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Lecture 4: Nuclear Structure 2
• Independent vs collective models
• Collective Model

• Rotation
• Vibration
• Coupled excitations

• Nilsson model



Nuclear Models

• No useful fundamental & universal model exists for nuclei
• E.g. based on the nuclear interaction, how do we describe all nuclear properties?
• Promising approaches include “ab initio” methods, such as Greens Function Monte Carlo, 

No-core shell model, Coupled cluster model, density functional theories

• Generally one of two classes of models is used instead
• Independent particle models: 

• A nucleon exists within a mean-field (maybe has a few interactions)

• E.g. Shell model, Fermi gas model
• Collective models: 

• Groups of nucleons act together (maybe involves shell-model aspects)

• E.g. Liquid drop model, Collective model
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“There’s no small choice in rotten apples.” Shakespeare, The Taming of the Shrew



Collective Model
• There are compelling reasons to think that our nucleus isn’t a rigid sphere

• The liquid drop model gives a pretty successful description of some nuclear properties.
…can’t liquids slosh around?

• Many nuclei have non-zero electric quadrupole moments (charge distributions)

…this means there’s a non-spherical shape.
…can’t non-spherical things rotate?

• Then, we expect nuclei to be able to be excited rotationally & vibrationally
• We should (and do) see the signature in the nuclear excited states

• The relative energetics of rotation vs vibration
can be inferred from geometry

• The rotational frequency should go as 𝜔𝜔𝑟𝑟 ∝
1
𝑅𝑅2

(because 𝐼𝐼 ≡ 𝐿𝐿
𝜔𝜔 and 𝐼𝐼 ∝ 𝑀𝑀𝑅𝑅2)

• The vibrational frequency should go as 𝜔𝜔𝑣𝑣 ∝
1
∆𝑅𝑅 2

(because it’s like an oscillator)
• So 𝜔𝜔𝑟𝑟 ≪ 𝜔𝜔𝑣𝑣 3



Rainwater’s case for deformation
• A non-spherical shape allows for rotation …but why would a nucleus be non-spherical?
• Consider the energetics of a deformed liquid drop (J. Rainwater, Phys. Rev. (1950))

• 𝐵𝐵𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑍𝑍,𝐴𝐴 = 𝑎𝑎𝑣𝑣𝑜𝑜𝑜𝑜𝐴𝐴 − 𝑎𝑎𝑠𝑠𝑢𝑢𝑟𝑟𝑢𝑢𝐴𝐴 ⁄2 3 − 𝑎𝑎𝑐𝑐𝑜𝑜𝑢𝑢𝑜𝑜
𝑍𝑍(𝑍𝑍−1)

𝐴𝐴 �1 3
− 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠

𝑍𝑍−𝐴𝐴2
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𝐴𝐴
± 𝑎𝑎𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑖𝑖 𝐴𝐴

• Upon deformation, only the Coulomb and Surface terms will change
• Increased penalty for enlarged surface
• Decreased penalty for Coulomb repulsion because charges move apart
• The volume remains the same because the drop is incompressible

• To change shape, but maintain the same volume, the spheroid’s axes can be parameterized as
• 𝑎𝑎 = 𝑅𝑅(1 + 𝜀𝜀) ;    𝑏𝑏 = 𝑅𝑅

1+𝜀𝜀
; where  𝑉𝑉 = 4

3𝜋𝜋𝑅𝑅
3 = 4

3𝜋𝜋𝑎𝑎𝑏𝑏
2

• It turns out (B.R. Martin, Nuclear and Particle Physics), expanding the surface and Coulomb terms in a power series yields:
• 𝐵𝐵𝑠𝑠′ = 𝑎𝑎𝑠𝑠𝑢𝑢𝑟𝑟𝑢𝑢𝐴𝐴 ⁄2 3 1 + 2

5𝜀𝜀
2 + ⋯ ;    𝐵𝐵𝑐𝑐′ = 𝑎𝑎𝑐𝑐𝑜𝑜𝑢𝑢𝑜𝑜

𝑍𝑍(𝑍𝑍−1)

