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Lecture 9: γ Decay
•Basics
•Energetics
•Transition rates
•Angular correlations
•γ strength functions



γ decay basics

2

INEL γ Spectrum Catalog

• γ decay is a de-excitation from an excited bound state to a lower energy state,
preceded by some decay or reaction

• [Just to be clear] Z & A are unchanged
• γ ray energies can span anywhere from several keV to several MeV
• γ decay lifetimes are typically extremely short (𝜏𝜏 ≲ femtoseconds)

[with the exception of isomeric states]

http://inpp.ohiou.edu/%7Emeisel/PHYS6751/file/ge_gammaspectrum_catalog.pdf


γ decay energetics
• γ decay can be used to probe excited state energies, but is 𝐸𝐸𝛾𝛾 = 𝐸𝐸𝑥𝑥𝑥𝑥?
• For a decay from a higher-lying excited state to a lower-energy one,
𝑀𝑀ℎ𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑐𝑐2 = 𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑐𝑐2 + 𝐸𝐸𝛾𝛾 + 𝐾𝐾𝐸𝐸𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙𝑖𝑖𝑙𝑙

•𝑀𝑀ℎ𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑐𝑐2 − 𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑐𝑐2 ≡ 𝐸𝐸𝑥𝑥𝑥𝑥 = 𝐸𝐸𝛾𝛾 + 𝐾𝐾𝐸𝐸𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙𝑖𝑖𝑙𝑙

• 𝐾𝐾𝐸𝐸𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙𝑖𝑖𝑙𝑙 = 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2

2𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

• Conservation of momentum dictates 𝑝𝑝𝛾𝛾 = 𝑝𝑝𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙𝑖𝑖𝑙𝑙, so 𝐾𝐾𝐸𝐸𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙𝑖𝑖𝑙𝑙 = 𝑝𝑝𝛾𝛾2

2𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

• Recall that for a massless particle, 𝐸𝐸 = 𝑝𝑝𝑐𝑐, so 𝐾𝐾𝐸𝐸𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙𝑖𝑖𝑙𝑙 = 𝐸𝐸𝛾𝛾2

2𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2

• Consider 𝐸𝐸𝛾𝛾 = 2MeV, A = 50:  𝐾𝐾𝐸𝐸𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙𝑖𝑖𝑙𝑙 = 4MeV2

2�50�931.5MeV
≈ 43eV

• For, a 5MeV 𝛾𝛾 from 3He (e.g. populated by d+p), 𝐾𝐾𝐸𝐸𝑖𝑖𝑖𝑖𝑟𝑟𝑙𝑙𝑖𝑖𝑙𝑙 ≈ 4.5keV
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Do we have to worry about EM interactions within the nucleus? 

•How does the photon wavelength compare to the nuclear size?

•𝐸𝐸𝛾𝛾 = ℎν = ℎ𝑟𝑟
λ

= 2𝜋𝜋ћ𝑟𝑟
λ

≈ 2𝜋𝜋(197𝑀𝑀𝑖𝑖𝑀𝑀�𝑓𝑓𝑓𝑓)
λ

•λ ≈ 2𝜋𝜋(197𝑀𝑀𝑖𝑖𝑀𝑀�𝑓𝑓𝑓𝑓)
𝐸𝐸𝛾𝛾

…for 𝐸𝐸𝛾𝛾 = 10MeV: λ ≈ 124𝑓𝑓𝑓𝑓

•For a large nucleus, 𝐴𝐴 = 200, the diameter 𝐷𝐷 ≈ 2 � 1.2𝑓𝑓𝑓𝑓 � 𝐴𝐴 ⁄1 3 ≈ 14𝑓𝑓𝑓𝑓
•So, even for an extreme case, λ ≫ 𝐷𝐷
•For antennas and diffraction, one needs λ ≲ 𝐷𝐷
i.e. it’s not going to happen
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γ decay types
• Parity and angular momentum are conserved during γ decay
• Photons carry some integer angular momentum with a minimum 𝑙𝑙 = 1,

where 𝑙𝑙 is referred to by the multipole 2𝑙𝑙
•𝑙𝑙 = 1:𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑𝑙𝑙𝑑𝑑, 𝑙𝑙 = 2 𝑞𝑞𝑞𝑞𝑞𝑞𝑑𝑑𝑞𝑞𝑞𝑞𝑝𝑝𝑑𝑑𝑙𝑙𝑑𝑑,⋯

