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Lecture 8: β Decay
•Basic process & energetics
•Fermi theory
•ft-values
•Electron-capture
•Parity violation
•Special cases



What is β decay?
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I’m going to let you finish, 
but the process really has to 
do with quarks and bosons…

a) Nucleus perspective:
𝛽𝛽−: 𝑍𝑍

𝐴𝐴𝑋𝑋 → 𝑍𝑍+1
𝐴𝐴𝑋𝑋𝑋 + 𝑒𝑒− + �ν𝑒𝑒

𝛽𝛽+: 𝑍𝑍
𝐴𝐴𝑋𝑋 → 𝑍𝑍−1

𝐴𝐴𝑋𝑋𝑋 + 𝑒𝑒+ + ν𝑒𝑒
𝐸𝐸𝐸𝐸: 𝑒𝑒− + 𝑍𝑍

𝐴𝐴𝑋𝑋 → 𝑍𝑍−1
𝐴𝐴𝑋𝑋𝑋 + ν𝑒𝑒

b) Nucleon perspective:
𝛽𝛽−:𝑛𝑛 → 𝑝𝑝 + 𝑒𝑒− + �ν𝑒𝑒
𝛽𝛽+: 𝑝𝑝 → 𝑛𝑛 + 𝑒𝑒+ + ν𝑒𝑒
𝐸𝐸𝐸𝐸: 𝑒𝑒− + 𝑝𝑝 → 𝑛𝑛 + ν𝑒𝑒

c) Quark perspective:
𝛽𝛽−:𝑑𝑑 → 𝑢𝑢 + 𝑒𝑒− + �ν𝑒𝑒
𝛽𝛽+:𝑢𝑢 → 𝑑𝑑 + 𝑒𝑒+ + ν𝑒𝑒
𝐸𝐸𝐸𝐸: 𝑒𝑒− + 𝑢𝑢 → 𝑑𝑑 + ν𝑒𝑒

e- can be from atomic shells 
(terrestrial cases) or from 
surrounding electron gas
(e.g. neutron star outer crust)

Free neutron decay takes ~15min
(though there is some controversy),
while t½(p)>1034yr.

https://physics.aps.org/synopsis-for/10.1103/PhysRevLett.111.222501
https://doi.org/10.1016/j.nuclphysb.2016.06.017


β decay energetics
• β-decay can proceed if energetics allow it (𝑄𝑄𝛽𝛽 > 0): 

• 𝑄𝑄𝛽𝛽− = 𝑀𝑀𝐸𝐸(𝑍𝑍,𝐴𝐴) −𝑀𝑀𝐸𝐸(𝑍𝑍 + 1,𝐴𝐴)
• 𝑄𝑄𝛽𝛽+ = 𝑀𝑀𝐸𝐸(𝑍𝑍,𝐴𝐴) −𝑀𝑀𝐸𝐸(𝑍𝑍 − 1,𝐴𝐴) − 2𝑚𝑚𝑒𝑒
• 𝑄𝑄𝐸𝐸𝐸𝐸 = 𝑀𝑀𝐸𝐸 𝑍𝑍,𝐴𝐴 −𝑀𝑀𝐸𝐸 𝑍𝑍 − 1,𝐴𝐴

• For several cases near stability, more than one type is possible, e.g.
• An estimate for β instability for the nuclear landscape

can be determined by finding the minimum 𝑍𝑍 for a
given 𝐴𝐴 using the semi-empirical mass formula
(See homework #3)

• Unsurprisingly, the agreement with the
valley of β stability is excellent:
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Atomic mass excesses have the electron 
masses included, so it’s only for positron 
emission that we have to take into account 
that we will not be gaining an electron with 
the atom, but instead effectively losing one.
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“9 out of 10 professional nuclei agree,
β decay is the preferred mode of disintegration”



β decay in nuclear astrophysics (selected examples)
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Type I X-ray bursts (Woosley et al. ApJS 2004)

*all important half-lives for the rp-process have been 
determined experimentally to sufficient precision

r-process nucleosynthesis
(Mumpower et al. Prog. Nucl. Part. Phys (2016))



β decay spectrum, spin conservation, and the neutrino
• Early experiments investigating the “β ray” showed that it was

not emitted with a singular energy, like the “α ray”,
but rather in a continuum of energies

• Though the maximum energy is equal to the decay Q-value
• Furthermore, the reaction 𝑛𝑛 → 𝑝𝑝 + 𝑒𝑒− doesn’t conserve spin!

