Lecture 5: Nuclear Structure 3

* Fermi Gas Model
* Microscopic approach
e Thermodynamic approach

* Nuclear level density




The nucleus as a Fermi gas

*To now we’ve focused on nuclear properties for cases where a few degrees of freedom dominate
*E.g. a single uncoupled nucleon in a spherical well (shell model)
*E.g. a collective rotation or vibration of nucleons in the nucleus (collective model)
*E.g. a single uncoupled nucleon in a deformed well along with a collective rotation (Nilsson model)

eHowever, a typical nucleus has many nucleons and therefore many degrees of freedom

*These will become important in particular for highly-excited nuclei, since many degrees of
freedom will then be relevant

*As such, we can understand some nuclear properties from the viewpoints of statistical mechanics
and thermodynamics

*Since our neutrons and protons are spin-1/, particles, they’re fermions and so Fermi-Dirac
statistics will apply

*Protons and neutrons are treated as two independent systems of fermions

*The approach of treating a nucleus as a fluid of fermions is known as the Fermi gas model



Nuclear properties from a microscopic picture

e Our nucleons are fermions (i.e. they obey Pauli exclusion) and are confined to a fixed volume by
the potential they collectively generate -
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e Therefore, the nucleons will fill the available
single-particle levels, upward in energy from the
lowest level until we run out of nucleons
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e At zero temperature, the nucleons fill all levels up
to the Fermi energy, E, which we can find by finding . A B
the properties of the highest filled level TR e "
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* Nucleons confined to a rectangular box with side-lengths L, = L,, = L, = L will each occupy
an orbital that corresponds to one solution to the Schrédinger equation for a standing wave in a
box, Y(x,y,z) = C sin(k,x) sin(kyy) sin(k,z), where the wave number components k;
correspond to the principal quantum number n; via k; = nz—n

* Each single-particle level corresponds to a unique combination of ny, n,, n,,

which can be assigned to a single lattice point in k-space

* Since allowed values of n; are integers, the spacing between each lattice point is%



Nuclear properties from a microscopic picture

* The number of unique combinations of n,, n,, n, with wave number k, = \/k,% + ka, + k2 less

than some wave number k; is approximated by the volume of an octant of a sphere
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e Since our nucleons will fill all available levels up the Fermi level,
“Niepers corresponds to how many of a type of nucleon our nucleus has,
I.e. Njppers = Z for our proton gas and Nj,0;s = N for our neutron gas

* The length of the “box” is just the nuclear radius L = R = rOAl/Bfm

k.

e Therefore, the Fermi wave numbers for our protons and neutrons are L va Gommmelen, Quantut Mechanics for Engineers (2012
1 1
I _m(2z\/3 . _m (2N /3 Here the Fermi . _ p? w2k
fprotons = T\, » tf meutrons = 7\ 57 , WNEre tne rermi energy tr = - = ——~
e Using g = 1.2 fm, m =~ 931.5MeV /c?, and hc = 197MeV fm, This corresponds to a
2 2

/3 Lorentz factor of

/
Erp ~51(2) " MeV and Epp, ~ 51(%) " .50, forZ = N, Ep ~ 32MeV_ =102, <o our non-

relativistic treatment

Iy F Exgp?dp _3DPF 3 seems safe.

= -Ef = 20MeV,forZ = N
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» The average kinetic energy (Exg) = PFpzap  52m



Estimating nuclear properties from microscopic system properties

Z or N

2
/
 Consider the average kinetic energy of our nucleons, (Exz) = 30.6 ( ) ’ MeV

. _ E __ 2mh
*The de Broglie wavelength A =~ = ——

e Form ~ 931.5MeV /c? and hc = 197MeV fm, A =

5.15
(Z or N)1/3

1
A3

esoforZ =N = %, A=41fm
e Compare to the heaviest stable Z = N isotope, 4°Ca
« R(*°Ca) ~ 1.2(40) /3 fm = 4.1fm

