V. Saturation, symmetry, and neutron skin properties for the
various NEDFs. All values in MeV unless otherwise specified.

charge radii from [3] with χ2
r =

∑|δr |2/Nr . When we include
the charge radii in the fit, we minimize the following quantity
χ2
E/(3 MeV)2 + χ2

r /(0.05 fm)2 which roughly equalizes the
weight of the mass and radii contributions in the fit.

At this point, we have 7 parameters in our NEDF: η, a0,1,
b0,1, and c0,1 (the j = 2 parameters are fixed by the neutron
matter equation of state). In addition, we include by hand the
conventional even-odd staggering Eq. (2b) with a coefficient δ
to describe pairing correlations, even though this has very little
significance in the fits. The results of various fits scenarios

we have considered are summarized below in table IV where
we present sets of parameters for various fit strategies, and
in Table V where we present the saturation, symmetry, and
neutron skin properties.
We have considered the following type of fits:

NEDF-0: A six parameter least-squares fit of the NE = 2375
nuclear masses [1, 2] including η, b0, c0, a1, b1, and
δ but setting the nucleon charge form factors Eq. (12c)
Gp

E ≡ 1 and Gn
E ≡ 0.

NEDF-1: The same as NEDF-0, but including the measured
charge form factors. Comparing with NEDF-0 we see
that the electric form factors are not significant for the
overall mass fits, but slightly impact the charge radii at
the 0.01 fm level (for the reduced χr ).

NEDF-2: The same as NEDF-1, but without the pairing pa-
rameter δ = 0. Comparing with NEDF-1 we see that
odd-event staggering is also relatively unconstrained at
the level of 0.1 MeV per nucleus. This is consistent with
the results from the mass formulas in Table I.

NEDF-1r: The same as NEDF-1, but including the Nr = 883
charge radii into the fit. We see that there is significant
room to improve the description of the charge radii
without significantly degrading the mass fits.

NEDF-3: The same as NEDF-1, but with all 8 parameters,
including a0 and c1 that we omitted from the previous fits.
In conjunction with the principal component analysis
shown in Fig. 21, this fit demonstrates that the terms
with parameters a0 and c1 are unconstrained.

NEDF-3n: The same as NEDF-1, but with all 8 parameters,
including a0 and c1 that we omitted from the previous fits,
and the β4 parameters for the terms quartic in isospin,
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constrained by the QMC neutron matter equation of
state [122] using Eqs. (15b). That the quality of the fit,
isoscalar, and isovector parameters change very little,
demonstrates that the neutron matter equation of state is
essentially independent of the nuclear masses.

NEDF-3nr: The same as NEDF-3n but including the charge
radii as in fit NEDF-1r. That the a0 and c1 terms are un-
constrained for both masses and radii is also emphasized
by this fit.

NEDF-E: Following the principal component analysis of
NEDF-3n (discussed below) we find the combination
a1 − b1n1/3

0 to be only weakly constrained by the mass fit.
To test this, we set a1 = b1n1/3

0 where n0 = 0.154 fm−3

is a constant. The combination a1 − b1n1/3
0 , to which the

masses are insensitive, allows independent control the
slope L2 of the symmetry energy (see Eq. (33e)). From
the fits we see that this same combination also controls
the neutron skin thicknesses.

NEDF-Er: The same as NEDF-E but including the charge
radii as in fit NEDF-1r.

NEDF-En: This is our main fit. It is the same as NEDF-E
but includes the β4 parameters adjusted to reproduce the
neutron matter equation of state as in fit NEDF-3n.

NEDF-Enr: The same as NEDF-En but including the charge
radii as in fit NEDF-1r.

In all fits above, the parameter η is around 1/2, which
deviates from the Weiszäcker value 1/9. In our latest fits, we
fix η = 1/9 and introduce a new gradient term ηs .

