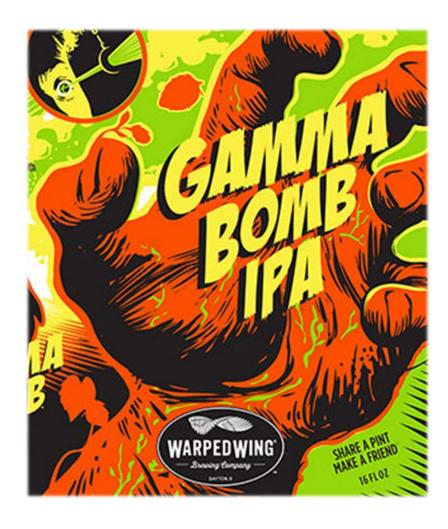
Lecture 9: γ *Decay*

- Basics
- Energetics
- Transition rates
- Angular correlations
- •γ strength functions

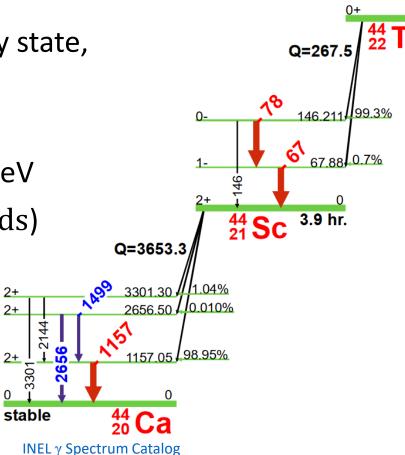


γ decay basics

- γ decay is a de-excitation from an excited state to a lower energy state, preceded by some decay or reaction
- [Just to be clear] Z & A are unchanged
- γ ray energies can span anywhere from several keV to several MeV

• γ decay lifetimes are typically extremely short ($\tau \lesssim$ femtoseconds)

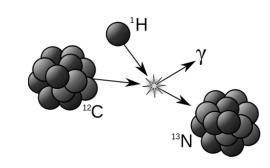
[with the exception of isomeric states]



γ decay energetics

- γ decay can be used to probe excited state energies, but is $E_{\gamma}=E_{\chi_S}$?
- For a decay from a higher-lying excited state to a lower-energy one, $M_{higher}c^2=M_{lower}c^2+E_{\gamma}+KE_{recoil}$
- $M_{higher}c^2 M_{lower}c^2 \equiv E_{xs} = E_{\gamma} + KE_{recoil}$
- $KE_{recoil} = \frac{p_{recoil}^2}{2M_{recoil}}$

- Recall that for a massless particle, E=pc, so $KE_{recoil}=\frac{E_{\gamma}^{2}}{2M_{recoil}c^{2}}$
- Consider $E_{\gamma}=2 \text{MeV}$, A=50: $KE_{recoil}=\frac{4 \text{MeV}^2}{2 \cdot 50 \cdot 931.5 \text{MeV}} \approx 43 \text{eV}$
- For, a 5MeV γ from ³He (e.g. populated by d+p), $KE_{recoil} \approx 4.5 \mathrm{keV}$



Do we have to worry about EM interactions within the nucleus?

•How does the photon wavelength compare to the nuclear size?

$$\bullet E_{\gamma} = h\nu = \frac{hc}{\lambda} = \frac{2\pi\hbar c}{\lambda} \approx \frac{2\pi(197MeV \cdot fm)}{\lambda}$$

•
$$\lambda \approx \frac{2\pi(197 MeV \cdot fm)}{E_{\gamma}}$$
 ...for $E_{\gamma} = 10 MeV$: $\lambda \approx 124 fm$

- •For a large nucleus, A=200, the diameter $D\approx 2\cdot 1.2fm\cdot A^{1/3}\approx 14fm$
- •So, even for an extreme case, $\lambda \gg D$
- •For antennas and diffraction, one needs $\lambda \lesssim D$ i.e. it's not going to happen