𝐴𝐴 �1 3
1 − 1

5𝜀𝜀
2 + ⋯

• Therefore, the change in energy for deformation is:
• ∆𝐵𝐵 = 𝐵𝐵𝑠𝑠′ + 𝐵𝐵𝑐𝑐′ − 𝐵𝐵𝑠𝑠 + 𝐵𝐵𝑐𝑐 = 𝜀𝜀2

5
2𝑎𝑎𝑠𝑠𝑢𝑢𝑟𝑟𝑢𝑢𝐴𝐴 ⁄2 3 − 𝑎𝑎𝑐𝑐𝑜𝑜𝑢𝑢𝑜𝑜

𝑍𝑍(𝑍𝑍−1)

𝐴𝐴 �1 3
(∆𝐵𝐵 < 0 is an energetically favorable change)

• Written more simply,  ∆𝐵𝐵 𝑍𝑍,𝐴𝐴 = −𝛼𝛼(𝑍𝑍,𝐴𝐴)𝜀𝜀2 4

Loveland, Morrissey, Seaborg, Modern Nuclear Chemistry (2006)

b

To get ΔE<0, need Z>116, A>270!
So we do not expect deformation 

from this effect alone.
Nonetheless, heavier nuclei are going 

to be more susceptible to deformation.



Rainwater’s case for deformation
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• So far we’ve only considered the deformation of the core
• However, we also need to consider any valence nucleons

• A non-spherical shape breaks the degeneracy in 𝑚𝑚 for a given 𝑙𝑙,
where the level-splitting is linear in the deformation 𝜀𝜀.

• The strength of the splitting is found by solving the
Schrödinger equation for single-particle levels in a spheroidal
(rather than spherical) well and comparing the 
spheroidal eigenvalue to the spherical one.

• The total energy change for deformation then becomes: ∆𝐵𝐵 𝑍𝑍,𝐴𝐴 = −𝛼𝛼 𝑍𝑍,𝐴𝐴 𝜀𝜀2 − 𝛽𝛽𝜀𝜀
• The core deformation favors a given m, reinforcing the overall deformation

• i.e. the valence nucleon interacts with the core somewhat like the moon with the earth, inducing “tides”

• Taking the derivative with respect to 𝜀𝜀, we find there is a favored deformation: 𝜀𝜀𝑠𝑠𝑝𝑝𝑚𝑚 = −𝛽𝛽
2𝛼𝛼

• Since valence nucleons are necessary to amplify the effect,
this predicts ground-state deformation occurring in between closed shells

• Note that the value for 𝛽𝛽 is going to depend on the specific nuclear structure,
which shell-model calculations are often used to estimate

S.Granger & R.Spence, Phys. Rev. (1951)



Predicted regions of deformation
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P. Möller et al. ADNDT (2016)
B. Harvey, Introduction to Nuclear Physics and Chemistry (1962)

𝛽𝛽2 ≡ 𝛼𝛼2,0 =
4
3

𝜋𝜋
5
𝑎𝑎 − 𝑏𝑏
𝑅𝑅𝑠𝑠𝑝𝑝𝑠

Loveland, Morrissey, Seaborg, Modern Nuclear Chemistry (2006)

b

https://doi.org/10.1016/j.adt.2015.10.002


Measured regions of deformation
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Center for Photonuclear Experiments Data

From:
Raman, Nestor, & Tikkanen, ADNDT (2001)
N.J. Stone, ADNDT (2005)

http://cdfe.sinp.msu.ru/services/radchart/radmain.html


Rotation: Rigid rotor

• The energy associated with a rotating object is: 𝐵𝐵𝑟𝑟𝑜𝑜𝑟𝑟 = 1
2𝐼𝐼𝜔𝜔

2

• We’re working with quantum stuff, so we need angular momentum instead  where 𝐽𝐽 = 𝐼𝐼𝜔𝜔

• So, 𝐵𝐵𝑟𝑟𝑜𝑜𝑟𝑟 = 1
2
𝐽𝐽2

𝐼𝐼

• …and 𝐽𝐽 is quantized, so 𝐵𝐵𝑟𝑟𝑜𝑜𝑟𝑟 = ћ2𝑗𝑗(𝑗𝑗+1)
2𝐼𝐼

• Thus our rotating nucleus will have excited states spaced as 𝑗𝑗(𝑗𝑗 + 1) corresponding to rotation