• 𝐽𝐽𝑛𝑛 = 𝐽𝐽𝑝𝑝 = 𝐽𝐽𝑒𝑒 = 1
2 … so 0 ≤ 𝐽𝐽𝑝𝑝 + 𝐽𝐽𝑒𝑒 ≤ 1 ≠ 1
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• To remedy this issue, Pauli proposed the involvement of a 3rd

hypothetical particle, the neutrino ν
• Given the above considerations, it was postulated that ν

is a spin-½ particle (“fermion”) that it is massless* and electrically neutral
(of course this isn’t quite true, but true enough for our purposes)

• In one of his last works before switching to primarily performing experimental work,
Fermi postulated (E. Fermi, Z. Phys. 1934) that nucleons could act as sources & sinks of electrons and 
neutrinos, in analogy to charged particles acting as sources and sinks of photons in quantum 
electrodynamics (the only successful theory of interactions between quantum particles at that point)
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R. Evans, The Atomic Nucleus (1955)

For what it’s worth, Nature rejected Fermi’s paper for being “too remote from physical reality”

Like a proper old-timey physicist, he made this proposal not in a 
paper, but in a letter to physicist

Lisa Meitner 



Fermi theory of β decay
• Fermi posited that small perturbative interaction precipitated the β decay
• The initial state is described by the wave function of the parent nucleus in state 𝑗𝑗, Ψ𝑖𝑖 = ψ𝑝𝑝,𝑗𝑗,

whereas the final state is the product of the daughter nucleus in state 𝑘𝑘, ψ𝑑𝑑,𝑘𝑘, the electron 𝜑𝜑𝑒𝑒, 
and the neutrino* 𝜑𝜑ν, Ψ𝑓𝑓 = ψ𝑑𝑑,𝑘𝑘𝜑𝜑𝑒𝑒𝜑𝜑ν

• The transition rate for such a case is derived by solving the Schrödinger equation to 1st order in 
time-dependent perturbation theory, where the result is known as the Second Golden Rule: 
(or often as Fermi’s Golden Rule …though he didn’t originally derive it)
λ = 2𝜋𝜋

ћ Ψ𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑓𝑓 𝐻𝐻′ Ψ𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓
2
𝜌𝜌(𝐸𝐸) = 2𝜋𝜋

ћ ∫Ψ𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑓𝑓∗ 𝐻𝐻′Ψ𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑𝜏𝜏
2
𝜌𝜌(𝐸𝐸𝑓𝑓)

• The qualitative picture is that the transition rate is constant and depends only on two parts:
• the density of final states to which the decay can proceed

(i.e. # of ways e- and ν can share the decay energy 𝐸𝐸𝑓𝑓)
• the “matrix element” describing the interaction

(i.e. description of initial state 𝑖𝑖 to one of many possible final states 𝑓𝑓)
• 𝜌𝜌(𝐸𝐸𝑓𝑓) is a phase-space factor described by kinematics
• The matrix element describes the wave-function overlap between initial and final states,

so a theoretical description requires calculating these wave functions
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*(of course it’s an antineutrino, but that’s cumbersome to say and it doesn’t matter here)



β decay phase space factor
• The decay phase-space 𝜌𝜌 𝐸𝐸𝑓𝑓 = 𝑑𝑑𝑛𝑛

𝑑𝑑𝐸𝐸
describes how many ways 𝐸𝐸𝑓𝑓 can be split between e- and ν

• The number final states available is:
𝑑𝑑𝑛𝑛 = # 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒 𝑖𝑖𝑛𝑛 𝑣𝑣𝑒𝑒𝑒𝑒𝑢𝑢𝑚𝑚𝑒𝑒 𝑉𝑉 𝑒𝑒𝑓𝑓 𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑒𝑒𝑢𝑢𝑚𝑚 𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒𝑒𝑒 𝑤𝑤𝑖𝑖𝑒𝑒𝑤 𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑒𝑒𝑢𝑢𝑚𝑚 𝑏𝑏𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑛𝑛 𝑝𝑝𝑒𝑒 𝑠𝑠𝑛𝑛𝑑𝑑 𝑝𝑝𝑒𝑒 + 𝑑𝑑𝑝𝑝𝑒𝑒

×
(# 𝑛𝑛𝑒𝑒𝑢𝑢𝑒𝑒𝑒𝑒𝑖𝑖𝑛𝑛𝑒𝑒𝑒𝑒 𝑖𝑖𝑛𝑛 𝑣𝑣𝑒𝑒𝑒𝑒𝑢𝑢𝑚𝑚𝑒𝑒 𝑉𝑉 𝑒𝑒𝑓𝑓 𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑒𝑒𝑢𝑢𝑚𝑚 𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒𝑒𝑒 𝑤𝑤𝑖𝑖𝑒𝑒𝑤 𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑒𝑒𝑢𝑢𝑚𝑚 𝑏𝑏𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑛𝑛 𝑝𝑝ν 𝑠𝑠𝑛𝑛𝑑𝑑 𝑝𝑝ν + 𝑑𝑑𝑝𝑝ν)

• The number of available electron states between 𝑝𝑝𝑒𝑒 + 𝑑𝑑𝑝𝑝𝑒𝑒 is derived
by solving for the combination of momentum components 𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦,𝑝𝑝𝑧𝑧
that satisfy our momentum criterion:
(as we found for the nuclear level density when discussing the Fermi Gas Model)

