Lecture 5: Nuclear Structure 3

 Fermi Gas Model
* Microscopic approach
e Thermodynamic approach

* Nuclear level density




The nucleus as a Fermi gas

*To now we’ve focused on nuclear properties for cases where a few degrees of freedom dominate
*E.g. a single uncoupled nucleon in a spherical well (shell model)
*E.g. a collective rotation or vibration of nucleons in the nucleus (collective model)
*E.g. a single uncoupled nucleon in a deformed well along with a collective rotation (Nilsson model)

eHowever, a typical nucleus has many nucleons and therefore many degrees of freedom

*These will become important in particular for highly-excited nuclei, since many degrees of
freedom will then be relevant

*As such, we can understand some nuclear properties from the viewpoints of statistical mechanics
and thermodynamics

*Since our neutrons and protons are spin-1/, particles, they’re fermions and so Fermi-Dirac
statistics will apply

*Protons and neutrons are treated as two independent systems of fermions

*The approach of treating a nucleus as a fluid of fermions is known as the Fermi gas model



Nuclear properties from a microscopic picture

e Our nucleons are fermions (i.e. they obey Pauli exclusion) and are confined to a fixed volume by
the potential they collective generate -

T

e Therefore, the nucleons will fill the available
single-particle levels, upward in energy from the
lowest level until we run out of nucleons
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e At zero temperature, the nucleons fill all levels up
to the Fermi energy, E, which we can find by finding . A
the properties of the highest filled level TR e "
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* Nucleons confined to a rectangular box with side-lengths L, = L,, = L, = L will each occupy
an orbital that corresponds to one solution to the Schrodinger equation for a standing wave in a
box, Y(x,y,z) = C sin(k,x) sin(kyy) sin(k,z), where the wave number components k;
correspond to the principal quantum number n; via k; = "Lﬂ

* Each single-particle level corresponds to a unique combination of ny, n,, n,,

which can be assigned to a single lattice point in k-space

* Since allowed values of n; are integers, the spacing between each lattice point is%



Nuclear properties from a microscopic picture

* The number of unique combinations of n,, n,, n, which wave number k, = \/k% + ka, + k2

less than some wave number kgf is approximated by the volume of an octant of a sphere
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e Since our nucleons will fill all available levels up the Fermi level,
“Niepers corresponds to how many of a type of nucleon our nucleus has,
i.e. Njppers = Z for our proton gas and Nje;s = N for our neutron gas

* The length of the “box” is just the nuclear radius L = R = r0A1/3fm

k:

e Therefore, the Fermi wave numbers for our protons and neutrons are L van Dommelen, Ouantur ichanics for ngiesrs (2012
1/ 1/ 2 21,2
w(2Z\ /3 m (2N /3 . pf  h%kf
e Using g = 1.2 fm, m =~ 931.5MeV /c?, and hc = 197MeV fm, This corresponds to a
2 2

7\“/3 N\ /3 Loventz factor of

Er, = 51 (Z) MeV and Er, =~ 51 (Z) .50, forZ = N,Er = 32MeV =102, <0 our non-
relativistic treatment

fng Exep’dp _ 3 pf 3 seems safe.

= -Er = 20MeV,forZ = N
5

* The average kinetic energy (Exg) = [PFp2qp  52m
0



Estimating nuclear properties from microscopic system properties
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/
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* Consider the average kinetic energy of our nucleons, (Exg) = 30.6 (
21th

*The de Broglie wavelength A = b

p V2mE
1
e Form ~ 931.5MeV /c? and hc ~ 197MeV fm, A ~ —> A3
(Zor N) /3

esoforZ =N = é, A=41fm
e Compare to the heaviest stable Z = N isotope, 4°Ca
e R(*°Ca) ~ 1.2(40) sfm = 4.1fm