From the equilibrium condition of symmetric nuclear matter
we get a relationship between ã0, b̃0, and c̃0

0 =
3
5
+ ã0 +

3
2

b̃0 + 2c̃0 (52)

or using the original parameters:

a0 = −
3εF
5k2

0
− 3

2
b0k0 − 2c0k2

0 (53)

here k0 = n1/3
0 , n0 = 0.16. If a0 is set to be 0, there is a

relationship between b0 and c0:

c0 = −
3εF
10k4

0
− 3b0

4k0
(54)

Using this relationship, the saturation density derived from
the NEDF will be fixed to be n0 = 0.16.

NEDF-En-rho: We fix η = 1/9 and add E∇n into the NEDF.
The saturation density n0 is fixed to be 0.16 by adding
a constraint between b0 and c0. Then the number of
significant parameters in this NEDF is reduced to 3.

NEDF-Enr-rho: The same as NEDF-En-rho but including the
charge radii as in fit NEDF-1r.

In our earlier fits, we do not include the contribution of spin-
orbit interaction, which is crucial for the proper description of
nuclear static properties.

NEDF-En-so: Following NEDF-En-rho, we add ESO into the
NEDF. The spin-orbit strengthW0 is fixed to be the value
suggested in [97]. The significant fitting parameters are
the same with NEDF-En-rho.

When we fix η = 1/9 and neglect higher order extended
Thomas-Fermi (ETF) expansion in the kinetic energy, the
asymptotic form of density can be proved to be

n(r) −→
r→∞

1
r2 e−r/a, a =

√
− 1

36
~2

2m
1
µ
. (55)

where µ is the chemical potential (which is negative). Un-
fortunately, the diffuseness a is too small by a factor of 3
compared with the realistic nuclear surfaces, which corre-
sponds to η = 1 in the asymptotic region. In order to obtain a
nucleus density with correct asymptotic behavior, we suggest
using the following Padé approximation in the representation of
extended Thomas-Fermi approximation for the kinetic density,
see Eqs. (46) and (47):

τq = τTF,qF(X) (56)

where the function F(x) has the asymptotic behavior:

F(X) =
{

1 + X, X � 1
9X, X � 1

(57)

In this approximation, we can get both correct behavior for the
nucleus density in the near and asymptotic region. Through
varying the parameter κ we obtain the following fits.

NEDF-En-pade-1: Following NEDF-En-so, we use the Padé
approximation for the kinetic energy, and the parameter
b = 0.065

NEDF-En-pade-2: Same with NEDF-En-pade-1, but κ =
0.15

NEDF-En-pade-3: Same with NEDF-En-pade-1, but κ = 0.2

NEDF-En-pade-4: Same with NEDF-En-pade-1, but κ = 0.3

These fits are summarized in Table IV, with the saturation
and symmetry properties in Table V. The residuals for fit
NEDF-1 are shown in Fig. 20 and compared with a fit to the
nuclear with mass formula Eq. (2).

The reduced χE for these fits is comparable to that obtained
using the nuclear mass formulas Eq. (1) with 4 parameters (plus
δ) and Eq. (2) with 5 parameters (plus δ). This is consistent
with our hypothesis that a NEDF for masses should contain no
more than 5 significant parameters. Note, however, that unlike
the mass formulas, the NEDF also gives a good description of
charge radii – for which the mass formula says nothing – and
provides access to nuclear dynamics.
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Figure 20. (Color online) The blue pluses show the results obtained
using the orbital-free approximation with χE = 2.86 MeV, while
the red crosses are the results of the fits using nuclear mass formula
Eq. (2), with χE = 2.64 MeV. When compared against each other,
the rms energy deviation between the two fits is ∆χE = 1.10 MeV.
Thus, the orbital-free theory essentially reproduces the nuclear mass
formula Eq. (2). The main plot is the same as in Fig. 1 in which one
can see clearly the magic numbers separately for neutrons and protons.