• 𝑛𝑛 𝑝𝑝𝑒𝑒 𝑑𝑑𝑝𝑝𝑒𝑒 = 𝑉𝑉
(2𝜋𝜋ћ)3

4𝜋𝜋𝑝𝑝𝑒𝑒2𝑑𝑑𝑝𝑝𝑒𝑒
• Similarly, 𝑛𝑛 𝑝𝑝ν 𝑑𝑑𝑝𝑝ν = 𝑉𝑉

(2𝜋𝜋ћ)3
4𝜋𝜋𝑝𝑝ν2𝑑𝑑𝑝𝑝ν …so  𝑑𝑑𝑛𝑛 = 𝑉𝑉216𝜋𝜋2

(2𝜋𝜋ћ)6
𝑝𝑝𝑒𝑒2𝑝𝑝ν2𝑑𝑑𝑝𝑝𝑒𝑒𝑑𝑑𝑝𝑝ν

• For 𝑚𝑚ν = 0, 𝑝𝑝ν = 𝐾𝐾𝐸𝐸ν
𝑐𝑐

= 𝑄𝑄−𝐾𝐾𝐸𝐸𝑒𝑒
𝑐𝑐

…so, for a fixed 𝑝𝑝𝑒𝑒, 𝑑𝑑𝑝𝑝ν = 𝑑𝑑𝑄𝑄
𝑐𝑐

• As such, 𝑑𝑑𝑛𝑛 = 𝑉𝑉216𝜋𝜋2

(2𝜋𝜋ћ)6𝑐𝑐3
𝑄𝑄 − 𝐾𝐾𝐸𝐸𝑒𝑒 2𝑝𝑝𝑒𝑒2𝑑𝑑𝑝𝑝𝑒𝑒𝑑𝑑𝑄𝑄

• Meaning the change in the # of final states for a change in 𝑄𝑄 is: 𝑑𝑑𝑛𝑛
𝑑𝑑𝑄𝑄

= 𝑉𝑉216𝜋𝜋2

(2𝜋𝜋ћ)6𝑐𝑐3
𝑄𝑄 − 𝐾𝐾𝐸𝐸𝑒𝑒 2𝑝𝑝𝑒𝑒2𝑑𝑑𝑝𝑝𝑒𝑒

• Which is the 𝜌𝜌 𝐸𝐸𝑓𝑓 we were after 8

L. van Dommelen, Quantum Mechanics for Engineers (2012)



β decay phase space factor & the β energy spectrum
• Considering the β decay rate for an electron momentum within 𝑝𝑝𝑒𝑒 + 𝑑𝑑𝑝𝑝𝑒𝑒,
λ(𝑝𝑝𝑒𝑒)𝑑𝑑𝑝𝑝𝑒𝑒 = 2𝜋𝜋

ћ Ψ𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑓𝑓 𝐻𝐻′ Ψ𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓
2
𝜌𝜌(𝐸𝐸)

• The matrix element is just some number, so the functional form is from 𝜌𝜌(𝐸𝐸)
• Therefore, we expect λ 𝑝𝑝𝑒𝑒 𝑑𝑑𝑝𝑝𝑒𝑒 ∝ 𝑄𝑄 − 𝐾𝐾𝐸𝐸𝑒𝑒 2𝑝𝑝𝑒𝑒2

9

Wu & Albert, Phys. Rev (1949)

Not too bad, but what effect are we forgetting that 
will cause positrons and electrons to behave differently? Coulomb repulsion!

k



Coulomb distortion to the β spectrum
• Fermi realized that the protons in the daughter nucleus would repel e+ and attract e-, 

modifying the resultant spectrum by a factor 𝐹𝐹 𝑍𝑍𝑑𝑑𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑒𝑒𝑑𝑑 ,𝑝𝑝𝑒𝑒
(in an unfortunate convention, this coulomb distortion factor is often called the Fermi function …or a better term is the Fermi screening factor)

• 𝐹𝐹 𝑍𝑍𝑑𝑑𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑒𝑒𝑑𝑑 ,𝑝𝑝𝑒𝑒 is pretty nasty to calculate, so numerical tables are generally used instead
(See e.g. J.Reitz, Phys. Rev. (1949))

• A non-relativistic approximation that works for nuclides with 𝑍𝑍𝑑𝑑𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑒𝑒𝑑𝑑 ≪ 2 � 137 is
(See R. Evans, The Atomic Nucleus (1955) for the relativistic version that works well for all Z)

𝐹𝐹 𝑍𝑍𝑑𝑑𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑒𝑒𝑑𝑑 ,𝑝𝑝𝑒𝑒 ≈ 2𝜋𝜋𝑦𝑦
1−𝑒𝑒−2𝜋𝜋𝜋𝜋

, 

where 𝑦𝑦 ≡ ±𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑𝛼𝛼
𝑝𝑝𝑒𝑒𝑐𝑐

𝐸𝐸𝑒𝑒, 𝛼𝛼 ≈ 1/137,
𝐸𝐸𝑒𝑒 = 𝑚𝑚𝑒𝑒𝑒𝑒2 + 𝐾𝐾𝐸𝐸𝑒𝑒,
and + is for β- decay and − is for β+ decay

• An improvement to this approximation is to multiply
it by the factor 𝑝𝑝𝑒𝑒2 1 + 4𝛾𝛾2 − 1 𝑆𝑆, where 𝛾𝛾 = 𝛼𝛼𝑍𝑍,
𝑆𝑆 = 1 − 𝛼𝛼2𝑍𝑍2 − 1, with 𝛼𝛼 as the fine-structure
constant. It is “accurate to about 1%”
(Venkataramaiah et al. JPG 1985)

10



β decay matrix element
• Though the phase-space factor and Coulomb distortion give us the β spectrum,

we still need to evaluate the initial/final wave function overlap to get the decay rate