γ decay types

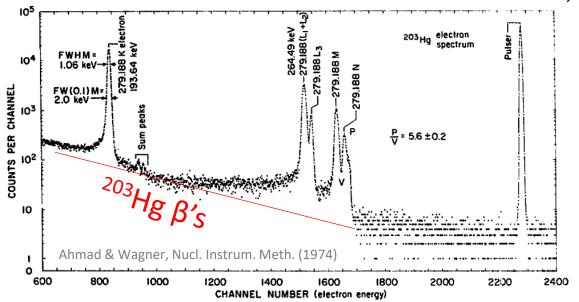
- \bullet Parity and angular momentum are conserved during γ decay
- ullet Photons carry some integer angular momentum with a minimum l=1, where l is referred to by the multipole 2^l
 - •l = 1: dipole, l = 2 quadrupole, ...
- A photon's parity depends not only on l, but also on the decay type
- A photon decay corresponds to shift in the nucleus's charge and matter distribution
 - •Shift in the charge distribution = change in electric field = *Electric*
 - •Shift in the current distribution [i.e. orbitals of protons]= change in magnetic field = Magnetic
- The selection rules corresponding to a particular decay type are:

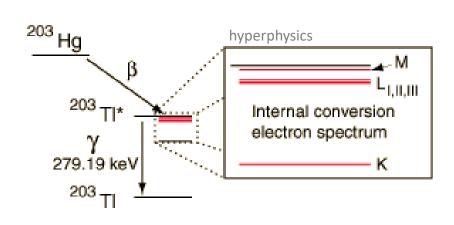
Radiation Type	Name	$l = \Delta I$	$\Delta\pi$	
E1	Electric dipole	1	Yes	
M1	Magnetic dipole	1	No	
E2	Electric quadrupole	2	No	
M2	Magnetic quadrupole	2	Yes	
E3	Electric octupole	3	Yes	
M3	Magnetic octupole	3	No	
E4	Electric hexadecapole	4	No	
M4	Magnetic hexadecapole	4	Yes	

How does $0^+ \rightarrow 0^+$ happen? Internal conversion

- Since $l_{min} = 1$ for a photon, de-excitation by photon emission isn't possible
- Instead the process of internal conversion can happen,
 whereby a nucleus interacts electromagnetically with an orbital electron
 and de-excites by ejecting that orbital electron

- This process operates in competition with γ decay for any transition, not just $0^+ \rightarrow 0^+$
- The energy of the emitted electron is: $E_{IC}=E_{\chi_S}-E_{BE,e^-}$, where E_{χ_S} is the decay transition energy, and E_{BE,e^-} is the electron binding energy





A similar, but different phenomenon is Internal Pair Conversion, where a photon emitted by the nucleus with $E_{\gamma} > 2m_e c^2$ interacts with the coulomb field of the nucleus to create an $e^+ - e^-$ pair. See e.g. A. Wuosmaa et al. PRC(R) 1998.

γ decay constant

•As with β decay, the decay constant is described by the expectation value of a small perturbation multiplied with the final state density, i.e. by Fermi's Golden Rule

•
$$\lambda = \frac{2\pi}{\hbar} |\langle \Psi_{final} | H' | \Psi_{initial} \rangle|^2 \rho(E)$$

- •However, here $\rho(E)$ is the product of the density of nuclear states and density of electromagnetic states available in the system created by the transition and Ψ_{final} is a product of the wavefunction of the final nucleus and the outgoing electromagnetic wave
- •Without proof*, it turns out that lots of gymnastics with E&M will result in:
 - • $\lambda(l_{\gamma},J_{i},\pi\to J_{f},\pi)=\frac{8\pi(l_{\gamma}+1)}{l_{\gamma}[(2l_{\gamma}+1)!!]^{2}}\frac{\binom{E_{\gamma}}{hc}^{2l_{\gamma}+1}}{h}B(l_{\gamma},J_{i},\pi\to J_{f},\pi),$ *for a proof, see Appendix 25 of Quantum Mechanics for Engineers (L. van Dommelen) where n!! is the double-factorial of n (product of all odd or even integers from n to 2 or 1), and $B(l_{\gamma},J_{i},\pi\to J_{f},\pi)$ is the "reduced transition probability", which is the square of the modulus of the expectation value of the transition operator (for El or Ml)
- •These B are extremely nasty to deal with...so lucky for us, back in the mists of time, Weisskopf derived general expressions for different transitions types, assuming the decay was due to a single nucleon undergoing a transition

Weisskopf (a.k.a. single-particle) estimates for λ

$$\bullet \lambda(l_{\gamma},J_{i},\pi \to J_{f},\pi) = \frac{8\pi(l_{\gamma}+1)}{l_{\gamma}[(2l_{\gamma}+1)!!]^{2}} \frac{\binom{E_{\gamma}}{h_{c}}^{2l_{\gamma}+1}}{\hbar} B(l_{\gamma},J_{i},\pi \to J_{f},\pi),$$

• Reduced transition probabilities assuming the initial to final state transition is due to a single nucleon re-orienting itself within a nucleus of uniform density with $R = r_0 A^{1/3}$ are:

•
$$B_{s.p.}(E, l_{\gamma}) = \frac{1}{4\pi} \left[\frac{3}{l_{\gamma}+3} \right]^2 r_0^{2l_{\gamma}} A^{2l_{\gamma}/3} e^2 (fm)^{2l_{\gamma}}$$
 The units for B change with l_{γ} !
• $B_{s.p.}(M, l_{\gamma}) = \frac{10}{\pi} \left[\frac{3}{l_{\gamma}+3} \right]^2 r_0^{(2l_{\gamma}-2)/2} \mu_n^2 (fm)^{2l_{\gamma}-2}$, where the nuclear magneton $\mu_n = \frac{e\hbar}{2m_n c}$

- Note: There is a steep dependency of λ on l, so only one multipole of a decay type will matter
- The equations above are still a huge pain to work with and more noble souls have worked-out the decay constant for various situations.
- Using Q in MeV, λ_{ν} in s^{-1} for a nucleus with mass number A is given by:

L. van Dommelen, Quantum Mechanics for Engineers (2012) $\lambda^{\text{E}\ell} = C_{\text{E}\ell} A^{2\ell/3} Q^{2\ell+1}$ $\lambda^{\text{M}\ell} = C_{\text{M}\ell} A^{(2\ell-2)/3} Q^{2\ell+1}$

:	ℓ :	1	2	3	4	5
•	$C_{\mathbf{E}\ell}$:	1.010^{14}	7.310^7	34	1.110^{-5}	$2.4 10^{-12}$
	$C_{\mathbf{M}\ell}$:	3.110^{13}	2.210^7	10	3.310^{-6}	$7.4 \ 10^{-13}$

 Weisskopf estimates are generally within a few orders of magnitude of the real answer, so γ decay constants are often quoted as the ratio to this estimate in "Weisskopf Units" [w.u.] 8

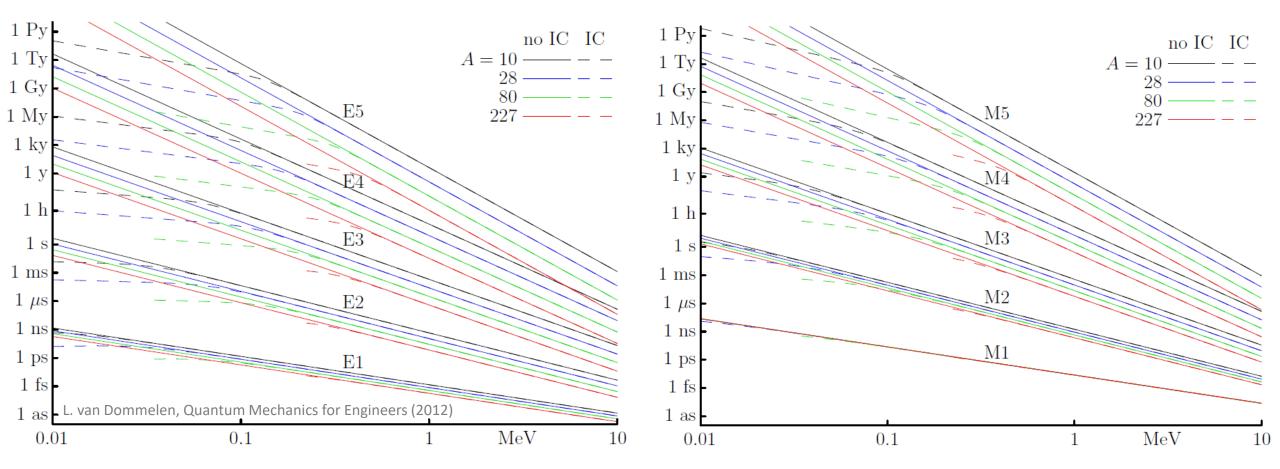
Weisskopf (a.k.a. single-particle) estimates for Γ_{γ}