• A photon’s parity depends not only on 𝑙𝑙, but also on the decay type
• A photon decay corresponds to shift in the nucleus’s charge and matter distribution

•Shift in the charge distribution = change in electric field = Electric
•Shift in the current distribution [i.e. orbitals of protons]= change in magnetic field = Magnetic

• The selection rules corresponding
to a particular decay type are:
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How does 0+ → 0+ happen? Internal conversion
• Since 𝑙𝑙𝑓𝑓𝑖𝑖𝑚𝑚 = 1 for a photon, de-excitation by photon emission isn’t possible
• Instead the process of internal conversion can happen,

whereby a nucleus interacts electromagnetically with an orbital electron
and de-excites by ejecting that orbital electron

• This process operates in competition with γ decay for any transition, not just 0+→0+

• The energy of the emitted electron is: 𝐸𝐸𝐼𝐼𝐼𝐼 = 𝐸𝐸𝑥𝑥𝑥𝑥 − 𝐸𝐸𝐵𝐵𝐸𝐸,𝑖𝑖−,
where 𝐸𝐸𝑥𝑥𝑥𝑥 is the decay transition energy, and 𝐸𝐸𝐵𝐵𝐸𝐸,𝑖𝑖− is the electron binding energy

6
A similar, but different phenomenon is Internal Pair Conversion, where a photon with Eγ>2mec2 interacts with 
the coulomb field of the nucleus to create an e+-e- pair. See e.g. A. Wuosmaa et al. Phys. Rev. C Rapid Comm. 1998

hyperphysics

Ahmad & Wagner, Nucl. Instrum. Meth. (1974)



γ decay constant
•As with β decay, the decay constant is described by the expectation value of a small 
perturbation multiplied with the final state density, i.e. by Fermi’s Golden Rule

•λ = 2𝜋𝜋
ћ Ψ𝑓𝑓𝑖𝑖𝑚𝑚𝑓𝑓𝑙𝑙 𝐻𝐻′ Ψ𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑙𝑙

2
𝜌𝜌(𝐸𝐸)

•However, here 𝜌𝜌(𝐸𝐸) is the product of the density of nuclear states and density of 
electromagnetic states available in the system created by the transition and Ψ𝑓𝑓𝑖𝑖𝑚𝑚𝑓𝑓𝑙𝑙 is a product 
of the wavefunction of the final nucleus and the outgoing electromagnetic wave

•Without proof*, it turns out that lots of gymnastics with E&M will result in:

•λ 𝑙𝑙𝛾𝛾 , 𝐽𝐽𝑖𝑖 ,𝜋𝜋 → 𝐽𝐽𝑓𝑓 ,𝜋𝜋 = 8𝜋𝜋 𝑙𝑙𝛾𝛾+1

𝑙𝑙𝛾𝛾 2𝑙𝑙𝛾𝛾+1 ‼ 2

�𝐸𝐸𝛾𝛾
ћ𝑟𝑟

2𝑟𝑟𝛾𝛾+1

ћ
𝐵𝐵(𝑙𝑙𝛾𝛾 , 𝐽𝐽𝑖𝑖 ,𝜋𝜋 → 𝐽𝐽𝑓𝑓 ,𝜋𝜋),

where 𝑛𝑛‼ is the double-factorial of 𝑛𝑛 (product of all odd or even integers from 𝑛𝑛 to 2 or 1),
and 𝐵𝐵(𝑙𝑙𝛾𝛾 , 𝐽𝐽𝑖𝑖 ,𝜋𝜋 → 𝐽𝐽𝑓𝑓 ,𝜋𝜋) is the “reduced transition probability”, which is the square of the 
modulus of the expectation value of the transition operator (for 𝐸𝐸𝑙𝑙 or 𝑀𝑀𝑙𝑙)