• ∫𝛹𝛹𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑓𝑓∗ 𝐻𝐻′𝛹𝛹𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑𝜏𝜏
2

= ∫ψ𝑑𝑑,𝑘𝑘
∗ 𝜑𝜑𝑒𝑒∗𝜑𝜑ν∗𝐺𝐺𝐹𝐹ψ𝑝𝑝,𝑗𝑗𝑑𝑑𝜏𝜏

2
, where 𝐺𝐺𝐹𝐹 is the constant describing the 

perturbation (the Fermi coupling constant 𝐺𝐺𝐹𝐹 ≈ 8.9 × 10−5𝑀𝑀𝑒𝑒𝑉𝑉 � 𝑓𝑓𝑚𝑚3)

• The neutrino free-streams out, so it is treated as an outgoing plane wave 𝜑𝜑ν∗ = 1
𝑉𝑉
𝑒𝑒−𝑖𝑖�⃗�𝑝ν�

𝑑𝑑
ћ

• The electron has more of an interaction with the nucleus, but the Coulomb part is taken care of 
by the Coulomb distortion from earlier, so it is also treated as a plane wave 𝜑𝜑𝑒𝑒∗ = 1

𝑉𝑉
𝑒𝑒−𝑖𝑖�⃗�𝑝𝑒𝑒�

𝑑𝑑
ћ

• To first order in a Taylor expansion, 𝑒𝑒−𝑖𝑖(�⃗�𝑝ν+�⃗�𝑝𝑒𝑒)�𝑑𝑑ћ ≈ 1 −−𝑖𝑖 �⃗�𝑝ν + �⃗�𝑝𝑒𝑒 � 𝑑𝑑ћ + ⋯ ≈ 1,
(we’ll consider higher orders later)

so: ∫ψ𝑑𝑑,𝑘𝑘
∗ 𝜑𝜑𝑒𝑒∗𝜑𝜑ν∗𝑔𝑔ψ𝑝𝑝,𝑗𝑗𝑑𝑑𝜏𝜏

2 ≈ 𝐺𝐺𝐹𝐹
2

𝑉𝑉2 ∫ψ𝑑𝑑,𝑘𝑘
∗ ψ𝑝𝑝,𝑗𝑗𝑑𝑑𝜏𝜏

2 ≡ 𝐺𝐺𝐹𝐹
2

𝑉𝑉2
𝑀𝑀𝑓𝑓𝑖𝑖

2

• 𝑀𝑀𝑓𝑓𝑖𝑖
2

is the overlap between wave-function for state 𝑗𝑗 of the parent nucleus and the wave-
function for state 𝑘𝑘 of the daughter nucleus and is known as the nuclear matrix element

11

λ = 2𝜋𝜋
ћ �𝜳𝜳𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇

∗ 𝑯𝑯′𝜳𝜳𝒇𝒇𝒇𝒇𝒇𝒇𝒊𝒊𝒇𝒇𝒇𝒇𝒇𝒇𝒅𝒅𝝉𝝉

𝟐𝟐

𝜌𝜌(𝐸𝐸𝑓𝑓)

The dimensionless form of this coupling constant is GF*(MWc2)2/(√2*4π(ћc)3) ≡ αW ~ 10-3*αfs …so it’s “weak”

i.e. no angular 
momentum transfer



β decay rate per electron momentum 
• Combining all the pieces,
λ 𝑝𝑝𝑒𝑒 𝑑𝑑𝑝𝑝𝑒𝑒 = 2𝜋𝜋

ћ
𝐺𝐺𝐹𝐹
2

𝑉𝑉2
𝑀𝑀𝑓𝑓𝑖𝑖

2𝐹𝐹 𝑍𝑍𝑑𝑑 ,𝑝𝑝𝑒𝑒
𝑉𝑉216𝜋𝜋2

(2𝜋𝜋ћ)6𝑐𝑐3
𝑄𝑄 − 𝐾𝐾𝐸𝐸𝑒𝑒 2𝑝𝑝𝑒𝑒2𝑑𝑑𝑝𝑝𝑒𝑒

• Cancelling & consolidating: 𝝀𝝀 𝒑𝒑𝒆𝒆 𝒅𝒅𝒑𝒑𝒆𝒆 = 𝑮𝑮𝑭𝑭
𝟐𝟐

𝟐𝟐𝝅𝝅𝟑𝟑ћ𝟕𝟕𝒄𝒄𝟑𝟑
𝑴𝑴𝒇𝒇𝒇𝒇

𝟐𝟐𝑭𝑭 𝒁𝒁𝒅𝒅,𝒑𝒑𝒆𝒆 𝑸𝑸 − 𝑲𝑲𝑲𝑲𝒆𝒆 𝟐𝟐𝒑𝒑𝒆𝒆𝟐𝟐𝒅𝒅𝒑𝒑𝒆𝒆
• This provides us with a neat way to ascertain the decay Q-value
• From the bold equation,

we see 𝝀𝝀 𝒑𝒑𝒆𝒆
𝒑𝒑𝒆𝒆𝟐𝟐𝑭𝑭 𝒁𝒁𝒅𝒅,𝒑𝒑𝒆𝒆

∝ 𝑴𝑴𝒇𝒇𝒇𝒇 𝑸𝑸 − 𝑲𝑲𝑲𝑲𝒆𝒆

• This yields a straight line which intersects the
horizontal axis at 𝑲𝑲𝑲𝑲𝒆𝒆 = 𝑸𝑸