• For a solid constant-density ellipsoid, 𝐼𝐼𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 = 2
5𝑀𝑀𝑅𝑅

2 1 + 0.31𝛽𝛽 + 0.44𝛽𝛽2 + ⋯

where β = 4
3

𝜋𝜋
5

𝑎𝑎−𝑏𝑏
𝑅𝑅𝑠𝑠𝑠𝑠𝑠

(A.Bohr & B.Mottelson, Dan. Matematisk-fysiske Meddelelser (1955))
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http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2030-39/mfm-30-1.pdf


Rotation: Irrotational Motion
• Rather than the whole nucleus rotating, a tide-like effect could produce something like rotation
• Here nucleons just move in and out in a synchronized fashion,

kind of like people doing “the wave” in a stadium
• Since nucleons aren’t orbiting,

but are just bobbing in and out,
this type of motion is called
“irrotational”

• Thankfully, Lord Rayleigh
worked-out the moment of inertia
for continuous, classical fluid
with a sharp surface
(also in D.J. Rowe, Nuclear Collective Motion (1970))

• 𝐼𝐼𝑝𝑝𝑟𝑟𝑟𝑟𝑜𝑜 = 9
8𝜋𝜋𝑀𝑀𝑅𝑅

2𝛽𝛽2

9

B. Harvey, Introduction to Nuclear Physics and Chemistry (1962)

N. Andreacci



Moment of inertia comparison
• As an example, we can calculate the moment of inertia for 238Pu.

• The NNDC chart says for this nucleus 𝛽𝛽 = 0.285
• 𝐼𝐼𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 = 2

5𝑀𝑀𝑅𝑅
2 1 + 0.31𝛽𝛽 + 0.44𝛽𝛽2 + ⋯ ≈ 2

5𝐴𝐴 𝑟𝑟0𝐴𝐴1/3 2 1 + 0.31𝛽𝛽 + 0.44𝛽𝛽2

= 2
5(1.2𝑓𝑓𝑚𝑚)2 𝐴𝐴5/3𝑎𝑎𝑚𝑚𝑎𝑎 1 + 0.31𝛽𝛽 + 0.44𝛽𝛽2 = 5874 𝑎𝑎𝑚𝑚𝑎𝑎 𝑓𝑓𝑚𝑚2

• 𝐼𝐼𝑝𝑝𝑟𝑟𝑟𝑟𝑜𝑜 = 9
8𝜋𝜋𝑀𝑀𝑅𝑅

2𝛽𝛽2 ≈ 9
8𝜋𝜋𝐴𝐴 𝑟𝑟0𝐴𝐴1/3 2𝛽𝛽2

= 9
8𝜋𝜋(1.2𝑓𝑓𝑚𝑚)2 𝐴𝐴5/3𝑎𝑎𝑚𝑚𝑎𝑎 𝛽𝛽2 = 3778 𝑎𝑎𝑚𝑚𝑎𝑎 𝑓𝑓𝑚𝑚2

• We can obtain an empirical rotation constant for 238Pu
• The energy associated with excitation from the 1st 2+ excited state to the 1st 4+ state is:
∆𝐵𝐵 = 𝐵𝐵𝑟𝑟𝑜𝑜𝑟𝑟4+ − 𝐵𝐵𝑟𝑟𝑜𝑜𝑟𝑟2+ = ћ2

2𝐼𝐼
4 4 + 1 − ћ2

2𝐼𝐼
2 2 + 1 = 7 ћ2

𝐼𝐼
• From NNDC, 𝐵𝐵 21+ = 44𝑘𝑘𝑘𝑘𝑉𝑉 & 𝐵𝐵 41+ = 146𝑘𝑘𝑘𝑘𝑉𝑉 , so 𝐼𝐼𝑒𝑒𝑒𝑒𝑝𝑝𝑟𝑟 = 7

102ћ
2𝑘𝑘𝑘𝑘𝑉𝑉−1

• Take advantage of fact that ћ𝑐𝑐 ≈ 197𝑀𝑀𝑘𝑘𝑉𝑉 𝑓𝑓𝑚𝑚 and 1𝑎𝑎𝑚𝑚𝑎𝑎 ≈ 931.5𝑀𝑀𝑘𝑘𝑉𝑉/𝑐𝑐2,
𝐼𝐼𝑒𝑒𝑒𝑒𝑝𝑝𝑟𝑟 = 14