 Now consider the total kinetic energy of the nucleons

e We can estimate the total kinetic energy as: Exp = Z<EKE,Z> + N(EKE,N)
* From the virial theorem (2*KE=n*PE, where V(r)~r". For a potential V (r) « r2, like a harmonic oscillator), EPE = EKE
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So an estimate for the binding energy per nucleon SEA == = 30.6 P VEﬂH
e For Z, N corresponding to most stable nuclides, y & 19MeV g .

e Compare to the bulk-binding term of the SEMF, a,A, where a,, = 15Mel/ B“w
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Implications of the Fermi levels

J

* Protons and neutrons each fill available levels up to
their respective Fermi levels
* For each case, the Fermi level must be ~8 MeVl/ below the to S =
of the potential well, since BE/A~8MeV for stable nuclides = /
~25MeV \— /
eFor N = Z,Er =~ 32MeV, so the potential well depth is ¥ §
Vo = Er + BE/A = 40MeV ‘g ~
* However, protons suffer from Coulomb repulsion, S
and so their potential well depth is somewhat more shallow o Keurons
* As such, it takes fewer protons to fill single-particle levels N ( | 1 ( —
up to the same binding energy f ﬂ\ o jf{' :

* If there is a mismatch in the neutron and proton Fermi levels ?1 V- H | TI ¥
(which is greater than M,, — (M,, + M,)), then it is energetically N U &Tj_?, Q_% M
favorable for a neutron to transmute into a proton or vice versa ! : He

* By expanding our estimate on the previous slide 2 — S T
72 £t Ye e
for BE in terms of N — Z, it turns out BE z%EF+§EF@, o4 S 7 . A od
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revealing the asymmetry term from the SEMF
* This estimates a, = 43, where the SEMF fit yields a, = 90



Patenfial
energy

Q

AUT rons)

kL

~25MeV

)

Single-particle and nuclear levels

* Note that in our single-particle level diagram,
14_”(

the level spacing decreases as the level energy increases
8 3 T 4

* This is a consequence of the fact that N, (k) =

h2 k2
2m
‘15

and so the spacing between single particle energies € =

ANjevel\ -1/2
goes as (—d8 ) X €
e The actual excitation energy E,. of a nucleus is determined by
the sum of single-particle energies
e The number of ways to achieve E, for various combinations of € of our N

fermions is a problem of combinatorics
* For the approximation of constant level spacing d, the excitation energy is

some integer multiple M of the level spacing
e To find the number of ways we can arrange our N fermions to achieve M,
we have the problem from number theory finding the partitions of integers
e The apprOXimate solution (G.Hardy & S.Ramanujan, Proc. London Math. Soc. (1918)) for the number
of partitions (a.k.a. density of nuclear states) at an excitation energy U = Md is
eXp(” §M> We'll see this mirrors the solution to the far
pn(M) = JasM forN=M ynore popular thermodynamic approach




Microscopic-based state density estimate: 233U

* The single-particle spacing at the Fermi level will roughly be the same as the binding energy
penalty for violating N = Z, since if we started at N=Z, adding another nucleon would, via Pauli
exclusion, fill the next single-particle level

A 2
(2-5)

* We derived the SEMF asymmetry term from the Fermi gas model to be a,f,(4) = %EF

e 2 (N=2Z)? 4
so rewriting interms of N — Z, a, f,(A) = ZE y
e i.e. the single-particle energy level spacing will be d = ?E—AF ...which, for 238U, d = 0.103MeV

At the excitation energy required to unbind a neutron from 233U, the neutron separatlon
energy, U = 6MeV,so M = 60

e Our predicted number of partitions is then
py (M) =~ 200,000MeV 1
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e Looking at neutron-capture on 238U, the Neutron Energy (eV)

neutron-resonance spacing can be used as a
measure of the nuclear state density

e We see ~1 resonance per 20eV, so ~5 x 10* levels per MeV




Connection to thermodynamics

e Statistical mechanics links microscopic descriptions of systems with many possible states to
macroscopic thermodynamic descriptions, where the key link is the entropy S