• This type of plot is known as a Kurie plot
• Note that this simple form only applies to

“allowed transitions”
…which we’ll discuss more about in a moment

12

𝜆𝜆 = 2𝜋𝜋
ћ �𝛹𝛹𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑓𝑓∗ 𝐻𝐻′𝛹𝛹𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑𝜏𝜏

2

𝜌𝜌(𝐸𝐸𝑓𝑓)

You may have worried that things 
depended on the nuclear volume 
V, but now you can see it cancels

R. Evans, The Atomic Nucleus (1955)

Q=1.989MeV



Aside: ν mass from the Kurie plot 
• It turns out that incorporating a non-zero neutrino mass into the phase-space factor calculation 

yields 𝜆𝜆 𝑝𝑝𝑒𝑒 𝑑𝑑𝑝𝑝𝑒𝑒 = 𝐺𝐺𝐹𝐹
2

2𝜋𝜋3ћ7𝑐𝑐3
𝑀𝑀𝑓𝑓𝑖𝑖

2𝐹𝐹 𝑍𝑍𝑑𝑑 ,𝑝𝑝𝑒𝑒 𝑄𝑄 − 𝐾𝐾𝐸𝐸𝑒𝑒 2𝑝𝑝𝑒𝑒2 1 − 𝑚𝑚ν
2𝑐𝑐4

𝑄𝑄−𝐾𝐾𝐸𝐸𝑒𝑒 2 𝑑𝑑𝑝𝑝𝑒𝑒

• Fermi realized one could possibly use this to determine 𝑚𝑚ν

• The best shot of doing this would be for small 𝑄𝑄,
for which tritium (𝑄𝑄 ≈ 18.6𝑘𝑘𝑒𝑒𝑉𝑉) is the best case

• Limits from such measurements place
𝑚𝑚ν𝑒𝑒 < 1.1𝑒𝑒𝑉𝑉 (KATRIN Collaboration, M. Aker et al. PRL 2019)) 

13

E. Fermi, Z.Phys. (1934)

R. Evans, The Atomic Nucleus (1955)

This is complementary to the more stringent 
limit placed by astronomical observations: 

Σmν<0.3eV
(A. Goobar et al. JCAP (2006))



Aside: nuclear mass from the Kurie plot 
• Of course the end-point of the Kurie plot can also be used to obtain nuclear masses, assuming 

the mass of the less-exotic nucleus in the decay is known 
• This is known as the “β end-point method”

…which has fallen out of favor lately due to systematic discrepancies with higher-precision techniques

14

I. Dillman et al. PRL (2003)
S. Rinta-Antila et al. PRC (2004)

β end-point

Penning Trap



• All that’s left is to integrate over the momentum distribution
𝜆𝜆 = 𝐺𝐺𝐹𝐹

2

2𝜋𝜋3ћ7𝑐𝑐3
𝑀𝑀𝑓𝑓𝑖𝑖

2
∫0
𝑝𝑝𝑚𝑚𝑑𝑑𝑚𝑚 𝐹𝐹 𝑍𝑍𝑑𝑑 ,𝑝𝑝𝑒𝑒 𝑄𝑄 − 𝐾𝐾𝐸𝐸𝑒𝑒 2𝑝𝑝𝑒𝑒2𝑑𝑑𝑝𝑝𝑒𝑒 , where 𝑝𝑝𝑚𝑚𝑓𝑓𝑥𝑥𝑒𝑒 = 𝑄𝑄2 −𝑚𝑚𝑒𝑒

2𝑒𝑒4

• Unfortunately, life is hard and so is that integral
• The dimensionless Fermi integral is defined as:
𝑓𝑓 𝑍𝑍𝑑𝑑 ,𝑄𝑄 ≡ 1

𝑚𝑚𝑒𝑒𝑐𝑐 3 𝑚𝑚𝑒𝑒𝑐𝑐2 2 ∫0
𝑝𝑝𝑚𝑚𝑑𝑑𝑚𝑚 𝐹𝐹 𝑍𝑍𝑑𝑑 ,𝑝𝑝𝑒𝑒 𝑄𝑄 − 𝐾𝐾𝐸𝐸𝑒𝑒 2𝑝𝑝𝑒𝑒2𝑑𝑑𝑝𝑝𝑒𝑒

and numerical integration or tables of solutions are used to evaluate it
• Our tidy expression for the total decay rate (a.k.a. the decay constant) is therefore,
𝜆𝜆 = 𝐺𝐺𝐹𝐹

2𝑚𝑚𝑒𝑒
5𝑐𝑐4

2𝜋𝜋3ћ7
𝑀𝑀𝑓𝑓𝑖𝑖

2𝑓𝑓 𝑍𝑍𝑑𝑑 ,𝑄𝑄 = ln(2)
𝑖𝑖½

• Since 𝑄𝑄 and 𝑒𝑒½ can be determined experimentally, the “comparative half-life” 𝑓𝑓 𝑍𝑍𝑑𝑑 ,𝑄𝑄 𝑒𝑒½ is 
used to determine the matrix element 𝑓𝑓𝑒𝑒 = 2ln(2)𝜋𝜋3ћ7