0.102𝑆𝑆𝑒𝑒𝑀𝑀
ћ2 1𝑎𝑎𝑎𝑎𝑎𝑎

931.5𝑀𝑀𝑀𝑀𝑀𝑀/𝑐𝑐2
= 0.074 ћ2𝑐𝑐2

𝑆𝑆𝑒𝑒𝑀𝑀2
𝑎𝑎𝑚𝑚𝑎𝑎 = 0.074 197𝑆𝑆𝑒𝑒𝑀𝑀 𝑢𝑢𝑠𝑠 2

𝑆𝑆𝑒𝑒𝑀𝑀2
𝑎𝑎𝑚𝑚𝑎𝑎

= 2859 𝑎𝑎𝑚𝑚𝑎𝑎 𝑓𝑓𝑚𝑚2

10
…closer to irrotational



Empirical moment of inertia
• 𝐵𝐵𝑟𝑟𝑜𝑜𝑟𝑟 = ћ2𝑗𝑗(𝑗𝑗+1)

2𝐼𝐼
, so measuring ∆𝐵𝐵 between levels should give us 𝐼𝐼

• It turns out, generally: 𝐼𝐼𝑝𝑝𝑟𝑟𝑟𝑟𝑜𝑜 < 𝐼𝐼𝑒𝑒𝑒𝑒𝑝𝑝𝑟𝑟 < 𝐼𝐼𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟
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D.J. Rowe, Nuclear Collective Motion (1970))

A.Bohr & B.Mottelson, Dan. Matematisk-fysiske Meddelelser (1955))

http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2030-39/mfm-30-1.pdf


Rotational bands: sequences of excited states

• 𝐵𝐵𝑟𝑟𝑜𝑜𝑟𝑟 = ћ2𝑗𝑗(𝑗𝑗+1)
2𝐼𝐼

, so for a given 𝐼𝐼, ∆𝐵𝐵 ∝ 𝑗𝑗(𝑗𝑗 + 1)

• Note that parity needs to be maintained because rotation is
symmetric upon reflection and so 0+ ground-states can
only have j=0,2,4,…   (because 𝜋𝜋 = (−1)𝐽𝐽)

• Without observing the decay scheme, picking-out associated 
rotational states could be pretty difficult

• Experimentally, coincidence measurements allow schemes to be mapped

12

B. Harvey, Introduction to Nuclear 
Physics and Chemistry (1962)

L. van Dommelen, Quantum Mechanics for Engineers (2012) T.Dinoko et al. EPJ Web Conf. (2013)

158Er



Rotational bands
• Rotation can exist on top of other excitations
• As such, a nucleus can have several different

rotational bands and the moment of inertia
𝐼𝐼 is often different for different bands

• The different 𝐼𝐼 lead to different energy
spacings for the different bands

13

T.Dinoko et al. EPJ Web Conf. (2013)

Loveland, Morrissey, Seaborg, Modern Nuclear Chemistry (2006)



Rotational bands: Backbend
• The different 𝐼𝐼 for different rotational bands

creates the so-called “backbend”
• This is when we follow the lowest-energy

state for a given spin-parity (the “yrast” state)
belonging to a given rotational band
and plot the moment of inertia and
square of the rotational frequency

14

160YF.Beck et al. PRL (1979)

Loveland, Morrissey, Seaborg, Modern Nuclear Chemistry (2006)



𝛻𝛻 𝐵𝐵 21+
□ 𝐵𝐵 41+ /𝐵𝐵 21+
○ 𝛽𝛽2

I.Angeli et al. J.Phys.G (2009)