* In the microscopic picture, it describes how many configurations are available to a system, g
S = kgln(g)
*In the macroscopic picture, it is related to the internal energy E, pressure P, volume V, chemical

potential u, particle number N, and temperature T, by the fundamental thermodynamlc relation:
dE =TdS — PdV + udN 7 c

Here, N and V aren’t changing, so dS = d?E, i.e. S(E) = fT?]f*)

*To obtain the relationship between T and E*, recall that E*

is just a sum of the single-particle energies € of the fermions excited by T
*The number of fermions excited near the Fermi surface dueto T

is proportional to the kg T, but also to the density of o, Vieicskopt, Phye

single-particle levels in that energy region Lilevel = g Rev. (1937) or

=== £, [neutro

+ constant| —— |

d(kpT) Bohr & Mottelson
*So the number of excited fermions is N,,. = akgT for fancier arguments s oo oo
eEach fermion will roughly have the classical thermal excitation energy € = kgT i is the
*So the excitation energy is E* = Y &; % N,,.. € = akiT?, meaning T = L JE*ja <, ‘nuclear

temperature’’



Connection to thermodynamics

dE
T(E*)

* Now we can solve for our entropy: S(E) = f + constant = ka\/%dE + constant

* Since a zero-temperature system has zero entropy, S(E) = kgz2vVaE*

 Recall from the microscopic picture, S = kgiln(g)

* So, the number of accessible configurations (a.k.a. nuclear states) for our system is
g = exp(Z\/@)

e The density of states is going to be proportional to the total number of states

* So, the state density p(E*) = C exp(ZW), where C is a constant

* A more careful treatment using partition functions and other statistical mechanics tools
. * ” H. Bethe, Phys. Rev. (1936)
yields: p(E™) = 12a1)/fE*5/4 exp(Z\/aE ) /

* Going back to our estimate for 38U and usinga = 1/d and E* = S,,, we get p =~ 3 X 10*MeV 1

* In practice, C and a are usually fit to data

e C in particular isn’t so relevant, since we can normalize p(E™) to the region at low excitation
energy where individual levels can be counted and ideally also to p(E* = S,



Experimental results confirm the exponential behavior of p(E™)

One challenge in comparing to counts of

discrete states is knowing if your
measurement missed any levels
\

N E}

T. Ericson, Nuc. Phys. (1959)

Level density p (MeV™)

Techniques which are sensitive to the
integrated number of levels can overcome
this ...though with assistance from models
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From state density to level density

e Often times we’re not interested only in the number of states near a given excitation energy,
but rather the density of nuclear levels with some spin J, p(E*,])

e To do this, we can use a sort of neat trick that takes advantage of the fact that the density of
levels with a given J is related to the density of levels with the projection J, = M

* Say we have states of several different J and Py

we want to tally-up how many have a given spin projection M I
 We see that only states with /] = M can have the projection M ! ./" a

e Thus the count of states with M = J 4+ 1 will only be missing the her .
states that have spin J i/
e Therefore, p(E*,]) = p(E*,] = M) — p(E*,] =M + 1) M:Vz?'] ——— y
e The momentum projection M of a state will be the sum of the momentum projections for the

individual nucleons M = ), m;, where there are 2j; + 1 possible values of m;

e —j; < m; < j; will be equally probable, so M will essentially be a random combination ((v) = 0)
e Via the central limit theorem, we therefore expect the probability a state to have a given M is:

1 —J? : . .
PO, === exp(55)  and, logically, p(E",] = M) = P(M)], * p(E*)

o2



From state density to level density

* As such, our state denS|ty p(E* ) =p(E*,]=M) — P E*, J=M+1)is
* 1
p(E*,]) —\/—eXp( p(E*) — meXp( UA7) p(E)

e |t turns out (See, e.g. Chapter 2: Statistical Models for Nuclear Decay (A.L. Cole)), this is apprOXimately equal to:
* ~ 2]+1 _](]'l'l)
p(E",]) = p(E™) 203van oAP *an alternative approach approximates p(E*,J=M) -

