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We merge two successful ab initio nuclear-structure methods, the no-core shell model (NCSM) and the
multireference in-medium similarity renormalization group (IM-SRG) to define a new many-body
approach for the comprehensive description of ground and excited states of closed and open-shell nuclei.
Building on the key advantages of the two methods—the decoupling of excitations at the many-body level
in the IM-SRG and the access to arbitrary nuclei, eigenstates, and observables in the NCSM—their
combination enables fully converged no-core calculations for an unprecedented range of nuclei and
observables at moderate computational cost. We present applications in the carbon and oxygen isotopic
chains, where conventional NCSM calculations are still feasible and provide an important benchmark. The
efficiency and rapid convergence of the new approach make it ideally suited for ab initio studies of the
complete spectroscopy of nuclei up into the medium-mass regime.

DOI: 10.1103/PhysRevLett.118.152503

Introduction.—One of the most dynamic areas in
nuclear structure theory today is the development of
ab initio many-body methods for the comprehensive
description of open-shell nuclei. This includes not only
ground states, but also low-lying excitations and spectro-
scopic observables. Traditionally, nuclear spectroscopy is
the domain of shell-model-type approaches, both the
valence-space shell model [1] and the ab initio no-core
shell model (NCSM) [2–4]. These methods solve a large-
scale Hamiltonian eigenvalue problem in a truncated model
space and address ground and excited states on equal
footing, but they are limited by the basis dimension [5].
Several othermethods have been developed that tackle the

many-body problem from a different angle, among them the
coupled-cluster (CC) approach [6–11] and the in-medium
similarity renormalization group (IM-SRG) [12–15]. Instead
of solving the eigenvalue problemdirectly, thesemethods use
a similarity transformation to decouple a reference state,
representing the ground state, from all particle-hole excita-
tions. This concept of decoupling is very powerful and
complementary to a direct NCSM-type diagonalization.
Generally, CC and IM-SRG have different computational
characteristics and a much better scaling with particle
number, but their basic formulation is limited to ground
states. Their complementarity suggests that a combination of
both philosophies, direct diagonalization and many-body
decoupling, could be advantageous. First steps along these
lines are effective interactions for the valence-space
shell-model extracted from CC and IM-SRG calculations
presented recently [16–20].
In this Letter, we merge the NCSM and IM-SRG into a

new ab initiomany-body tool to universally address ground

and excited states of closed and open-shell nuclei up to
medium masses. After discussing the method with its
advantages and limitations we benchmark it against direct
NCSM calculations for several carbon and oxygen iso-
topes. In contrast to valence-space methods, we propose an
ab initio no-core approach, where convergence with respect
to all model-space truncations is demonstrated explicitly.
No-core shell model.—The NCSM is one of the most

powerful and universal ab initio methods [4,21]. It is built
on a representation of the Schrödinger equation as a large-
scale matrix eigenvalue problem, using an expansion of the
eigenstates in an orthonormal basis of A-body states,

jΨni ¼
P

νC
ðnÞ
ν jΦνi. Typically, the basis jΦνi is composed

of Slater determinants built from harmonic-oscillator (HO)
single-particle states, but other single-particle bases can be
used as well [22]. The many-body basis must be truncated
to render the problem numerically tractable. For the
NCSM, we typically use the number of HO excitation
quanta above the lowest-energy basis states as a truncation
parameter Nmax. Eventually, the finite matrix eigenvalue
problem is solved for a few low-lying eigenstates via
Lanczos-type algorithms, yielding energies and eigenvec-
tors that can be used to compute any secondary observable.
The truncation of the many-body space constitutes the

only departure from an exact treatment of the Schrödinger
equation and we have to demonstrate that the truncation
does not affect the observables of interest. This conver-
gence is the critical aspect in determining the uncertainties
of the method and the limiting factor for its applications.
Several tools are being used to extend the reach of the
NCSM, e.g., through additional truncations of the many-
body model space [23,24] or through a prediagonalization
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of the Hamiltonian by a unitary transformation [25–28].
Despite these improvements, the NCSM is typically limited
to p-shell and lower sd-shell nuclei [29,30].
In-medium similarity renormalization group.—The IM-