•These 𝐵𝐵 are extremely nasty to deal with…so lucky for us, back in the mists of time,
Weisskopf derived general expressions for different transitions types,
assuming the decay was due to a single nucleon undergoing a transition
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*for a proof, see Appendix 25 of 
Quantum Mechanics for 
Engineers (L. van Dommelen)

http://www.umich.edu/%7Eners312/CourseLibrary/Dommelen.pdf


• λ 𝑙𝑙𝛾𝛾, 𝐽𝐽𝑖𝑖 ,𝜋𝜋 → 𝐽𝐽𝑓𝑓,𝜋𝜋 = 8𝜋𝜋 𝑙𝑙𝛾𝛾+1

𝑙𝑙𝛾𝛾 2𝑙𝑙𝛾𝛾+1 ‼
2

�𝐸𝐸𝛾𝛾
ћ𝑟𝑟

2𝑟𝑟𝛾𝛾+1

ћ
𝐵𝐵(𝑙𝑙𝛾𝛾, 𝐽𝐽𝑖𝑖 ,𝜋𝜋 → 𝐽𝐽𝑓𝑓,𝜋𝜋),

• Reduced transition probabilities assuming the initial to final state transition is due to a single 
nucleon re-orienting itself within a nucleus of uniform density with 𝑅𝑅 = 𝑞𝑞0𝐴𝐴1/3 are:

• 𝐵𝐵𝑥𝑥.𝑝𝑝. 𝐸𝐸, 𝑙𝑙𝛾𝛾 = 1
4𝜋𝜋

3
𝑙𝑙𝛾𝛾+3

2
𝑞𝑞0
2𝑙𝑙𝛾𝛾𝐴𝐴2𝑙𝑙𝛾𝛾/3𝑑𝑑2(𝑓𝑓𝑓𝑓)2𝑙𝑙𝛾𝛾

• 𝐵𝐵𝑥𝑥.𝑝𝑝. 𝑀𝑀, 𝑙𝑙𝛾𝛾 = 10
𝜋𝜋

3
𝑙𝑙𝛾𝛾+3

2
𝑞𝑞0

(2𝑙𝑙𝛾𝛾−2)/2𝜇𝜇𝑚𝑚2(𝑓𝑓𝑓𝑓)2𝑙𝑙𝛾𝛾−2, where the nuclear magneton 𝜇𝜇𝑚𝑚 = 𝑖𝑖ћ
2𝑓𝑓𝑝𝑝𝑟𝑟

• Note: There is a steep dependency of λ on 𝑙𝑙, so only one multipole of a decay type will matter
• The equations above are still a huge pain

to work with and more noble souls have
worked-out the decay constant
for various situations.

• Using 𝑄𝑄 in MeV, λ𝛾𝛾 in 𝑠𝑠−1 for a nucleus
with mass number 𝐴𝐴 is given by:

• Weisskopf estimates are generally within an order of magnitude of the real answer,
so γ decay constants are often quoted as the ratio to this estimate in “Weisskopf Units” [w.u.]

Weisskopf (a.k.a. single-particle) estimates for λ
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The units for B change with lγ !

L. van Dommelen, Quantum Mechanics for Engineers (2012)



Weisskopf (a.k.a. single-particle) estimates for 𝑡𝑡½
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𝑡𝑡½(𝐸𝐸𝛾𝛾) for Electric Transitions (from Weisskopf) 𝑡𝑡½(𝐸𝐸𝛾𝛾) for Magnetic Transitions (from Moszkowski)

L. van Dommelen, Quantum Mechanics for Engineers (2012)

Note that E transitions of a given multipole and Eγ are ~100X faster than M transitions with the same Eγ,ℓ

Now we see how it is that low-energy high-spin states exist as isomeric states.