 Now consider the total kinetic energy of the nucleons

e We can estimate the total kinetic energy as: Exp = Z(EKE,Z> + N(EKE’N)
e From the virial theorem (2*KE=n*PE, where V(r)~r". For a potential V(r) « 7?2, like a harmonic oscillator), EPE = EKE
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e So an estimate for the binding energy per nucleon is = ZE = 30.6 i

e For Z, N corresponding to most stable nuclides, this gives: ITTE ~ 19MelV/

e Compare to the bulk-binding term of the SEMF, a,A, where a, = 15Mel/




Implications of the Fermi levels
e Protons and neutrons each fill available levels up to

their respective Fermi levels
e For each case, the Fermi level must be ~8 MeVl below the to

of the potential well, since BE/A~8MeV for stable nuclides

~25MeV

eFor N = Z,Er = 32MeV, so the potential well depth is
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e However, protons suffer from Coulomb repulsion,

and so their potential well depth is somewhat more shallow

e As such, it takes fewer protons to fill single-particle levels

up to the same binding energy
e If there is a mismatch in the neutron and proton Fermi levels

(which is greater than M,, — (M, + M,)), then it is energetically
favorable for a neutron to transmute into a proton or vice versa
2
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* By expanding our estimate on the previous slide
for BE in terms of N — Z, it turns out BE ~ 2Ep + 2Ef

revealing the asymmetry term from the SEMF
* This estimates a, = 43, where the SEMF fit yields a, = 90
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Single-particle and nuclear levels
* Note that in our single-particle level diagram, ‘ : 0
the level spacing decreases as the level energy increases 78 3[“;}%)
- 147 (kL3 o Y= =
 This is a consequence of the fact that Ny 0 (k) = =— (—) =
. . . . 83 T[hzkz ~e25MeV = .!’
and so the spacing between single particle energies € = — \ ]
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e The actual excitation energy E,. of a nucleus is determined by
the sum of single-particle energies
e The number of ways to achieve E, for various combinations of € of our N

fermions is a problem of combinatorics
 For the approximation of constant single-particle level spacing d,

the excitation energy is some integer multiple M of the level spacing
e To find the number of ways we can arrange our N fermions to achieve M,
we have the problem from number theory finding the partitions of integers

wWe'll see this mirrors the solution to the far

e The apprOXimate solution (G.Hardy & S.Ramanujan, Proc. London Math. Soc. (1918)) for the number
of partitions (a.k.a. density of nuclear states) at an excitation energy U = Md is
forN=M more popular thermodynamic approach

exp|\m %M

pN(M) ~ V48M




Microscopic-based state density estimate: 233U

* The single-particle spacing at the Fermi level will roughly be the same as the binding energy
penalty for violating N = Z, since if we started at N=Z, adding another nucleon would, via Pauli
exclusion, fill the next single-particle level

* We derived the SEMF asymmetry term from the Fermi gas model to be a, f,(4) = =
(N-2)°

so rewriting in terms of N — Z, a, f,(A) = ZEp

* j.e. the single-particle energy level spacing will be d = f—A}’ ..which, for 238U, d = 0.103MeV

At the excitation energy required to unbind a neutron from 232U, the neutron separatlon
energy, U = 6MeV,so M = 60

e Our predicted number of partitions is then
py (M) =~ 200,000MeV 1
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e Looking at neutron-capture on 238U, the Neutron Energy (eV)

neutron-resonance spacing can be used as a
measure of the nuclear state density

e We see ~1 resonance per 20eV, so ~5 x 10* levels per MeV




Connection to thermodynamics

e Statistical mechanics links microscopic descriptions of systems with many possible states to
macroscopic thermodynamic descriptions, where the key link is the entropy S

* In the microscopic picture, it describes how many configurations are available to a system, g

S = kgln(g)
*In the macroscopic picture, it is related to the internal energy E, pressure P, volume V, chemical
potential u, particle number N, and temperature T, by the fundamental thermodynamlc relation:

dE = TdS — PdV + pdN — c

*Here, N and V aren’t changing, so dS = d?E, i.e. S(E) = fT?]f*)