2
20 p(E*,J=M+1) %f (E*,M)/0M and gets the same result
* An important and often overlooked pomt is that we assume states with a given J, M were

degenerate in energy and therefore we’re assuming spherical nuclei. Also we need to add a
factor of 2J+1 if we want to apply the spin distribution to the total level density and not the
state density, as is done here.

e The variance of the spin distribution, g is known as the spin-cutoff parameter and it obviously
impacts our results a great deal [often just o is referred to as the spin-cutoff parameter, so beware]

e A common approach to estimating o2 is to consider the nucleus as a rigid rotating body
* |If we assume an ensemble of nuclei each have some energy E due to the nuclear temperature
T =~ —/E*/a and that E expressed rotationally, then P(E) x exp Erot

h%J(J+1)

IkgT
hz

. Recalllng from last time that E.,; = , we see that in this approximation g% =



a* and the spin distribution

: 5 _ IkgT
e Having found o = 2

the moment of inertia

now we need to estimate

e Since we assumed a spherical nucleus earlier to justify the
degeneracy of E* in M, we’ll double-down and use I for a

rigid sphere: I = 2MR*

for the nuclear radius R = ryA /3: ¢ =

1
kp

Using this and the previously derived formula for the
nuclear temperature T =

* Using M = Am, = (931.5M¢V/ ,)A,

hc = 197MeV fm, ry =

a~A4/gMeV™1

1.2fm: 02 ~ 0.0144"/3

It turns out, fits to neutron resonances vyield

Therefore, 62 ~ 2.82*0.014A"/6\/E*

E*

a

Probability, P(])

E*/a, and the standard estimate

2
2Mr2Al3 |E*
5h2 a 0.12

0.1¢F

=
o
[--]

=
o
o

0.02

a -parameter, 1/MeV
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https://www-nds.iaea.org/RIPL-2/handbook/ripl2.pdf

Experimental results show
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https://www-nds.iaea.org/RIPL-2/handbook/ripl2.pdf

Spin distributions are predicted reasonably well

... though a? appears to have a weaker dependence on A and E*
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Von Egidy & Bucurescu, PRC Rapid (2008) and PRC (2009)
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"Not all thei_t 'Iong_ag'o_ in this very Sam'e Gélha_xy',
some pelrcehptive' physicists 'n.oticed-r there was a

disturbance in the level density at low excitation .
energies. ‘ " :
"Two Wa-FFI-H-g collegial factions:. 6 came up. with

éepakate -approaches to. remedy f_he" issue-‘_ and
restore correct Ievel density predictions to ‘th‘e
-Galaxy --- N -



Early experiments showed different behavior for p(E*) at low E*

P.Gugelot, Phys. Rev. (1951)
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Level density at low excitation energy

Von Egidy & Bucurescu, J.Phys.Conf.Ser (2012)

1000 g— , 10— T T3
e Two different approaches are commonly 100 - | BSFG i ___ff,.-/ff
used fix p(E™) predictions for low E* 0f T *ll s ]
: : 15— ' ' ' 11— ' ' '
1. Back-shifted Fermi Gas Model: , 100f——2p00 400000 /&%ﬂ 100 f——13000 2000 ﬁf’i‘_],j,gﬂﬂ
e Shifts the “ground state” from 2 10} o I T SRy i
which E* is calculated and correct for N I e I R BN S R R T
nucleon pa|r|ng E IDID% . EP!}UI illi}{flﬂll lﬁﬂi}lﬂ I SG{IJ!} 100 | Stl}!} . lﬂlﬂﬂ . 15|DIEI . 2000 .
. E C ..-"')““' . e .
2. Constant Temperature + Fermi Gas Model: = IGE T “Ka L] S %3
= — o . -
: 3 s SR IR R R N AR R B
* Uses a separate functional form N m{l]t: 1000 2000 3000 4000 5000 mﬂlﬂ —500 1000 1500 2000
for p(E™*) below some threshold in E¥, R e
still also shifting the ground state YE w1 F g m
. . . 14 '/f’f | I | l | I 1 L./j’z P I T I B
* Neither is necessarily better than the other, 020 40 60 80 0100 200 300 400 500 600