Weisskopf estimates for 𝑡𝑡½ compared to data
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Electric Transitions Magnetic Transitions

L. van Dommelen, Quantum 
Mechanics for Engineers (2012)

•Single-particle estimates 
aren’t too bad 

•The general spread is 
explained away by the fact 
that transitions are often not 
going to be due to a single 
particle rearranging itself, but 
rather a collective effect

•𝐸𝐸2 are thought to be faster 
because collective de-
excitations (rotation, vibration)
will favor ∆𝐽𝐽 = 2,∆𝜋𝜋 = 𝑛𝑛𝑑𝑑

•However, other lower-order 
multipoles are thought to be 
suppressed because shape-
changes will generally be 
complex and, in general, 
poorly described by smoothly 
varying Legendre polynomials 
(low 𝑙𝑙)



Internal conversion coefficient, α
• Don’t forget about our old friend, internal conversion, which competes with γ decay

• Competition between the two is described by the internal conversion coefficient 𝛼𝛼 = λ𝐼𝐼𝐼𝐼
λ𝛾𝛾

,
so λ = λ𝐼𝐼𝐼𝐼 + λγ = λγ(1 + 𝛼𝛼)

• 𝛼𝛼 depends on the density of electrons near the nucleus, and so some friendly atomic physicists 
have done the dirty work of calculating the following approximate formulas:

• 𝛼𝛼 𝐸𝐸𝑙𝑙 = 𝑍𝑍3

𝑚𝑚3
𝑙𝑙

𝑙𝑙+1
𝛼𝛼𝑓𝑓.𝑥𝑥.
4 2𝑓𝑓𝑟𝑟𝑟𝑟2

𝑄𝑄

𝑙𝑙+ ⁄5 2
;    𝛼𝛼 𝑀𝑀𝑙𝑙 = 𝑍𝑍3

𝑚𝑚3
𝛼𝛼𝑓𝑓.𝑥𝑥.
4 2𝑓𝑓𝑟𝑟𝑟𝑟2

𝑄𝑄

𝑙𝑙+ ⁄3 2
,

where 𝛼𝛼𝑓𝑓.𝑥𝑥. ≈
1
137

, 𝑄𝑄 is the transition Q-value,
and 𝑛𝑛 is the principal quantum number of the orbital electron being ejected

• The atomic orbitals 𝐾𝐾, 𝐿𝐿,𝑀𝑀,𝑁𝑁,𝑂𝑂,⋯ correspond to 𝑛𝑛 = 1, 2, 3, 4, 5,⋯
• Clearly this process is favored for high-𝑍𝑍 nuclei, …but also for 𝑄𝑄 < 1.022𝑀𝑀𝑑𝑑𝑀𝑀 𝑙𝑙 = 0 transitions
• For 0+ → 0+ transitions, λ𝐸𝐸0 = 3.8 � 𝑍𝑍3𝐴𝐴4/3𝑄𝑄1/2 , with Q in MeV and λ in s-1

11

These rely on the Born 
approximation, so 
Z<<137 ought to apply
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Internal conversion coefficient, α
𝛼𝛼(𝐸𝐸𝑖𝑖𝑖𝑖) for Electric Transitions 𝛼𝛼(𝐸𝐸𝑖𝑖𝑖𝑖) for Magnetic Transitions

M. Preston, Physics of the Nucleus (1962)



λ𝐸𝐸0 predictions compared to data
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L. van Dommelen, Quantum Mechanics for Engineers (2012)

For these decays 
e+-e- pair creation 

is a significant 
decay mode



γ angular correlations
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In all this and the following talk of W(θ), θ refers to the center of mass angle
…however, as we showed earlier, the nuclear recoil is mostly negligible, so θCM≈θlab.