*To obtain the relationship between T and E*, recall that E*

is just a sum of the single-particle energies € of the fermions excited by T
*The number of fermions excited near the Fermi surface dueto T

is proportional to the kT, but also to the density of <., Viveisskopt, Phye

single-particle levels in that energy region ANlevel = Rev. (1937) or

~=— £, (neut

+ constant| ———|

d(kpT) Bohr & Mottelson
*So the number of excited fermions is N,,. = akgT for fancier arguments e oo oo
*Each fermion will roughly have the classical thermal excitation energy € = kgT i is the
*So the excitation energy is E* = Y. &; & N,,r.&€ = akiT?, meaning T ~ -2 JE*Ja <, ‘nuclear

temperature’’



Connection to thermodynamics

dE
T(E")

 Now we can solve for our entropy: S(E) = | + constant = ka\/;dE + constant

* Since a zero-temperature system has zero entropy, S(E) = kg2vaE*
 Recall from the microscopic picture, S = kgln(g)
* So, the number of accessible configurations (a.k.a. nuclear states) for our system is

g = exp(Z\/aE*)
* The density of states is going to be proportional to the total number of states

* So, the state density p(E*) = C exp(Z\/aE*), where C is a constant

* A more careful treatment using partition functions and other statistical mechanics tools
yiEIdS: p(E*) = 12a1)Z_TE*5/4 exp(21/aE*) H. Bethe, Phys. Rev. (1936)

* Going back to our estimate for 228U and usinga = 1/d and E* = S,,, we get p =~ 3 X 10*MeV 1
e In practice, C and a are usually fit to data

e C in particular isn’t so relevant, since we can normalize p(E™) to the region at low excitation
energy where individual levels can be counted and ideally also to p(E* = S},)



Experimental results confirm the exponential behavior of p(E™)

One challenge in comparing to counts of

discrete states is knowing if your
measurement missed any levels
\

N E}

T. Ericson, Nuc. Phys. (1959)

Level density p (MeV™)

Techniques which are sensitive to the
integrated number of levels can overcome
this ...though with assistance from models
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From state density to level density

e Often times we’re not interested only in the number of states near a given excitation energy,
but rather the density of nuclear levels with some spin J, p(E*,])

e To do this, we can use a sort of neat trick that takes advantage of the fact that the density of
levels with a given J is related to the density of levels with the projection J, = M

* Say we have states of several different J and oy
we want to tally-up how many have a given spin projection M 1

 We see that only states with /] = M can have the projection M / _/" a

e Thus the count of states with M = | + 1 will only be missing the e

states that have spin J a

* Therefore, p(E*,]) = p(E*,] =M) —p(E*,] =M+ 1) AR S

M=0 J J2 I3 J4 M
e The momentum projection M of a state will be the sum of the momentum projections for the

individual nucleons M = ), m;, where there are 2j; + 1 possible values of m;

e —j; < m; < j; will be equally probable, so M will essentially be a random combination () = 0)
e Via the central limit theorem, we therefore expect the probability a state to have a given M is:

1 —J? : . .
PO, === exp(s5)  and, logically, p(E",] = M) = P(M)], * p(E")

o2



From state density to level density

*an alternative approach

As such, our IeveI den5|tyio(E* J) = p(lE* ] = M)(]+1€3E* J=M+1)is approximates p(E*,J=M) -
* — —J p(E*,J=M+1) = dp(E* ,M)/oM
p(E]) = V2m exp ’0( - V2mo? exp( p(E") and gets the same result
It turns out (See, e.g. Chapter 2: Statistigal I\/Iodels£ r Nuclear Decay (A.L. Cole)), this is apprOXimately equal to:
1
] 21+1 —Utg ]
p(E"]) = p(E*) —— exp <(sz)> = p(E")P(J)

The level-density is the state-density adjusted for the distribution of nuclear spin states,
the “spin-distribution”

As an aside, an important and often overlooked point is that we assumed states with a given J, M were
degenerate in energy and therefore we’re assuming spherical nuclei.