SRG aims to decouple a predefined reference state jΨrefi
from all excitations via a unitary transformation that is
implemented via a flow equation [12–15,31–33]. The
technical tool to make this decoupling in A-body space
tractable is the normal ordering of all operators with respect
to jΨrefi. Here, we use the generalized normal ordering and
Wick’s theorem of Kutzelnigg and Mukherjee [34–36],
which can be applied with single- and multideterminantal
reference states jΨrefi.
The HamiltonianHðsÞ and the generator ηðsÞ are normal

ordered and inserted into ðd=dsÞHðsÞ ¼ ½ηðsÞ; HðsÞ� to
obtain the multireference IM-SRG flow equations [15,32].
The generator is designed to suppress pieces of the
Hamiltonian that couple the reference state to excited basis
determinants orthogonal to the reference state. We use the
so-called imaginary-time generator as a compromise
between efficiency and robustness (see, e.g., Ref. [14]).
To render the flow equations tractable, residual normal-
ordered three-body contributions of the initial Hamiltonian
and normal-ordered three- and multiparticle contributions
in the IM-SRG flow equations are discarded. Thus, we
obtain a system of coupled first-order differential equations
for the zero-, one-, and two-body part of the normal-
ordered Hamiltonian [15,32]. The zero-body part directly
yields the expectation value of the Hamiltonian with respect
to the reference state, EðsÞ ¼ hΨref jHðsÞjΨrefi, and repre-
sents the ground-state energy for s → ∞ in standard
applications of the IM-SRG.
Merging the NCSM and IM-SRG.—Building on and

extending the ideas of both methods, we propose a
combination of NCSM and multireference IM-SRG for a
comprehensive ab initio description of open-shell nuclei. In
a first step we perform a NCSM calculation to obtain a
reference state for the specific nucleus of interest. We use
the full Hamiltonian and solve the NCSM eigenvalue
problem in a small model space with truncation parameter
Nref

max. Here, we choose Nref
max ¼ 0 model spaces, which are

multidimensional in open-shell nuclei—for oxygen iso-
topes between 16O and 24O, for instance, they contain all
neutron configurations in the sd shell. The lowest eigen-
state with the appropriate quantum numbers serves as
reference state jΨrefi. In a second step we normal order
the Hamiltonian with respect to this multideterminantal
reference state and solve the multireference IM-SRG flow
equations. For each value of the flow parameter s, the flow
equations yield a normal-ordered Hamiltonian HðsÞ. Thus,
we generate a family of Hamiltonians in which multi-
particle-multihole excitations are successively decoupled
from jΨrefi. In the third step, the IM-SRG-evolved
Hamiltonians are used in NCSM calculations for a range
of truncation parameters Nmax. These calculations provide

ground- and excited-state energies, as well as eigenvectors
in a no-core model space. The eigenvectors can be used to
evaluate other observables that have been transformed in a
consistent IM-SRG evolution. For simplicity, we refer to
this whole scheme as the in-medium no-core shell model
(IM-NCSM), because the key point is the use of an
in-medium decoupled Hamiltonian in the NCSM.
The IM-NCSM scheme has a number of important

advantages over simple IM-SRG or NCSM calculations.
The initial NCSM calculation can be performed for
arbitrary open-shell systems and we can control the
complexity of jΨrefi via Nref

max. The decoupling dramatically
accelerates the convergence of the subsequent NCSM
calculation, and we obtain ground- and excited-state wave
functions that can be used for further investigations. Since
we have a continuous mapping between the initial and the
decoupled Hamiltonian, we can probe and quantify the
effects of truncations of the IM-SRG flow equations by
varying the flow parameter.
Calculation details.—Calculations in this work use the