R.Evans, The Atomic Nucleus (1955)

• Radioactive decay, including γ decay, is isotropic when nuclei are oriented at random,
which is generally the case in a laboratory setting

• Indeed, the subsequent decay following a preceding decay will also be isotropic
• However, the relative angle between the subsequent radiations will be correlated
• This is because the direction of the first radiation will be related to the angular momentum 

projection of the nuclear level that is populated prior to emission of the second radiation
• By arbitrarily choosing the direction of the first radiation to be
𝜃𝜃𝐼𝐼𝑀𝑀 = 0, the relative intensity to the intensity of the 2nd

radiation at 90° 𝑊𝑊 𝜃𝜃 = 𝐼𝐼𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑥𝑥𝑖𝑖𝑖𝑖𝐼𝐼 𝑓𝑓𝑖𝑖 𝜃𝜃
𝐼𝐼𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑥𝑥𝑖𝑖𝑖𝑖𝐼𝐼 𝑓𝑓𝑖𝑖 𝜃𝜃𝑟𝑟𝑐𝑐=90°

,

is described by a sum of several Legendre
polynomials that I’m told results from 
some sophisticated and intimidating math

• It’s important to note that W(θ) will only depend on the
angular momentum of the radiation and not on type (𝐸𝐸 or 𝑀𝑀)



γ angular correlations, dipole case
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•Let’s restrict ourselves to dipole-dipole (𝑙𝑙𝛾𝛾1 = 1, 𝑙𝑙𝛾𝛾2 = 1) radiation for now
•The first decay will populate the 𝑓𝑓 = −1, 0, 1 magnetic sub-states
with equal probability

•The angular distribution for these three radiations are described by
•𝑊𝑊𝑙𝑙=1,𝒎𝒎=𝟎𝟎(𝜃𝜃) ∝ sin2(𝜃𝜃)
•𝑊𝑊𝑙𝑙=1,𝒎𝒎=+𝟏𝟏(𝜃𝜃) = 𝑊𝑊𝑙𝑙=1,𝒎𝒎=−𝟏𝟏(𝜃𝜃) ∝ (1 + cos2 𝜃𝜃 )

•Their sum is an isotropic distribution
•However, for the second decay, we can gate on events where
the 1st decay is located on our arbitrarily chosen 𝜃𝜃 = 0 axis

•In that case, 𝑊𝑊𝑙𝑙=1,𝒎𝒎=𝟎𝟎(0) = 0, so the second γ (which also has 𝑙𝑙 = 1)

will have an anisotropic distribution
•Thus, any γ-γ coincidence displaying such an angular
correlation is indicative of dipole-dipole radiation

•This is mighty handy, since, if we know the ground-state 𝐽𝐽,
(e.g. 𝐽𝐽 = 0 for even-even nuclei) then we can build-up
from there to get 𝐽𝐽 for the preceding two levels

R.Evans, The Atomic Nucleus (1955)



γ angular correlations, general case
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Arfken, Klema, & McGowan, Phys. Rev. Lett. (1952)

106Pd

• Generally speaking, 𝑊𝑊(𝜃𝜃) for any γ-γ coincidence is defined
by a sum of Legendre polynomials:
•𝑊𝑊 𝜃𝜃 = ∑𝑖𝑖=0𝑖𝑖=𝑙𝑙 𝑞𝑞2𝑖𝑖 𝑃𝑃2𝑖𝑖(cos𝜃𝜃)
• i.e. 𝑊𝑊 𝜃𝜃 = 1 + 𝑞𝑞2cos2 𝜃𝜃 + 𝑞𝑞4cos4(𝜃𝜃)+⋯𝑞𝑞2𝑙𝑙cos2𝑙𝑙(𝜃𝜃),

where the normalization is such that 𝑊𝑊 90° = 1
• The coefficients 𝑞𝑞𝑖𝑖 are fit to data and the results are
checked against the expected results for particular 
combinations of 𝐽𝐽𝑖𝑖 , 𝐽𝐽𝑖𝑖 , 𝐽𝐽𝑓𝑓 , 𝑙𝑙1, 𝑙𝑙2
• For common cases,
pre-tabulated values
are available to
compare to