𝐺𝐺𝐹𝐹
2𝑚𝑚𝑒𝑒

5𝑐𝑐4
1

𝑀𝑀𝑓𝑓𝑓𝑓
2

• Alternatively, a calculation of the wave-function overlap can be used to determine 𝑒𝑒½ if 
experimental data or theoretical calculations are available for 𝑄𝑄

• Because 𝑒𝑒½(β) for nuclei spans orders of magnitude for nuclei, log10(𝑓𝑓𝑒𝑒) is often quoted
15

Total β decay rate and the 𝑓𝑓𝑒𝑒 value

Evaluating the Fermi integral shows 
λ∝Q5, which is known as “Sargent’s Rule”



The Fermi integral

16

R. Evans, The Atomic Nucleus (1955) …a similar open-source plot is in L. van Dommelen’s Quantum Mechanics for Engineers  

In case you find yourself 
needing to calculate the 
f(Zd,Q), use a graph such 
as this one, which was 
determined numerically.

Could instead reproduce 
the calculations of 
Towner & Hardy PRC 
2015, pgs. 015501.



Fundamental physics with super-allowed transitions
• For mirror nuclei (swapped 𝑁𝑁 & 𝑍𝑍), decays between states with identical 𝐽𝐽𝜋𝜋 (always 0+ to 0+) the initial 

and final state wave functions are expected to be nearly identical, so 𝑀𝑀𝑓𝑓𝑖𝑖
2 = 1

• Such transitions are called “super-allowed”
• E.g. 14O(0+)→14N(0+)+e-+ νe, Q=2.831MeV

•From the Fermi integral plot on the previous page, 𝑓𝑓 ≈ 102.5

•So 𝑒𝑒½ = 2ln(2)𝜋𝜋3ћ7

𝐺𝐺𝐹𝐹
2𝑚𝑚𝑒𝑒

5𝑐𝑐4
1
𝑓𝑓
≈ 2 ln 2 𝜋𝜋3 ћ𝑐𝑐 7

𝐺𝐺𝐹𝐹
2 𝑚𝑚𝑒𝑒𝑐𝑐2 5𝑐𝑐

1
𝑓𝑓
≈ 20𝑒𝑒

•The actual 𝑒𝑒½ ≈ 70𝑒𝑒 …which isn’t half bad
for reading off of a steeply logarithmic plot!

• It turns out that, given adequate corrections,
super-allowed transitions all seem to obey
𝑀𝑀𝑓𝑓𝑖𝑖

2 = 1, which is something known  as
the conserved vector current (CVC)
hypothesis.

• Any deviation from this would imply
physics beyond the standard model 17

Hardy & Towner, PRC (2015)

several corrections are responsible for 𝑓𝑓 → F



Gamow-Teller β decay transitions
• Earlier, when we made the approximation for the electron and neutrino wave functions that 

we could take the first term of the Taylor expansion: 𝑒𝑒−𝑖𝑖(�⃗�𝑝ν+�⃗�𝑝𝑒𝑒)�𝑑𝑑ћ ≈ 1,
we consequently made the result that the β decay would result in no angular momentum 
transfer (because we ignored the terms with �⃗�𝑝 � 𝑒𝑒)

• And yet, some observed transitions with ∆𝐽𝐽 = 1 (or with ∆𝐽𝐽 = 0 from a non-0+ state) yield 
lifetimes as if they’re not reduced by the amount one would expect from the angular 
momentum transfer

• These cases, Gamow-Teller decays, happen due to the coupling of spin between the electron 
and the neutrino, which can be anti-aligned (𝑆𝑆 = 0) or aligned (𝑆𝑆 = 1)

• For the anti-aligned case, zero angular momentum is carried away and parity is conserved
…these are the Fermi decays we’ve covered thus far

• For the aligned case, 1 or 0 units of angular momentum can be carried away and parity is still 
conserved ….these are Gamow-Teller decays

• Note that GT decays cannot happen from 0+ to 0+,
since spin 0 (from the beta-decaying nucleus) and 1 (from 𝑆𝑆 = 1) can only combine to be 1

• For GT decays, the wavefunction overlap won’t be as good as for 0+ to 0+, so these decays are 
“allowed” but never “super allowed” 18

𝜆𝜆 = 2𝜋𝜋
ћ �𝛹𝛹𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑓𝑓∗ 𝐻𝐻′𝛹𝛹𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑𝜏𝜏

2

𝜌𝜌(𝐸𝐸𝑓𝑓)