chiral next-to-next-to-next-to-leadingorder nucleon-nucleon
(NN) interaction by Entem and Machleidt with cutoff
ΛNN ¼ 500 MeV=c [37] and local next-to-next-to-leading
order three-nucleon 3N interaction withΛ3N ¼ 400 MeV=c
[29,38]. This Hamiltonian is softened by a free-space
similarity renormalization group (SRG) evolution at the
three-body level to α ¼ 0.08 fm4 [25,26,29,39–41].
Details on the SRG evolution and the treatment of the 3N
contributions can be found in Ref. [29]. All IM-SRG
calculations are performed with a single-particle basis
including 13 major shells (emax ¼ 12) and we have con-
firmed in all cases that the energies are sufficiently con-
verged.We truncate the initial three-body matrix elements in
the total HO energy quantum number E3max ¼ 14 in
order to control the memory requirements [6,7,31,32,42].
We employ a Hartree-Fock (HF) basis, which largely
eliminates the dependence of the IM-SRG on the oscillator
frequency [14].
We obtain a reference state for a given nucleus from an

initial NCSM calculation with the full NN þ 3N
Hamiltonian for Nref

max ¼ 0. The initial Hamiltonian is
normal ordered with respect to this multideterminantal
reference state and the residual normal-ordered 3N piece is
discarded. We have demonstrated that the effect of this
truncation on ground-state energies is on the order of 1%
for the relevant mass range [42,43]. For reasons of
efficiency, we use a J-coupled formulation of the multi-
reference IM-SRG that requires a reference state with
vanishing total angular momentum, which limits the
present discussion to even particle numbers. However,
the theoretical framework is completely general and one
would only need to implement the IM-SRG for nonscalar
tensor operators. Alternatively, we can use the same ideas
as in particle-attached or particle-removed equation-of-
motion CC calculations to tackle odd nuclei [44,45].
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Ground-state energies.—We start by investigating the
evolution of ground-state energies of selected open-shell
nuclei. Figure 1 shows the ground-state energies for 12C
and 20O obtained from IM-NCSM calculations for several
values of Nmax as a function of the flow parameter s. For
comparison we also show the zero-body piece of the
flowing Hamiltonian, i.e., the expectation value EðsÞ ¼
hΨref jHðsÞjΨrefi.
A first important observation concerns the convergence

of the final NCSM calculations with Nmax. For small flow
parameters we recover the results of a direct NCSM
calculation with the initial normal-ordered Hamiltonian
in the HF basis, which exhibits very slow convergence.
With increasing IM-SRG flow parameter the NCSM con-
vergence is accelerated up to a point where all model
spaces, including Nmax ¼ 0, yield practically the same
energy eigenvalue. This is proof that the IM-SRG success-
fully decouples the reference state and the Nmax ¼ 0 space
from all basis states at higher Nmax.
A second observation pertains to the role of the zero-

body part of the flowing Hamiltonian. In the initial stages
of the evolution the expectation value EðsÞ and the lowest
eigenvalue agree; i.e., the reference state remains an
Nmax ¼ 0 eigenstate of HðsÞ to a good approximation.
However, in some cases, the Nmax ¼ 0 eigenvalue of the
evolved Hamiltonian is below EðsÞ in the later stages of the
flow; i.e., the reference state is not an Nmax ¼ 0 eigenstate

anymore. This is not surprising, since the IM-SRG trans-
formation changes the structure of the Hamiltonian within
the Nmax ¼ 0 space. Therefore, EðsÞ loses its interpretation
as ground-state energy and we have to explicitly diago-
nalize HðsÞ. The effect is much stronger for the ground-
state energy of 12C than for 20O.
A third observation concerns the many-body contribu-

tions that are discarded due to the truncation of the IM-SRG
flow equations at the normal-ordered two-body level. Their
effect can be estimated by comparing with importance-
truncated NCSM results in the HO basis that include
explicit 3N interactions. For 20O we find a deviation of
less than 2%, which is in line with previous IM-SRG
calculations [32]. Earlier studies have shown that the
truncation of the initial normal-ordered Hamiltonian alone
causes a deviation of approximately 1% [42,43]. For 12C,
which is a special case, the deviations are larger, slightly
above 4%, and we observe a distinctive drop after a plateau
of stable well-converged energies, signaling a systematic
growth of induced many-body contributions.
To extract the final ground-state energy, we select a