C. Principal Component Analysis

The principal components for fits NEDF-1 and NEDF-3 are
shown in Fig. 21.
In the case of NEDF-3, we see that two parameters are

completely unconstrained. These include ã0 ≈ −0.088 and c̃1 =
−0.017. These values are an order of magnitude smaller than
the other coefficients: hence, the unconstrained components
can be easily removed by setting a0 = c1 = 0 which we do in
most of our fits.
Finally, both plots indicate that a combination of the j = 1

parameters is highly unconstrained. Thus, in NEDF-1, the
combination b̃1 − ã1 can be given almost any value of order
unity without changing χE more than 0.1 MeV. This is directly
tested in the changes from NEDF1 to NEDF-E, NEDF-Er,
NEDF-En, and NEDF-Enr, where we change the sign of b1
and set a1 = b1n2/3

0 . Indeed, we see that χE changed by about
0.1 MeV. Notice from Table V that the slope of the symmetry
energy L2 changes from about 30 MeV to 70 MeV while the
other parameters remain about the same. This also significantly
changes the neutron skin thickness, demonstrating a correlation
between L2 and the skin thickness, similar to that seen in other
mean-field models [232]. This is consistent with Eq. (33e)
where we see that b̃1 gives us a direct handle on L2. Finally,
we have some unconstrained parameters, including δ̃.

λ0 = 0.00014

λ1 = 0.0081

λ2 = 0.014

λ3 = 0.2

λ4 = 0.23

b̃0 c̃0 ã1 b̃1 η δ̃

λ5 = 1.6

λ0 = 0.00011

λ1 = 0.0074

λ2 = 0.013

λ3 = 0.11

λ4 = 0.27

λ5 = 1

λ6 = 24

ã0 b̃0 c̃0 ã1 b̃1 c̃1 η δ̃

λ7 = 33

Figure 21. Principal component analysis for the NEDF-1 fit (top)
and the NEDF-3 fit (bottom). Plotted are the components of the
eigenvectors vn defining the principal component Eq. (30b) as linear
combinations of the various dimensionless parameters. From this
we see that for NEDF1 the most-significant component p0 ≈ b̃0 + c̃0
which fixes the saturation energy to high precision. At the same time
the component p4 ≈ (̃b0− c̃0 in NEDF-1 (and similarly in NEDF-3n) is
not well constrained. We also see that the least-significant component
p5 ≈ ã1 − b̃1 is essentially unconstrained. For NEDF-3, we find three
insensitive components, two of which can be used to set the smallest
parameters a0 = c1 = 0. After removing these, one obtains a similar
analysis as for NEDF-1 above.

D. Saturation, Symmetry Properties, and Neutron Matter

When only β2 isospin contributions are included in the func-
tional, our fits to the nuclear binding energies display a feature
reported in other NEDFs discussed in literature: the energy per
neutron in pure neutron matter appears to be well constrained
at a density of nn ≈ 0.1 fm−3 where all functionals cross, see
Fig. 23. The symmetry energy S is indicated for the functionals
NEDF-En and Enr. The slope L ≈ 30 MeV is fixed by the neu-
tron matter equation of state alone (if used as a constraint, see
Eq. (32)). In this case the slope L2/3n0 may be tuned without
significantly affecting the mass fit by adjusting the insensitive
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Figure 22. (Color online) The various ellipses show the region in
the (ε0, n0) plane, in which the NEDF parameters can be changed
and to lead to changes in the residual δχE < 0.2 MeV. While the
equilibrium energy ε0 and density n0 are controlled mainly by the
combination b̃0 + c̃0, which is constrained with very high precision,
the combination b̃0 − c̃0 remains significantly less constraint, see
Section II J. This aspect allows us to manipulate to a certain degree
the saturation properties, while affecting the overall fit only slightly.