Decay selection rules and “forbidden” decays
• As was just alluded to, ignoring higher-order terms of the 𝑒𝑒−𝑖𝑖(�⃗�𝑝ν+�⃗�𝑝𝑒𝑒)�𝑑𝑑ћ Taylor expansion omits 

the possibility for angular momentum transfer
• If angular momentum transfer is to occur, higher-order terms need to be included and it will 

no longer be the case that 𝑀𝑀𝑓𝑓𝑖𝑖
2

is independent of 𝑝𝑝𝑒𝑒

• In fact, for these cases ∆𝐽𝐽 > 1 and/or ∆𝜋𝜋 = 𝑦𝑦𝑒𝑒𝑒𝑒, the leading-order overlap 𝑀𝑀𝑓𝑓𝑖𝑖
2 = 0

and so a higher-order term will be necessary
• The order that’s required will correspond to the angular momentum transfer of the decay ∆𝐽𝐽
• This combined with whether or not parity is changed is referred to as how “forbidden” a 

transition is…even though it’s just a hindrance
• 0+ − 0+ → "𝑒𝑒𝑢𝑢𝑝𝑝𝑒𝑒𝑒𝑒 − 𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑑𝑑"
• 0+ − 1+ 𝑒𝑒𝑒𝑒 ∆𝐽𝐽 = 0 𝑒𝑒𝑒𝑒 1 𝑠𝑠𝑛𝑛𝑑𝑑 ∆𝜋𝜋 = 𝑛𝑛𝑒𝑒 → "𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑑𝑑"
• ∆𝐽𝐽 = 0 𝑒𝑒𝑒𝑒 1,∆𝜋𝜋 = 𝑦𝑦𝑒𝑒𝑒𝑒 → "𝑓𝑓𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑒𝑒𝑒𝑒𝑏𝑏𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑛𝑛"
• ∆𝐽𝐽 = 2,∆𝜋𝜋 = 𝑛𝑛𝑒𝑒 → "𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑 𝑓𝑓𝑒𝑒𝑒𝑒𝑏𝑏𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑛𝑛"

• For a given transition type, 𝑓𝑓𝑒𝑒 will typically be within an order of magnitude of some value
19
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𝜌𝜌(𝐸𝐸𝑓𝑓)



Empirical 𝑓𝑓𝑒𝑒 value distribution

20

W. Meyerhof, Elements of Nuclear Physics (1967)

Empirical ranges for log(ft) given a particular ∆𝐽𝐽,∆𝜋𝜋 are available in compilations,
e.g. B. Singh et al. Nuclear Data Sheets (1998) .
For a given ∆𝐽𝐽,∆𝜋𝜋 plausible values of log(ft) often range within ±1.5 of the median, i.e. this gets you a ballpark value.

Loveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006)

https://doi.org/10.1006/ndsh.1998.0015


Tabular method to find 𝑓𝑓𝑒𝑒 value 
• Supposing you know the (state-to-state) Q-value and half-life, 𝑓𝑓𝑒𝑒 can be evaluated using a graphical/tabular 

method that summarizes the result of a large number of analytic calculations (S.Moszkowski, Phys.Rev. (1951))  

• log 𝑓𝑓𝑒𝑒 = log 𝑓𝑓0𝑒𝑒 + log 𝐸𝐸 + ∆log(𝑓𝑓𝑒𝑒), where log 𝑓𝑓0𝑒𝑒 is from (1), log 𝐸𝐸 from (2), and ∆log(𝑓𝑓𝑒𝑒) from (3)

21

(1) (2) (3)

p=branching %

https://dx.doi.org/10.1103/PhysRev.82.35


NNDC’s online calculator for 𝑓𝑓𝑒𝑒 values
• If you already have experimental information about the decay, such as the Q-value and half-life, you can directly 

calculate the ft-value with the NNDC’s online calculator at https://www.nndc.bnl.gov/logft/

https://www.nndc.bnl.gov/logft/


Using 𝑓𝑓𝑒𝑒 for spectroscopy
• Since we established 𝑓𝑓𝑒𝑒 is linked to a particular ∆𝐽𝐽,∆𝜋𝜋, a measurement of 𝑓𝑓𝑒𝑒 can constrain 𝐽𝐽𝜋𝜋 of 

an unknown state if the β decay proceeds from a state with known 𝐽𝐽𝜋𝜋

• Nuclear masses combined with γ ray energy
measurements provide the transition Q-value,
i.e. 𝑓𝑓

• The % of the time the decay proceeds
through a given state (the branching ratio)
gives the partial half-life for that decay
(𝑒𝑒½𝑋 = 𝑖𝑖½

𝐵𝐵𝑑𝑑𝑓𝑓𝑛𝑛𝑐𝑐𝑑𝑖𝑖𝑛𝑛𝑑𝑑
), i.e. 𝑒𝑒

• Given knowledge of the  parent 𝐽𝐽𝜋𝜋
(always 0+ for even-even nuclei), one can infer
𝐽𝐽𝜋𝜋 for the daughter state

23

Loveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006)

I. Dillman et al. PRL (2003)



λ for Electron capture
• Rather than a nucleon undergoing transmutation by its lonesome, instead e--capture can occur
• This is either due to a capture of a low-lying (usually the “K-shell”) electron or due to the electron 

Fermi energy in an electron-degenerate environment being high enough to overcome the 
electron-capture Q-value

• The decay constant for electron-capture decay is a bit different than for β decay, because the 
final state only consists of a nucleon and a neutrino … i.e. 𝐾𝐾𝐸𝐸𝑒𝑒 = 0 and Ψ𝑓𝑓 = ψ𝑑𝑑,𝑘𝑘𝜑𝜑ν

• The decay constant is then: 𝜆𝜆 = 𝐺𝐺𝐹𝐹
2

2𝜋𝜋3ћ3𝑐𝑐3
𝑀𝑀𝑓𝑓𝑖𝑖

2𝑇𝑇ν2 𝜑𝜑𝐾𝐾(0) 2,
where 𝜑𝜑𝐾𝐾(0) is the wave-function for the inner-most atomic electron (the one in the “K-shell”)