maximum flow parameter smax within the plateau for which
stable convergence is observed at sufficiently small Nmax.
Additionally, we consider the energy much earlier in the
evolution, i.e., at smax=2. The range from smax=2 to smax
(cf. Fig. 1) provides an uncertainty estimate for the energy
at a given Nmax. If the evolution is stable and saturates, this
uncertainty is very small. Only if the evolution fails to
stabilize or the Nmax convergence is incomplete will the
uncertainty be non-negligible. We will use this uncertainty
quantification protocol for all observables.
The IM-NCSM ground-state energies obtained for the

even carbon and oxygen isotopes are summarized in Fig. 2
and compared to results from importance-truncated NCSM
calculations up toNmax ¼ 12 including all 3N contributions.
The latter use a simple exponential extrapolation with an
uncertainty of up to 1 MeV for the most neutron-rich

FIG. 1. Evolution of the ground-state energies in 12C and 20O.
Depicted is the zero-body part of the flowing Hamiltonian EðsÞ
(black solid line) and the lowest eigenvalue ofHðsÞ obtained in IM-
NCSM calculations for Nmax ¼ 0 (circle), 2 (square), 4 (upward
triangle), 6 (diamond), 8 (star), 10 (downward triangle), and 12
(forward triangle). All calculations use a HF basis with emax ¼ 12
and ℏΩ ¼ 20 MeV. The horizontal gray band shows the impor-
tance-truncated NCSM result with explicit 3N interaction in the HO
basis including the extrapolation uncertainties. The vertical gray
band represents the range of flow parameters smax=2 to smax for the
quantification of uncertainties (see text).

FIG. 2. Ground-state energies for even carbon and oxygen
isotopes obtained from the IM-NCSM at Nmax ¼ 4 (square) in
comparison to importance-truncated NCSM calculations with
explicit 3N interactions (circle) and the multireference IM-SRG
with HF-Bogoliubov reference states (triangle) [32]. Experimen-
tal values are indicated by black bars [46]. The uncertainty due to
flow-parameter dependence is negligible on this scale.
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isotopes. We also show multireference IM-SRG results
obtained with spherical number-projected HF-Bogoliubov
reference states [32]. For the oxygen isotopes the results of all
three methods agree very well, with maximum deviations
between the IM-NCSM and NCSM around 1.8% for the
heaviest isotopes. For the carbon isotopes we observe larger
deviations among the threemethods,with 12Cbeing themost
significant case. Already the IM-NCSM and multireference
IM-SRG with HF-Bogoliubov reference states differ by
almost 6% for 12C, while the methods agree very well for
14C. Similar deviations have been observed with valence-
space interactions obtained from the IM-SRG [19] and more
detailed investigations of this special case are in progress.
Excitation energies.—The IM-NCSM calculations auto-

matically yield excited states and excitation energies, and
we can analyze their flow-parameter dependence and
convergence with Nmax. Figure 3 presents the evolution
of the excitation energies for the first few excited states in
12C and 20O for Nmax ¼ 0, 2, 4. We add a HO Hamiltonian
for the center of mass, evolved consistently in the IM-SRG,
to remove spurious center-of-mass excitations from the
spectrum [47]. We observe that the rate of convergence of
the excitation energies is not always improved. However,
the decoupling of the reference state from all excitations
causes the excitation energies to converge monotonically
from above for sufficiently large flow parameters.
For 20O the excitation energies become independent of

the flow parameter and exhibit perfect convergence in the
same region as the ground-state energy (gray band). For
12C the excitation energies also stabilize in that region, but
then start to increase as a consequence of the distinctive
drop of the ground-state energy discussed in Fig. 1. Up to