Zr

Inferring structure from rotational bands
• Since 𝐵𝐵𝑟𝑟𝑜𝑜𝑟𝑟 = ћ2𝑗𝑗(𝑗𝑗+1)

2𝐼𝐼
and 𝐼𝐼 ∝ 𝛽𝛽 , we can use rotational bands to probe deformation

• More deformed nuclei have larger 𝛽𝛽, so excited state energies for the band should be low
• The 1st 2+ excited state energy is often used to probe this

• The rotor model for rotational bands is
validated by the comparison of band
excited state energy ratios to the rotor
prediction

• The ratio of the yrast 4+ and 2+ excited state
energies is
generally close
to the rotor
prediction for
nuclei far from
closed shells

15

Asaro & Perlman, Phys. Rev. (1953)

Rotor(4+/2+)

Rotor(6+/2+)



Inferring structure from rotational bands
• To keep life interesting, 𝐼𝐼 can change for a single band, indicating a change in structure,

e.g. how particular nucleons or groups of nucleons are interacting

16

32Mg
H.Crawford et al. PRC(R) (2016)



Vibrational modes
• Considering the nucleus as a liquid drop, the nuclear volume should be able to vibrate
• Several multipoles are possible

• Monopole:  in & out motion (λ = 0)
•a.k.a the breathing mode

• Dipole: sloshing back & forth (λ = 1)
• If all nucleons are moving together, this is just CM motion

• Quadrupole: alternately compressing & stretching (λ = 2)

• Octupole: alternately pinching on one end & then the other (λ = 3)
• + Higher

• Protons and neutrons can oscillate separately (“isovector” vibrations)
• All nucleons need not move together

• e.g. the “pygmy dipole” is the neutron skin oscillation
17

Isoscalar Isovector
H.J. Wollersheim

The gifs to the right are 
for giant resonances, 

when all protons/neutrons 
act collectively

https://web-docs.gsi.de/%7Ewolle/TELEKOLLEG/KERN/index-s.html


Vibrational modes
• Additionally, oscillations can be grouped by spin

…leaving a pretty dizzying  range of possibilities

18

The myriad of possible nuclear vibrations are discussed in a friendly manner here: 
Vibrations of the Atomic Nucleus, G. Bertsch, Scientific American (1983)

TAMU

G.Bertsch, Sci.Am. (1983)

Scattering experiments are key to identifying the 
vibrational properties of particular excited states 

because one obtains characteristic diffraction patterns.

λ = 0 λ = 2

𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠, λ = 1

http://www.int.washington.edu/users/bertsch/general_interest/scientific_american_1983.pdf


Rough energetics of vibrational excitations
• In essence, a nuclear vibration is like a harmonic oscillator
• There is some oscillating deviation from a default shape and a restoring force attempts to 

return the situation to the default shape
• The restoring force differs for each mode and so therefore do the characteristic frequencies 𝜔𝜔, 

which have a corresponding energy ћ𝜔𝜔
• Nuclear matter is nearly incompressible, so the monopole oscillation takes a good bit of 

energy to excite.
For even-even nuclei, the monopole oscillation creates a 0+ state at ≈ 80𝐴𝐴−1/3𝑀𝑀𝑘𝑘𝑉𝑉

• Neutrons and protons are relatively strongly bound together, so exciting an isovector dipole 
also takes a good bit of energy

For even-even nuclei, the dipole oscillation creates a 1- state at ≈ 77𝐴𝐴−1/3𝑀𝑀𝑘𝑘𝑉𝑉
• The squishiness of the liquid drop is more amenable to quadrupole excitations,

so these are the lowest-energy excitations
For even-even nuclei, the quadrupole oscillation creates a 2+ state at ~1-2MeV.
The giant quadrupole oscillation is at ≈ 63𝐴𝐴−1/3𝑀𝑀𝑘𝑘𝑉𝑉

• Similarly, octupolar shapes can also be accommodated
For even-even nuclei, the octupole oscillation creates a 3- state at ~4MeV

19



Vibrational energy levels
• Just as the quantum harmonic oscillator eigenvalues

are quantized, so too will the energy levels for different
quanta (phonons) of a vibrational mode.