though recent literature seems to favor CT



Back-shifted Fermi gas model

* We became so enamored with our beautiful shiny new Fermi gas model that we forgot all of the lessons

from our newly abandoned shell model

* Nucleons form pairs and those pairs cost some energy to break
and having an unpaired nucleon penalizes nuclear binding

e As such, it costs less energy to form excited states for nuclei
with odd nucleons (the more the better [i.e. odd-Z and odd-N]) and
it costs more energy to form excited states for nuclei
with no odd nucleons

a-parameter (MeV ™)

 This cost is the pairin_glenergy from the liquid-drop model
Apspc= iapar(\/Z) ..where it turns out a,q, = 12
and, recall, iopen—even = 1, lodd—oaa = — 1, lodd—even = 0
e All that needs to be done is to substitute
E™ for a corrected energy U = E* — Aggspg
e Empirically, an additional “backshift” é is subtracted as well

e For regions where data are available,
the level density at the Fermi surface a, Aggr;, and 6
are allowed to vary and are fit to the data

energy shift (MeV)
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https://www-nds.iaea.org/RIPL-2/handbook/ripl2.pdf

Constant-temperature + Fermi Gas Model

a.k.a. “Gilbert and Cameron Model”, because Grlbert & Cameron, Can.J.Phys. (1965)
e Looking at the same phenomenon in a different way, we can take a thermodynamic approach

 Recall the num}l;er of accessible configurations g(E™) « exp(\/aE*) and T = %,/E*/a, SO
g(E™) < exp (—)

*Gd *Gd "Gd
10%
* Therefore, the change in g(E™) as a function of E™ is ot //6
ag 2
= p(E™) « = ex ( ) T e N T
aE* p( ) p _:— “jd,'lr’f% ‘]lh”l L hl, ";W W
. 1 34S(E*) 0kgln dln(p(E* 2 [ 5G4 g
e Since = = ( ) — JkpIn(g) . IIn(p( )), we see constant  =7¢C / e
r 9™ .\ .OE : JE’ 201 . | q
T means In(p(E™)) is linear in E*, hence the model name 7 %/ 087 e /” 080 ey
210* oo
. . . _ ) i "y . Y
* The interpretation is that energy S ot Uil W/M ‘a ]
goes into breaking Cooper pairs of nucleons, leaving ol G | e o
the temperature constant, until some energy, above 10  over | /
which the Fermi gas model is more suitable 0. | f y
1 \ ©Y
. 100l L | b : L
* As before, we use the correction U = E* — A, 02 468 02468 0. RER:

Cxcitation energy L (Mev]

but we neglect the backshift for pairing 6,

i ' : . Note: S times CT (s used all by itself, as it does
since the CT is already accounting for pairing ... oo 0 = 12 eer @) 79 e o= > ooe @

pretty good job up to moderate excitation energies



Level density data available in the IAEA RIPL-2 database

Alternatively, you can get theoretical level-density estimates from the BRUSLIB database

T. Belgya, O. Bersillon, R. Capote, T. Fukahori, G. Zhigang, S. Goriely, M. Herman, A.V. Ignatyuk, S. Kailas, A. Koning, P. Oblozinsky, V. Plujko and P. Young. Hi
calculations of nuclear reaction data, RIPL-2. IAEA-TECDOC-1506 (IAEA, Vienna, 2006). Available online at http://www-nds.iaea.org/RIPL-2/

NDS-home CD-ROMs RIPL-1 ENSDF NuDat EMPIRE-II

HANDBOOK - (ftp)

MASSES - (ftp) Release Date: April 20, 2003

- Mass Excess

- GS Deformations RIPL-2 library contains input parameters for theoretical calculations of nuclear reactions involving light particles such as n, p, d, t, 3-He, 4-He, and gammas at incid

- Nucl. Matter Densities Up to about 100 MeV. The library contains nuclear masses, deformations, matter densities, discrete levels and decay schemes spaclngs of neutron resona

- Q-values optical model potentials, level density parameters, Giant Resonance parameters, gamma-ray strength-functio nd Lbarriers. It.a/sgdogludgs ot
database of level densities, gamma-ray strength-functions and fission barriers calculated with microscopic approaches ] :

LEVELS - (itp) facilitate use of the library.