R.Evans, The Atomic Nucleus (1955)



Spectroscopy with γ decay
• Particularly when combined with 𝑓𝑓𝑡𝑡 from β-decay, λγ and/or 𝑊𝑊(𝜃𝜃) provide powerful tools to 

determine or at least constrain 𝐽𝐽𝜋𝜋 for nuclei

17R.Evans, The Atomic Nucleus (1955)
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Spectroscopy with γ decay: Modern Tools



γ strength function, γSF
• Recall from a few lectures ago, back from when we were young and care free,

that it’s often in our best interest to consider the statistical properties of the nucleus
• For instance, a decay or capture reaction might populate a high excitation energy of a nucleus, 

up where there are a large number of nuclear levels
• The relevant question is then, what is the probability of emitting a γ ray for a particular energy?
• This is encapsulated in the Transmission Coefficient, in analogy to the transmission coefficient 

we saw for nucleons (α particles, specifically) earlier, which here is related to λ𝛾𝛾
• The transmission coefficient for emitting a γ of energy 𝐸𝐸𝛾𝛾 and multipolarity 𝑋𝑋𝑙𝑙 is:

𝑇𝑇𝑋𝑋𝑙𝑙 𝐸𝐸𝛾𝛾 = 2𝜋𝜋𝐸𝐸𝛾𝛾2𝑙𝑙+1𝑓𝑓𝑋𝑋𝑙𝑙(𝐸𝐸𝛾𝛾)
• Here you’ll recognize the factor 𝐸𝐸𝛾𝛾2𝑙𝑙+1, which is a scaling for the decay rate common to all λ𝑋𝑋𝑙𝑙
• 𝑓𝑓𝑋𝑋𝑙𝑙(𝐸𝐸𝛾𝛾) is the “gamma strength function”, γSF, which captures the 𝐸𝐸𝛾𝛾 probability distribution,

as well as all the realistic features that make λ𝑋𝑋𝑙𝑙 deviate from the single-particle model
• That 𝑓𝑓𝑋𝑋𝑙𝑙(𝐸𝐸𝛾𝛾) only depends on excitation energy is known as the “Brink-Axel hypothesis”
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γ strength function, γSF
• What functional form should we use for 𝑓𝑓𝑋𝑋𝑙𝑙(𝐸𝐸𝛾𝛾)?
• Just like our α transmission coefficients from earlier,
𝑇𝑇𝛾𝛾 describes the process of the γ going out of or into
the nucleus

• So, we can make a guess at 𝑇𝑇𝛾𝛾 using photoabsorption
cross section data, from which we’re guided towards
a Lorentzian shape

• Recent experimental and theoretical results
show that M1 strength function has a special
enhancement, called the “up-bend”, at low 𝐸𝐸𝛾𝛾
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IAEA RIPL2 Handbook

Schwengner, Frauendorf, & Larsen, PRL (2013) 

https://www-nds.iaea.org/RIPL-2/handbook/ripl2.pdf


γSF impact (selected examples)

21

A.C. Larsen et al. Phys. Rev. C (2016)

(γ,α), (γ,p), (γ,n) for the p-process, (p,γ) for the rp-process, (n,γ) for the r- and s- processes 



Further Reading
• Chapter 9: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)
• Chapter 7: Nuclear & Particle Physics (B.R. Martin)
• Chapter 14, Section : Quantum Mechanics for Engineers (L. van Dommelen)
• Chapter 4: Lecture Notes in Nuclear Structure Physics (B.A. Brown)
• Chapter 6, Section 4: The Atomic Nucleus (R. Evans)
• Chapter 7: IAEA RIPL2 Handbook
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http://www.umich.edu/%7Eners312/CourseLibrary/Dommelen.pdf
https://people.nscl.msu.edu/%7Ebrown/Jina-workshop/BAB-lecture-notes.pdf
https://www-nds.iaea.org/RIPL-2/handbook/ripl2.pdf
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