- For nuclear reactions, you may instead want the gamma-width
- The decay constant can be converted to the half-life, which can be converted to a partial width via the uncertainty principle (see Radioactive Decay lecture)
- To save you the effort, here are the Weisskopf widths for the transition types most commonly involved in astrophysical reaction rate calculations: (with Γ_{ν} in units of eV, E_{ν} in units of MeV, and A as the mass number):
 - E1: $\Gamma_{\gamma}(E_{\gamma}) = 6.8 \times 10^{-2} A^{2/3} E_{\gamma}^{3}$
 - M1: $\Gamma_{\nu}(E_{\nu}) = 2.1 \times 10^{-2} E_{\nu}^{3}$
 - E2: $\Gamma_{\nu}(E_{\nu}) = 4.9 \times 10^{-6} A^{4/3} E_{\nu}^{5}$
 - M2: $\Gamma_{\nu}(E_{\nu}) = 1.5 \times 10^{-8} A^{2/3} E_{\nu}^{5}$
- Note that these are upper limits. Actual E1 widths are often x10⁻⁴ lower. The best thing to do is use data from nearby nuclides and the same transition type to determine what a reasonable reduction factor would be for the Weisskopf estimate
 - You can find experimental data with the "Nuclear Levels and Gamma Search" under the NuDat portion of the NNDC webpage

Weisskopf (a.k.a. single-particle) estimates for $t_{1/2}$

 $t_{1/2}(E_{\gamma})$ for **Electric** Transitions (from Weisskopf)

 $t_{1/2}(E_{\gamma})$ for **Magnetic** Transitions (from Moszkowski)

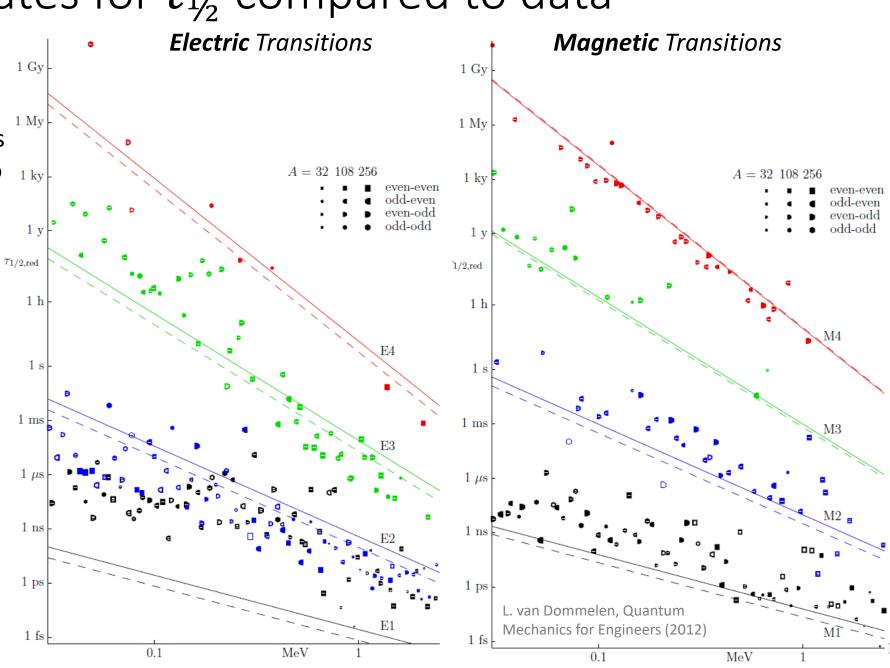


Note that E transitions of a given multipole and E_{γ} are ~100X faster than M transitions with the same E_{γ} , ℓ

Now we see how it is that low-energy high-spin states exist as isomeric states.