• Similarly, the energy levels have an even spacing,
𝐵𝐵𝑚𝑚 = (𝑠𝑠 + 1

2)ћ𝜔𝜔
• Even-even nuclides have 0+ ground states, and thus,

for a λ = 2 vibration, 𝑠𝑠 = 2 excitations will maintain the 
symmetry of the wave-function 
(i.e. 𝑠𝑠 = 1 excitations would violate parity)

• Therefore, the 1st vibrational state will be 2+

• We can excite an independent quadrupole vibration by adding a second phonon
• The second phonon will build excitations on the first, coupling to either 0+,2+, or 4+

• Employing a nuclear potential instead winds up breaking the degeneracy for states associated 
with a given number of phonons

20

Loveland, Morrissey, Seaborg, Modern Nuclear Chemistry (2006)



Vibrational energy levels are pretty obvious for spherical nuclei

21

G. Harvey, Introduction to Nuclear Physics and Chemistry (1962)
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Spejewski, Hopke, & Loeser, Phys. Rev. (1969)

• The typical signature for vibrating spherical nucleus is 𝐵𝐵(41+)/𝐵𝐵(21+) ≈ 2
…though that obviously won’t be the case for a deformed nucleus

Matin, Church,  & Mitchell Phys. Rev. (1966)
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D. Inglis, Phys. Rev. (1955)

radware



Rotational bands can build on vibrational states
• Deformed nuclei can simultaneously vibrate and rotate
• The coupling depends on whether the vibration maintains

axial symmetry or not
• The two types, 𝛽𝛽 and 𝛾𝛾, are in reference to how the

vibration deforms the shape in terms of Hill-Wheeler
coordinates (Hill & Wheeler, Phys. Rev. (1953))

• Exemplary spectra:
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Side view Top view Side view Top view

Bohr & Mottelson, Nuclear Structure Volume II (1969)

B. Harvey, Introduction to Nuclear 
Physics and Chemistry (1962) N. Blasi et al. Phys.Rev.C (2014)
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Single-particle states can build on vibrational states

B. Harvey, Introduction to Nuclear Physics and Chemistry (1962)

• For some odd-A nuclei, excited states appear to result from 
the unpaired nucleon to a vibrational phonon

• For 63Cu, the ground state has an unpaired p3/2 nucleon

• Coupling this to a 2+ state allows 2 − 3
2 ≤ 𝑗𝑗 ≤ 2 + 3

2 , 
i.e. 12

−, 32
−, 52

−, 72
−

• Another example:

Canada, Ellegaard, & Barnes, Phys.Rev.C (1971)



Recap of basic structure models discussed thus far
• Schematic shell model

• Great job for ground-state 𝐽𝐽𝜋𝜋
• Decent job of low-lying excited states for spherical nuclei, particularly near closed shells
• Miss collective behavior that arises away from shell closures

• Collective model
• Rotational excitations explain several 𝐽𝐽𝜋𝜋 for deformed, even-even nuclei

These are “mid shell” nuclei, because they’re not near a shell closure
• Vibrational excitations explain several 𝐽𝐽𝜋𝜋 for spherical, even-even nuclei

These are “near shell” nuclei, because they’re near a shell closure
• Miss single-particle behavior that can couple to collective excitations

What do we do for collective behavior for odd-A nuclei?
the Nilsson model  (a.k.a. deformed shell model)
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Nilsson Model: combining collective & single-particle approaches
• Our schematic shell model was working perfectly fine

until you threw it away like a cheap suit because of a little deformation! 
Luckily, Mottelson & Nilsson (Phys. Rev. 1955) weren’t so hasty.