combination a1 − b1n1/3
0 or c1, see Section II J. Functionals

with only quadratic isospin contributions (β2) appear to cross
near n ≈ 0.1 fm−3, see also Ref. [233] and references therein.
However, the value for the energy per neutron ≈ 9 MeV at
this point in our fits is significantly smaller than the value
≈ 12.19 MeV obtained in QMC calculations of Wlazłowski
et al. [122] or the equations of state for neutron matter used
by Fayans [97] and Baldo et al. [99, 100, 208], see Fig. 19.
This feature is not present when the β4 terms are included
(NEDF-3n, NEDF-3nr, NEDF-En and NEDF-Enr) and the
QMC results are thus automatically reproduced.
The inclusion of the j = 2 terms quartic in β4 have very

little significance on mass fits. This demonstrates an important
point: the equation of state of pure neutron matter has very little
impact on the form of the NEDF, if only nuclei are considered.
In measured nuclei, the ratio β = (nn − np)/n ≈ (N − Z)/A
is |β | < 1/4 (with a very small number of exceptions), hence
nuclear masses are essentially insensitive to the presence of the
β4 terms, as |β |4 < 1/256. To assess the magnitude of these
effects, we have evaluated the β4 contributions to the nuclear
binding energies perturbatively, see Fig. 24. This contribution
is quite small and can be easily overlooked when discussing
known nuclei, but is crucial in order to correctly reproduce the
energy of neutron matter. Evaluating Eq. (34) at n = 0.1 fm−3

one obtains

E
n

����
n=0.1

= [−4.399 + 13.961β2 + 2.635β4] MeV. (58)

When one averages β2 and β4 over all nuclei one obtains the
values 0.028 and 0.001 respectively, which are noticeably lower
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Figure 23. (Color online) The energy density per nucleon for sym-
metric nuclear matter (all orbital-free functionals) and neutron matter
(for NEDF-3n, 3nr, En, Enr only) in the lower panel and pure neutron
matter (upper panel) for NEDF-0, 1, 1r, 2, 3, E, and Er (which do not
constrain the neutron equation of state and have only β2 contributions).
The black dots shows the QMC results [122].
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Figure 24. (Color online) The contribution to the ground state
energies of the terms quartic in isospin density δEI4 =

∫
d3r E2(n)β4,

evaluated perturbatively with NEDF-1, see Table IV.

than the “maximum” values of 1/16 ≈ 0.062 and 1/256 ≈
0.004 and thus the contribution of the terms in β4 to χE and
nuclear masses is further reduced. The contributions of these
terms to the averaged energy density per nucleon over β at
n = 0.1 fm−3 are

E
n

����
n=0.1

= [−4.399 + 0.391 + 0.0026] MeV, (59)

and the contribution of the quartic term in β to the total energy
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is practically invisible in nuclei.
Thus, using properties of the neutron matter to constrain

the form of the NEDF and/or arguing against the inclusion of
higher powers of (nn − np) [64, 97, 99, 100, 164, 234–237] is
an ill-advised procedure, and the applications of functionals
constructed in this manner, in particular to star environments,
should be regarded with suspicion. The statement often made
in the literature (see e.g. Horowitz et al. [233] and references
therein) that the value of the symmetry energy at n ≈ 0.1 fm−3

is well constrained by nuclear masses must only be applied to
the local expansion S2 at this density, but not to the symmetry
energy difference S between symmetric and pure neutronmatter.

VI. CHARGE FORM FACTORS

The charge form factors are determined experimentally, and
we approximate the Fourier transforms of the form fac-
tors with the dipole term for the proton, Gp

E (Q) ≈ (1 +
Q2/0.71 GeV2)−2 [238], andGn

E (Q) ≈ a(1+Q2r2
+/12)−2−a(1+

Q2r2
−/12)−2 with r2

± = r2
avg± 〈r2

n〉/2a, 〈r2
n〉 = −0.1147(35) fm2,

ravg = 0.856(32) fm, and a = 0.115(20) [239].
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