Weisskopf estimates for $t_{1/2}$ compared to data

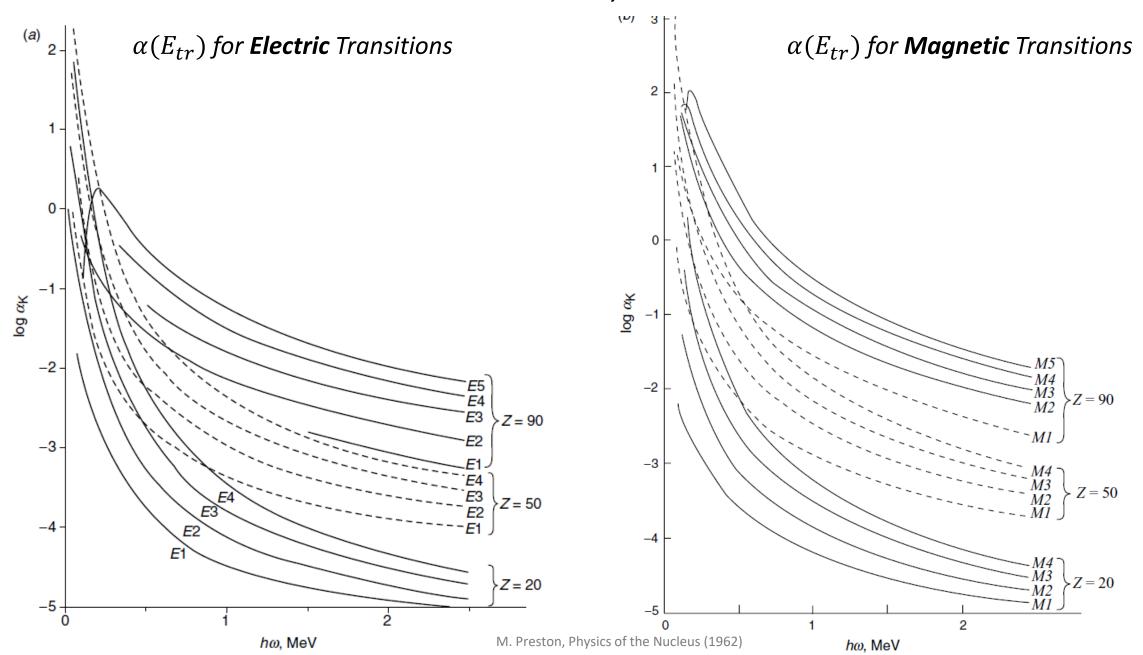
- Single-particle estimates aren't too bad
- The general spread is explained away by the fact that transitions are often not going to be due to a single particle rearranging itself, but rather a collective effect
- E2 are thought to be faster because collective deexcitations (rotation, vibration) will favor $\Delta J = 2$, $\Delta \pi = no$
- However, other lower-order multipoles are thought to be suppressed because shapechanges will generally be complex and, in general, poorly described by smoothly varying Legendre polynomials (low l) used for the EM interaction



Internal conversion coefficient, α

- \bullet Don't forget about our old friend, internal conversion, which competes with γ decay
- Competition between the two is described by the internal conversion coefficient $\alpha = \frac{\lambda_{IC}}{\lambda_{\gamma}}$, so $\lambda = \lambda_{IC} + \lambda_{\gamma} = \lambda_{\gamma}(1 + \alpha)$
- α depends on the density of electrons near the nucleus, and so some friendly atomic physicists have done the dirty work of calculating the following approximate formulas:
 - $\alpha(El)=\frac{Z^3}{n^3}\Big(\frac{l}{l+1}\Big)\,\alpha_{f.s.}^4\Big(\frac{2m_ec^2}{Q}\Big)^{l+5/2}$; $\alpha(Ml)=\frac{Z^3}{n^3}\,\alpha_{f.s.}^4\Big(\frac{2m_ec^2}{Q}\Big)^{l+3/2}$, These rely on the Born approximation, so where $\alpha_{f.s.}\approx\frac{1}{137}$, Q is the transition Q-value, and n is the principal quantum number of the orbital electron being ejected
- The atomic orbitals K, L, M, N, O, \cdots correspond to $n = 1, 2, 3, 4, 5, \cdots$
- ullet Clearly this process is favored for high-Z nuclei, ...but also for $Q < 1.022 MeV \ l = 0$ transitions
- ullet For $0^+ o 0^+$ transitions, $\lambda_{E0} = 3.8 \cdot Z^3 A^{4/3} Q^{1/2}$, with Q in MeV and λ in s⁻¹

Internal conversion coefficient, α



λ_{E0} predictions compared to data

Nucleus	\overline{Q}	$\tau_{1/2}$	$ au_{1/2,\mathrm{red}}$	I.C. Theory
		μs	μs	μs
$^{184}_{80}{ m Hg}$	0.375	0.00062	0.80	0.72
$^{72}_{36}{ m Kr}$	0.671	0.0263	0.88	0.54
$_{32}^{72}\mathrm{Ge}$	0.691	0.4442	10.	0.53
$^{98}_{42}{ m Mo}$	0.735	0.0218	1.8	0.51
$^{192}_{82}{\rm Pb}$	0.769	0.00075	1.1	0.50
$^{98}_{40}{ m Zr}$	0.854	0.064	4.4	0.47
$^{194}_{82}{\rm Pb}$	0.931	0.0011	1.6	0.45
$^{96}_{40}{ m Zr}$	1.582	0.0380	2.6	0.35
$^{90}_{40}{ m Zr}$	1.761	0.0613	3.8	0.33
$^{68}_{28}{ m Ni}$	1.770	0.2760	4.0	0.33
$_{20}^{40}\mathrm{Ca}$	3.353	0.00216	0.0057	0.24
$^{32}_{16}S$	3.778	0.00254	0.0025	0.23
¹⁶ ₈ O	6.048	0.00007	0.000003	0.18_