• Consider a deformed nucleus with axial symmetry that has a
single unpaired nucleon orbiting the nucleus

• We’re sticking to axial symmetry because
•Most deformed nuclei have this property (mostly prolate)
•The math, diagrams, and arguments are easier

• The nucleon has some spin, 𝑗𝑗, which has a projection onto
the axis of symmetry, 𝐾𝐾

• 𝑗𝑗 has 2𝑗𝑗+12 possible projections 𝐾𝐾
• Therefore, each single particle state from our shell model

now splits into multiple states, identified by their 𝐾𝐾, each of which can contain
two particles (spin up and spin down) for that given projection
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Nuclear 
Rotation Axis

R.Casten, Nuclear Structure from a Simple Perspective (1990)



Loveland, Morrissey, Seaborg, Modern Nuclear Chemistry (2006)

Nilsson model: single-particle level splitting
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R.Casten, Nuclear Structure from a 
Simple Perspective (1990)

• Consider the options for our nucleon’s orbit around the nucleus
• Orbits with the same principle quantum number will have the same radius
• Notice that the orbit with the smaller projection of 𝑗𝑗 (𝐾𝐾1)

sticks closer to the bulk of the nucleus during its orbit
• Since the nuclear force is attractive,

the 𝐾𝐾1 orbit will be more bound (i.e. lower energy) than the 𝐾𝐾2 orbit
• The opposite would be true if the nucleus in our picture was oblate,

squishing out toward the 𝐾𝐾2 orbit
• Therefore, for prolate nuclei, lower 𝐾𝐾 single-particle levels

will be more bound (lower-energy),
whereas larger 𝐾𝐾 states will be more bound for oblate nuclei

𝑗𝑗

KK



• Continuing with our schematic picture, we see that the proximity of the
orbiting nucleon to the nucleus isn’t linear with 𝐾𝐾, since sin𝜃𝜃~𝐾𝐾

𝑗𝑗

• So the difference in binding for ∆𝐾𝐾 = 1 increases as 𝐾𝐾 increases
• Now, considering the fact that single particle levels of different 𝑗𝑗

can have the same projection 𝐾𝐾,
we arrive at a situation that is
essentially the two-state mixing
of degenerate perturbation theory,
where it turns out the perturbation
breaks the degeneracy and causes
the states to repel each other
in a quadratic fashion where the strength of the deflection
depends on the proximity of the states in energy
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Nilsson model: single-particle level splitting

R.Casten, Nuclear Structure from a Simple Perspective (1990)

R.Casten, Nuclear Structure from a 
Simple Perspective (1990)

D.Griffiths, Introduction to Quantum Mechanics (1995)

R.Casten, Nuclear Structure from a 
Simple Perspective (1990)



Nilsson Model: single particle levels vs 𝛽𝛽
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Nucleons: 8 < 𝑍𝑍 < 20 or 8 < 𝑁𝑁 < 20
Protons: Z>82

Neutrons: N>126

Protons: 50<Z<82

Neutrons: 82<Z<126

B. Harvey, Introduction to Nuclear Physics and Chemistry (1962)



Nilsson Model: Example
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B. Harvey, Introduction to Nuclear Physics and Chemistry (1962)

• Consider 25Al, for which we expect 𝛽𝛽2 ≈ 0.2, like 27Al
• There are 13 protons and 12 neutrons,

so the unpaired proton will be responsible for 𝐽𝐽𝜋𝜋
• Filling the single-particle levels,

• We place two protons in the 1s1/2 level, which isn’t shown
• Then two more in 1/2-, two more in 3/2-, two more in 1/2-,

two more in the 1/2+, two more in the 3/2+

• And the last one winds up in the 5/2+ level
• So, we predict 𝐽𝐽𝑟𝑟.𝑠𝑠

𝜋𝜋 = ⁄5 2
+

• For the first excited sate,
it seems likely the proton will hop
up to the nearby 1/2+ level

• Agrees with data
• Since 25Al is deformed,

we should see rotational bands
with states that have (integer)+𝑗𝑗
and ∝ 𝑗𝑗(𝑗𝑗 + 1) spacing



Further Reading
• Chapter 6: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)
• Chapter 7: Nuclear & Particle Physics (B.R. Martin)
• Chapter 14, Section 13: Quantum Mechanics for Engineers (L. van Dommelen)
• Chapter 5, Section G: Introduction to Nuclear Physics & Chemistry (B. Harvey)
• Chapter 8: Nuclear Structure from a Simple Perspective (R. Casten)
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http://www.umich.edu/%7Eners312/CourseLibrary/Dommelen.pdf
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