- Level Schemes

- Leval e EEe RIPL-2 has been developed under an international project coordinated by the IAEA Nuclear Data Section as a continu

scope of RIPL-2 was to test and validate RIPL-1 database. In the course of work most of the recommended files were
RESONANCES - a number of so called 'other files from RIPL-1 are not included in RIPL-2. Testing of these files was not at the level typif
iﬂQl— source of additional information. Therefore, RIPL-1 remains available although use of the RIPL-2 data is generally recg 1-..

RIPL-2 data are organized into segments, which can be accessed through the Contents of RIPL-2 or through the navi X "
names provide direct (ftp-like) access to the RIPL-2 directories. Entire segments (tarred and gzipped) can be downloadii®
.lgz extension (e.g., masses.tgz). These files are placed in their respective RIPL-2 directories. e

OPTICAL - (ftp)
- OM Parameters
- Deform. Parameters

- Codes
DENSITIES - (ftp T.Beloya  O.Bersillon R.CapoteNoy  T.Fukahori
o Institute of Isotope and Surface Chemistry Senice de Physique et Techniques Nucleaires 1
- Total Level Densities 1 Muclear Data Section  Muclear Data Center
- . Chemical Research Center  Centre dEtudes Nucleaires de Bruyeres-le- International Atomnic Energy Agency  Japan Atomic Energy Research Institute
- Single-Particle Levels PO. BU; 77-_"4';5|25 %Idla%e%tl'rwiw 3231192' F015B0E eChatel. A-1400 Vienna, Austia  Tokai-mura, Naka-gun
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https://www-nds.iaea.org/RIPL-2/
http://www.astro.ulb.ac.be/bruslib/

Implications of level density for excited state decay

When a nucleus is formed via a nuclear reaction, it may be energetically possible for the newly
formed compound nucleus to break up into different sets of components

a.k.a. decay through different channels
( Y 5 ) Decay modes for A X+n

*The probability to decay via one channel (n.30) (n.21) )
or another is going to be directly ]
proportional to the number of accessible
final levels for that channel, since |
we assume the likelihood of populating
any given level is equal A2y
(essentially the ergodic hypothesis)

*Therefore, a higher level-density in the daughter
nucleus formed by a decay channel will increase the
likelihood of forming that daughter nucleus
(a.k.a. the cross section)

eLater, when we discuss the Hauser-Feshbach theory for nuclear reaction rates, we will see that
the level density gets multiplied by so-called Transmission coefficients to make the cross section
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Further Reading

e Chapter 6: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)

e Chapter 7: Nuclear & Particle Physics (B.R. Martin)

e Chapter 5, Section F: Introduction to Nuclear Physics & Chemistry (B. Harvey)

e Chapter 2: Statistical Models for Nuclear Decay (A.L. Cole)

e Chapter 2, Section 1i: Nuclear Structure Volume 1 (A. Bohr & B. Mottelson)

e Chapter 8 (Fermi Sytems): Lecture Notes on Condensed Matter Physics (H. Glyde)
e Chapter 6: IAEA RIPL2 Handbook

e Chapter 4, Section 7: Talys User Manual

e Chapter 11: Nuclear Reactions for Astrophysics (I. Thompson & F. Nunes)


http://www.physics.udel.edu/%7Eglyde/PHYS825/Lectures/chapter_8.pdf
https://www-nds.iaea.org/RIPL-2/handbook/ripl2.pdf
http://www.talys.eu/fileadmin/talys/user/docs/talys1.8.pdf
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