For these decays

e+-e- pair creation

is a significant

decay mode

L. van Dommelen, Quantum Mechanics for Engineers (2012)

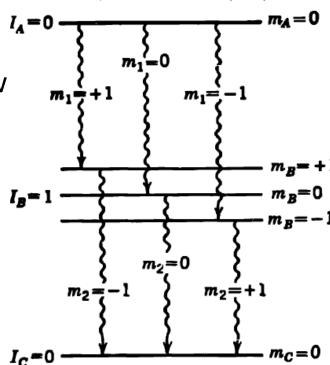
γ angular correlations

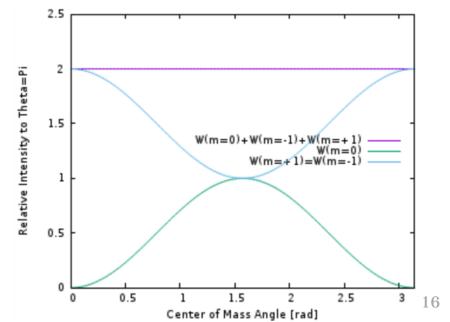
- ullet Radioactive decay, including γ decay, is isotropic when nuclei are oriented at random, which is generally the case in a laboratory setting
- However, the γ angular distribution relative to a fixed axis on a given nucleus, e.g. the angular momentum projection of the state the nucleus originates from, is anisotropic
- Measuring one γ -ray essentially identifies the nuclear axis, so measuring the next γ -ray, which has an angular distribution relative to the angular momentum projection of the state populated by the first γ -ray, will result in an angular correlation
- We choose the original γ -ray to be at $\theta_{CM}=0$, and then the relative intensity to the intensity of the 2^{nd} γ -ray at 90° $W(\theta)=\frac{Intensity\ at\ \theta}{Intensity\ at\ \theta_{cm}=90^{\circ}}$ is described by a sum of several Legendre polynomials, since after all the
 - populated m and photon multipolarity l correspond to a given Legendre polynomial
- Note $W(\theta)$ does not depend on the γ -decay type (E or M)

In all this and the following talk of $W(\theta)$, θ refers to the center of mass angle ...however, as we showed earlier, the nuclear recoil is mostly negligible, so $\theta_{CM} \approx \theta_{lab}$.

γ angular correlations, dipole case

- •Let's restrict ourselves to dipole-dipole $(l_{\gamma_1} = 1, l_{\gamma_2} = 1)$ radiation for now
- •The first decay will populate the m=-1,0,1 magnetic sub-states with equal probability
- •The angular distribution for these three radiations are described by
 - • $W_{l=1,m=0}(\theta) \propto \sin^2(\theta)$
 - $\bullet W_{l=1,m=+1}(\theta) = W_{l=1,m=-1}(\theta) \propto (1 + \cos^2(\theta))$
- •Their sum is an isotropic distribution
- •However, for the second decay, we can gate on events where the 1st decay is located on our arbitrarily chosen $\theta = 0$ axis
- •In that case, $W_{l=1,m=0}(0)=0$, so the second γ (which also has l=1) will have an anisotropic distribution
- •Thus, any γ - γ coincidence displaying such an angular correlation is indicative of dipole-dipole radiation
- •This is mighty handy, since, if we know the ground-state J, (e.g. J=0 for even-even nuclei) then we can build-up from there to get J for the preceding two levels





γ angular correlations, general case

• Generally speaking, $W(\theta)$ for any γ - γ coincidence is defined by a sum of Legendre polynomials:

 $\bullet W(\theta) = \sum_{i=0}^{i=l} a_{2i} P_{2i}(\cos \theta)$

• i.e. $W(\theta) = 1 + a_2 \cos^2(\theta) + a_4 \cos^4(\theta) + \cdots + a_{2l} \cos^{2l}(\theta)$, where the normalization is such that $W(90^{\circ}) = 1$

• The coefficients a_i are fit to data and the results are checked against the expected results for particular combinations of J_i , J_i , J_f , l_1 , l_2