The variance of the spin distribution, a2 is known as the spin-cutoff parameter and it obviously impacts
our results a great deal [Often just o is referred to as the spin-cutoff parameter, so beware]

A common approach to estimating a? is to consider the nucleus as a rigid rotating body

If we assume an ensemble of nuclei each have some energy E due to the nuclear temperature T =
E*/a and that E expressed rotationally, then P(E) < exp ( mt) « P(])

h?J(J+1)

IkgT
hz

Recalling from last time that E,.,; = , we see that in this approximation g? =



a4 and the spin distribution

. IkgT
e Having found g% = —2

the moment of inertia |

e Since we assumed a spherical nucleus earlier to justify the
degeneracy of E* in M, we’ll double-down and use I for a

rigid sphere: I = 2MR*?

hZ '

now we need to estimate

e Using this and the previously derived formula for the

nuclear temperature T =

for the nuclear radius R = ryA /3: g% =

1
kp

« Using M = Am, = (931.5M¢V/ ,)A,
he = 197MeV fm, 1y ~ 1.2fm: 02 ~ 0.0144"/3

* |t turns out, fits to neutron resonances yield

a~A4/gMeV1

e Therefore, 62 ~ 0.05094"/6\/E*

E*

a

Probability, P())

E*/a, and the standard estimate

2
2Mr2A°l3 |E*
5h?2 a

0.1r

002

a -parameter, 1/MeV
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https://www-nds.iaea.org/RIPL-2/handbook/ripl2.pdf

Experimental results show
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https://www-nds.iaea.org/RIPL-2/handbook/ripl2.pdf

Spin distributions are predicted reasonably well

... though a? appears to have a weaker dependence on A and E*
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Von Egidy & Bucurescu, PRC Rapid (2008) and PRC (2009)
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Early experiments showed different behavior for p(E™) at low E*

P.Gugelot, Phys. Rev. (1951)
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Level density at low excitation energy

Von Egidy & Bucurescu, J.Phys.Conf.Ser (2012)

1000 10— T T3
e Two different approaches are commonly 100 g ,/
. * . . * 10 E_ __—————__T_-ff'"rf* _E
used fix p(E™) predictions for low E oF = "| T s ]
. : 1 ' ' 14— ' ' '
1. Back-shifted Fermi Gas Model: , 100f——200—4000£00g /ﬁ%‘“ 100 p——1000—p000 F’f’i‘}_ﬁ.ﬂ%m
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though recent literature seems to favor CT



Back-shifted Fermi gas model

 We became so enamored with our beautiful shiny new Fermi gas model that we forgot all of the lessons

from our newly abandoned shell model

* Nucleons form pairs and those pairs cost some energy to break

and having an unpaired nucleon penalizes nuclear binding

e As such, it costs less energy to form excited states for nuclei
with odd nucleons (the more the better [i.e. odd-Z and odd-N]) and

it costs more energy to form excited states for nuclei
with no odd nucleons

 This cost is the pairlnglenergy from the liquid-drop model
Apsro = lapar(\/_) ...Where it turns out Apar = 12

and reca” leven—even +1 lodd odd — _1 lodd—even =0

e All that needs to be done is to substitute
E™ for a corrected energy U = E* — Agsre

e Empirically, an additional “backshift” ¢ is subtracted as well

* For regions where data are available,
the level density at the Fermi surface a, Aggpe, and &
are allowed to vary and are fit to the data

a-parameter (MeV ™)

energy shift (MeV)
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https://www-nds.iaea.org/RIPL-2/handbook/ripl2.pdf

Constant-temperature + Fermi Gas Model

a.k.a. “Gilbert and Cameron Model’’, because Gilbert & Cameron, Can.J.Phys. (1965)
* Looking at the same phenomenon in a different way, we can take a thermodynamic approach

* Recall the num}l;)*er of accessible configurations g(E£™) exp(\/aE*) and T =~ é,/E*/a, SO
g(E™) < exp (—)