the flow parameter smax determined from the ground-state
evolution, the dependence of the excitation energies is
weak once we reach Nmax ¼ 4.
The 0þ excited state in 12C is a notable exception. In the

region of flow parameters where the decoupling of the
ground state occurs, the excitation energy of this 0þ state
drops from about 14 to 8 MeV, while the other excitation
energies remain stable. We have confirmed that this effect is
robust under variation of the single-particle basis, the IM-
SRGgenerator, and the center-of-mass constraint. In conven-
tional NCSM calculations the 0þ state at 14 MeV is well
known [48] and believed to represent theHoyle state, a three-
alpha cluster state that cannot be converged in standard
NCSM calculations [49,50]. The IM-SRG evolution seems
to decouple multiparticle-multihole excitations—needed to
describe the Hoyle state—from the reference space, so that
the Nmax ¼ 0 result is already much better than the largest
possible direct NCSM calculations. We also evaluated mass
and charge radii and the electric monopole transition matrix
element for the first excited 0þ state. They increase rapidly as
the excitation energy decreases, approaching the large values
characteristic for the Hoyle state [49,51,52]. Unfortunately,
before the excited 0þ state stabilizes, the discarded many-
body terms in the IM-SRG flow equations start to distort the
results (beyond the gray band). In order to quantitatively
explore the Hoyle state, we are working on the inclusion of
these contributions.

FIG. 4. Excitation spectra for selected isotopes obtained from the
IM-NCSM (left-hand columns) and the importance-truncated
NCSM (right-hand columns) in comparison to experiment (center
column) [53]. The bands indicate the residual flow-parameter
dependence in the range from smax=2 to smax with bars marking the
latter. The importance-truncated NCSM results are obtained with
explicit 3N interactions using the HO basis with ℏΩ ¼ 16 MeV.

FIG. 3. Evolution of the excitation energies in 12C and 20O.
Depicted are the low-lying eigenvalues of HðsÞ obtained in
NCSM calculations for Nmax ¼ 0 (circle, dotted line), 2 (square,
dashed line), and 4 (triangle, solid line). All calculations use a HF
basis with emax ¼ 12 and ℏΩ ¼ 20 MeV. The gray band repre-
sents the range of flow parameters for the uncertainty analysis.
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The excitation spectra of selected nuclei and their
Nmax convergence obtained in IM-NCSM and importance-
truncated NCSM calculations are presented in Fig. 4. The
bands for the IM-NCSM result from the uncertainty
estimate described earlier, using the same range of s as
for the ground-state energies. We find excellent agreement
for the excitation energies of states that are robust and well
converged, indicating that all truncation effects are small.
As for 12C, we find an excited 0þ state in the IM-NCSM for
16C, which lies at higher energy in the conventional NCSM.
Some higher lying states, however, show a slower con-
vergence indicating an intrinsic structure that probes pieces
to the Hamiltonian that are not completely decoupled.
This is an interesting aspect for further optimizations of the
IM-SRG generators.
Conclusions.—We have merged the NCSM with the

multireference IM-SRG to define a new ab initio many-
body method capable of describing ground and excited
states of closed and open-shell nuclei on the same footing.
In simple terms, the approach can be viewed as a NCSM
calculation with an in-medium decoupled Hamiltonian and
combines the advantages of the NCSM and the IM-SRG.
We have demonstrated its efficiency and accuracy in
comparison to direct NCSM calculations, which are
computationally much more demanding. In contrast to
valence-space shell-model calculations based on effective
interactions derived from the IM-SRG [16] or CC [18], the
IM-NCSM is a no-core approach and convergence with
respect to all model-space truncations can be demonstrated
explicitly. For benchmark purposes, we limited ourselves to
systems that are accessible to the conventional NCSM, but
the moderate computational scaling will allow us to study
the full range of medium-mass nuclei. In future work, we
will demonstrate the extension to odd systems and electro-
magnetic observables and investigate the specific aspects of
12C in more detail.
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