 For common cases, pre-tabulated values are available to compare to

γ-γ cascade	$W(\vartheta) \ d\Omega = (1 + a_2 \cos^2 \vartheta + a_4 \cos^4 \vartheta) \ d\Omega$		
$I_{\boldsymbol{A}}(l_1)I_{\boldsymbol{B}}(l_2)I_{\boldsymbol{C}}$	a ₂	G4	
0(1)1(1)0	1	0	
1(1)1(1)0	$-\frac{1}{8}$	0	
1(2)1(1)0	$-\frac{1}{8}$	0 ,	
2(1)1(1)0	$+\frac{1}{13}$	0 /	
3(2)1(1)0	$-\frac{3}{29}$	0	
0(2)2(2)0	-3	+4	
1(1)2(2)0	$-\frac{1}{8}$	0	
2(1)2(2)0	$+\frac{3}{7}$	0	
2(2)2(2)0	$-\frac{1}{1}\frac{5}{3}$	$+\frac{16}{13}$	
3(1)2(2)0	$-\frac{3}{2}$	0 /	
4(2)2(2)0	$+\frac{1}{8}$	$+\frac{1}{24}$	

R. Evans. The Atomic Nucleus (1955)

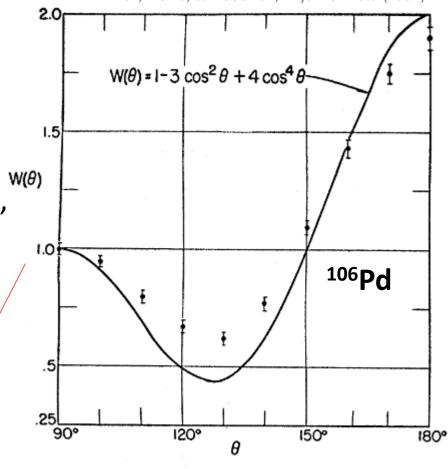
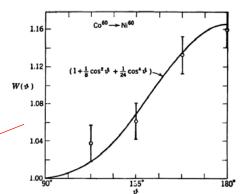
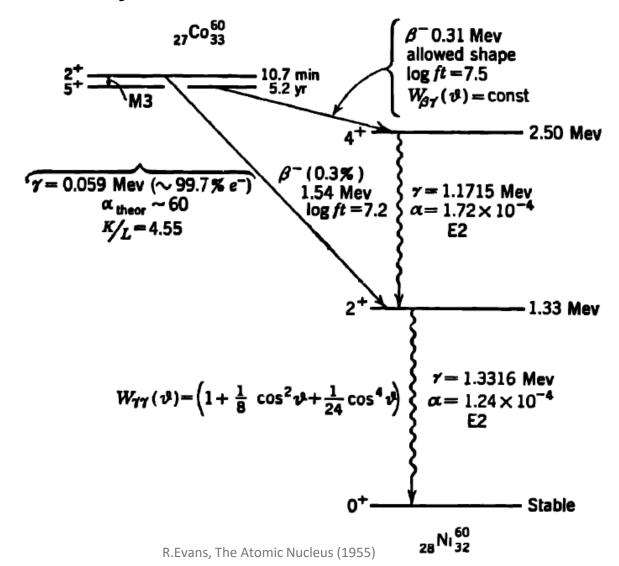


Fig. 1. Angular correlation of the 513- and 624-kev gamma-ray cascade in Pd108 (not corrected for finite solid angles).



Spectroscopy with γ decay

• Particularly when combined with ft from β -decay, λ_{γ} and/or $W(\theta)$ provide powerful tools to determine or at least constrain J^{π} for nuclei



Spectroscopy with γ decay: Modern Tools

γ strength function, γ SF

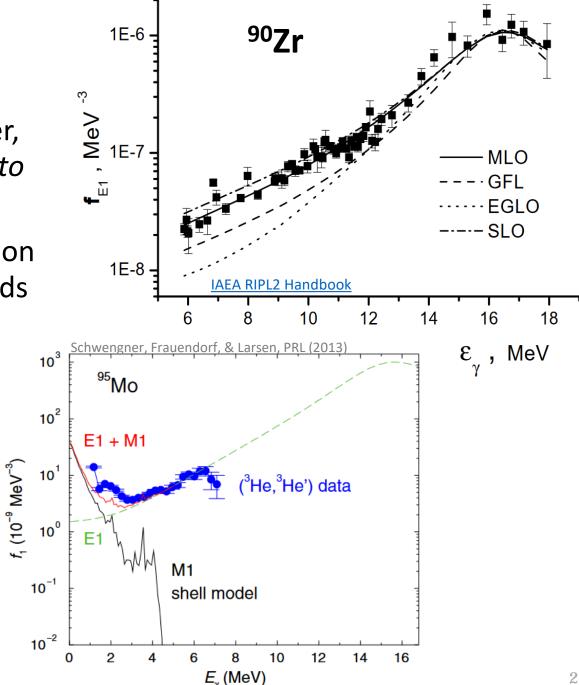
- Recall from a few lectures ago, back from when we were young and care free,
 that it's often in our best interest to consider the statistical properties of the nucleus
- For instance, a decay or capture reaction might populate a high excitation energy of a nucleus, up where there are a large number of nuclear levels
- The relevant question is then, what is the probability of emitting a γ ray of a particular energy?
- This is encapsulated in the Transmission Coefficient, in analogy to the transmission coefficient we saw for nucleons (α particles, specifically) earlier, which here is related to λ_{γ}
- The transmission coefficient for emitting a γ of energy E_{γ} and multipolarity Xl is:

$$T_{Xl}(E_{\gamma}) = 2\pi E_{\gamma}^{2l+1} f_{Xl}(E_{\gamma})$$

- ullet Here you'll recognize the factor E_{γ}^{2l+1} , which is a scaling for the decay rate common to all λ_{Xl}
- $f_{Xl}(E_{\gamma})$ is the "gamma strength function", γ SF, which captures the E_{γ} probability distribution, as well as all the realistic features that make λ_{Xl} deviate from the single-particle model
- That $f_{Xl}(E_{\gamma})$ is independent of excitation energy, indeed of the properties of the initial and final states for the decay, is known as the "Brink-Axel hypothesis"

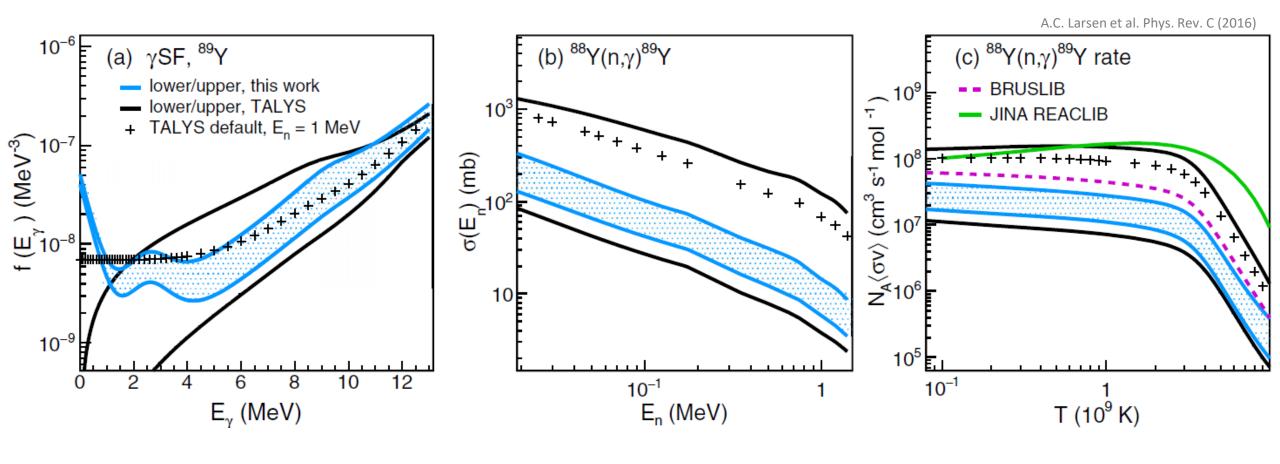
γ strength function, γSF

- What functional form should we use for $f_{Xl}(E_{\nu})$?
- Just like our α transmission coefficients from earlier, T_{ν} describes the process of the γ going out of *or into* the nucleus
- ullet So, we can make a guess at T_{ν} using photoabsorption cross section data, from which we're guided towards a Lorentzian shape
- Recent experimental and theoretical results show that M1 strength function has a special enhancement, called the "up-bend", at low E_{ν}



γSF impact (selected examples)

(γ,α) , (γ,p) , (γ,n) for the p-process, (p,γ) for the rp-process, (n,γ) for the r- and s- processes



Further Reading

- Chapter 9: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)
- Chapter 7: Nuclear & Particle Physics (B.R. Martin)
- Chapter 14, Section: Quantum Mechanics for Engineers (L. van Dommelen)
- Chapter 4: Lecture Notes in Nuclear Structure Physics (B.A. Brown)
- Chapter 6, Section 4: The Atomic Nucleus (R. Evans)
- Chapter 7: IAEA RIPL2 Handbook