• You may recall from your Quantum class, 𝜑𝜑𝐾𝐾 0 = 1
𝜋𝜋

𝑍𝑍𝑚𝑚𝑒𝑒𝑒𝑒2

4𝜋𝜋𝜀𝜀0ћ2

3/2

• As such, the ratio of electron-capture to β+ decay for a nucleus goes as λ𝐾𝐾
λβ+

∝ 𝑍𝑍3

(of course, 𝑄𝑄𝛽𝛽 > 2𝑚𝑚𝑒𝑒 is a requirement for β+ decay to be possible in the first place)
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𝜌𝜌(𝐸𝐸𝑓𝑓)

Since EC decay only emits a neutrino, which will be almost impossible for us to detect, 
how do you figure EC decay is usually detected? X-ray and Auger electron emission due to 

atomic electrons filling the vacated orbital



Urca cooling: EC-β- cycling
• In extremely dense environments, electrons are 

degenerate, meaning that electrons are available with 
an energy equal to the electron fermi energy 𝐸𝐸𝐹𝐹,𝑒𝑒

• When 𝐸𝐸𝐹𝐹,𝑒𝑒 ≈ 𝑄𝑄𝐸𝐸𝐸𝐸 , electron capture will proceed

• However, when 𝐸𝐸𝐹𝐹,𝑒𝑒 − 𝑄𝑄𝐸𝐸𝐸𝐸 ≲ 𝑘𝑘𝐵𝐵𝑇𝑇, there is some 
phase-space open near the Fermi surface for β- decay 
to occur [note that normally an electron would be forbidden from re-entering 
the environment due to Pauli exclusion]

• In these sweet spots, EC-β- cycling occurs, releasing two 
neutrinos with each cycle

• The neutrinos carry away energy with them and hence 
the phenomenon is known as Urca cooling

• 𝐿𝐿ν ∝
𝑄𝑄5𝑇𝑇5

𝑓𝑓𝑖𝑖′
, where 𝑓𝑓𝑒𝑒′ =

𝑓𝑓𝑖𝑖𝐸𝐸𝐸𝐸+𝑓𝑓𝑖𝑖𝛽𝛽
2

[The 𝑓𝑓𝑒𝑒-values are different because of the different spin-
degeneracy of the parent state. This is usually negligible because 
𝑓𝑓𝑒𝑒 is often uncertain by orders of magnitude.]

25

B. Paxton et al. ApJS 2016

H.Schatz et al Nature (2014)

𝑓𝑓𝑒𝑒 𝛽𝛽

2𝐽𝐽𝛽𝛽 + 1
=

𝑓𝑓𝑒𝑒 𝐸𝐸𝐸𝐸

2𝐽𝐽𝐸𝐸𝐸𝐸 + 1
where 𝐽𝐽 is for the parent state



Urca cooling in astrophysics (selected examples)

26

Core temperature evolution for 
accreting ONe WDs

(Schwab, Bildsten, & Quataert MNRAS (2017))

Light curves of neutron star cooling 
following accretion turn-off

(Meisel & Deibel, Astrophys. J. (2017))



Transition Strengths: B(F) and B(GT)
• Theoretical calculations of weak transition rates characterize such rates with transition strengths, 

where B(F) and B(GT) are the Fermi and Gamow-Teller transition strengths, respectively
• Each is described by he modulus-square of the expectation value

of the relevant transition operator
[See e.g. : Lecture Notes in Nuclear Structure Physics (B.A. Brown)]

• Their sum is inversely proportional to the comparative half-life: 𝑓𝑓𝑒𝑒 ∝ 1
𝐵𝐵 𝐹𝐹 +𝐵𝐵(𝐺𝐺𝑇𝑇)

• B(GT) is also handy because it can be deduced from charge-exchange measurements:

27

M. Sasano et al. PRL (2011)

https://people.nscl.msu.edu/%7Ebrown/Jina-workshop/BAB-lecture-notes.pdf


Parity Non-Conservation
• For α-decay, parity was an important consideration for selection rules
• Transitions were only possible for which the parity change was ∆𝜋𝜋 = (−1)𝑓𝑓

• For weak transitions, this is not the case
• It was demonstrated by observing the 60Co β-decay

angular distribution for 60Co with its spin aligned
along and against a magnetic field

• If parity were conserved, reflecting the spatial
coordinates (by preparing 60Co as spin down
instead of spin up) shouldn’t change the β angular
distribution…but it did

• This showed weak transitions don’t conserve parity
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Further Reading
• Chapter 8: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)
• Chapter 7: Nuclear & Particle Physics (B.R. Martin)
• Chapter 14, Section 19: Quantum Mechanics for Engineers (L. van Dommelen)
• Chapter 15: Introduction to Special Relativity, Quantum Mechanics, and Nuclear Physics for 

Nuclear Engineers (A. Bielajew)
• Chapter 4: Lecture Notes in Nuclear Structure Physics (B.A. Brown)
• Chapter 17: The Atomic Nucleus (R. Evans)
• Chapter 16: Elementary Nuclear Theory (H. Bethe)
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