**Gd *Gg *Gd
10%
* Therefore, the change in g(E™) as a function of E™ is 10 //6
dg .
= p(E™) « = eX ( ) T e N T
aE* p( ) p _;— *|{J‘|°LILF’{M)1' ‘]lh”l L hl, "W W‘
. 1 0S(E*) 0dkgln dln(p(E* Epe G e
e Since = = 25¢ ) — Jkslng) , JIn(A( )), we see constant =7 / yd
T oE* . .OE” . JE* B | | “
T meansIn(p(E™)) is linear in E*, hence the model name * %/ 057 b /w 080 ey
S 10f (i
. . . _ ’ ! 4 . LAt
* The interpretation is that energy s 1oL Wil Wﬁ | |
goes into breaking Cooper pairs of nucleons, leaving ol 00 | e o
the temperature constant, until some energy, above 10 oo | /_5?
which the Fermi gas model is more suitable 0 L | | v
l ﬁ| 1 v Ay *."
. 10°M - | n M I T _.__
e As before, we use the correction U = E* — A, 027468 02468 02468

Cxcitation energy L [(MeV]

but we neglect the backshift for pairing 6,
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since the CT is already accounting for pairing ., ~o ¢/ e o o el @) 79 Toen, oo 1t 2oe 4

pretty good job up to moderate excitation energies



Level density data available in the IAEA RIPL-3 database

Alternatively, you can get theoretical level-density estimates from the BRUSLIB database or the TALYS code

E International Atomic Energy Agency

) Nuclear Data Services =4
u Provided by the Nuclear Data Section %Q

Databases » EXFOR | ENDF | CINDA | IBANDL | Medical | PGAA | NGAtlas | RIPL | FENDL | IRDFF

|

Reference Input Parameter Library (RIPL-3)

R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning,
S. Hilaire, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahori, Zhigang Ge, Yinlu Han,
S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii and P. Talou

Nuclear Data Sheets - Volume 110, Issue 12, December 2009, Pages 3107-3214

,,,,, N RIPL discrete levels database updated in September 2020 - it contains the correction for +X,.. levels
RIPL-3 article (Nucl. Datal |

Sheets)
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Introduction

We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations
reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Ene
(IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parame
(RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challe
carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through hi#%
nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nucle@h
modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations.
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Arguably the best single text

~ to consult on statistical
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https://www-nds.iaea.org/RIPL-3/
http://www.astro.ulb.ac.be/bruslib/
https://tendl.web.psi.ch/tendl_2019/talys.html

Implications of level density for excited state decay

When a nucleus is formed via a nuclear reaction, it may be energetically possible for the newly
formed compound nucleus to break up into different sets of components

a.k.a. decay through different channels
( Y 5 ) Decay modes for A X+n

*The probability to decay via one channel (n.30) (0.21)
or another is going to be directly ]
proportional to the number of accessible _
final levels for that channel, since !
we assume the likelihood of populating ;
any given level is equal Aoy ! o
(essentially the ergodic hypothesis)

{n.n’} (n,7)
~(ny) -

*Therefore, a higher level-density in the daughter
nucleus formed by a decay channel will increase the
likelihood of forming that daughter nucleus
(a.k.a. the cross section)

eLater, when we discuss the Hauser-Feshbach theory for nuclear reaction rates, we will see that
the level density gets multiplied by so-called Transmission coefficients to make the cross section



Level Density Impact (Selected examples)

Astrophysical Reaction Rates Special Nuclear Material Detection

Pereira & Montes, Phys.Rev.C (2016) S. Nikas et al., arXiv:2010.01698 (2020)
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Further Reading

e Chapter 6: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)

e Chapter 7: Nuclear & Particle Physics (B.R. Martin)

e Chapter 5, Section F: Introduction to Nuclear Physics & Chemistry (B. Harvey)

e Chapter 2: Statistical Models for Nuclear Decay (A.L. Cole)

e Chapter 2, Section 1i: Nuclear Structure Volume 1 (A. Bohr & B. Mottelson)

e Chapter 8 (Fermi Systems): Lecture Notes on Condensed Matter Physics (H. Glyde)
e Chapter 6: IAEA RIPL2 Handbook

e Chapter 4, Section 7: Talys User Manual

e Chapter 11: Nuclear Reactions for Astrophysics (I. Thompson & F. Nunes)


http://www.physics.udel.edu/%7Eglyde/PHYS825/Lectures/chapter_8.pdf
https://www-nds.iaea.org/RIPL-2/handbook/ripl2.pdf
http://www.talys.eu/fileadmin/talys/user/docs/talys1.8.pdf
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