Lecture 4: Nuclear Structure 2 p J

* Independent vs collective models
* Collective Model

e Rotation

e Vibration

* Coupled excitations
* Nilsson model




N U Clea r I\/I Od e | S “There’s no small choice in rotten apples.” Shakespeare, The Taming of the Shrew

* No useful fundamental & universal model exists for nuclei
e E.g. based on the nuclear interaction, how do we describe all nuclear properties?

e Promising approaches include “ab initio” methods, such as Greens Function Monte Carlo,
No-core shell model, Coupled cluster model, density functional theories

* Generally one of two classes of models is used instead

* Independent particle models:
e A nucleon exists within a mean-field (maybe has a few interactions)
e E.g. Shell model, Fermi gas model
* Collective models:
* Groups of nucleons act together (maybe involves shell-model aspects)
e E.g. Liquid drop model, Collective model



Collective Model

e There are compelling reasons to think that our nucleus isn’t a rigid sphere
* The liquid drop model gives a pretty successful description of some nuclear properties.
...can’t liquids slosh around?
 Many nuclei have non-zero electric quadrupole moments (charge distributions)
...this means there’s a non-spherical shape.
...can’t non-spherical things rotate?

 Then, we expect nuclei to be able to be excited rotationally & vibrationally
 We should (and do) see the signature in the nuclear excited states

* The relative energetics of rotation vs vibration $
can be inferred from geometry 7

. 1
e The rotational frequency should go as w, < nz <> [
(because I = £ and I « MR?)

* The vibrational frequency should go as w,, < L

(because it’s like an oscillator)

* Sow, K w,



Rainwater’s case for deformation

* A non-spherical shape allows for rotation ...but why would a nucleus be non-spherical?
e Consider the energetics of a deformed liquid drop (. rainwater, phys. rRev. (1950))

A 2
Z(Z-1) Z— .
* BESEMF(Z: A) = AyorA — ClsurfA /s — Acoul 1/3 - aasym( AZ) + apairl\/z

* Upon deformation, only the Coulomb and Surface terms will change

A\

b

*Increased penalty for enlarged surface ¥

* Decreased penalty for Coulomb repulsion because charges move apart Q]_/A’l
4——a

* The volume remains the same because the drop is incompressible

e To change shape, but maintain the same volume, the spheroid’s axes can be parameterized as

.« o — . _ _R . __ 4. p3 _ 4 2
a=R(1+¢); b—m ; where V = -mR> = “mab
e |t turns out , expanding the surface and Coulomb terms in a power series yields:

.ES,=aS‘uT'fA2/3(1+§82+“.) : EC’_ CoulZ(Z 1)(1 % 2 _I_...)

e Therefore, the change in energy for deformation is: To get AE<O, need Z>116, A>270!
, , L 2(Z-1) So we do not expect deformation
*AE = (Es +E)— (Es +Eo) = _<2asurf‘4 Acoul — 17 ) from this effect alone.

(AE < 0 is an energetically favorable change) Nonetheless, L‘eav"'@‘f nucler are gOl’lf\g
« Written more simply, AE(Z, A) = —a(Z, A)&> to be more susceptible to deformation.



Rainwater’s case for deformation

e So far we've only considered the deformation of the core

e However, we also need to consider any valence nucleons

* A non-spherical shape breaks the degeneracy in m for a given |,
where the level-splitting is linear in the deformation ¢.

e The strength of the splitting is found by solving the
Schrodinger equation for single-particle levels in a spheroidal
(rather than spherical) well and comparing the
spheroidal eigenvalue to the spherical one.
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Fi1G. 1. Energy levels for # =1. Levels are labeled with the
qguantum numbers [, m of the undistorted nucleus.

* The total energy change for deformation then becomes: AE(Z,4) = —a(Z, A)s? — B¢

* The core deformation favors a given m, reinforcing the overall deformation
e j.e. the valence nucleon interacts with the core somewhat like the moon with the earth, inducing “tides”

e Taking the derivative with respect to ¢, we find there is a favored deformation: &,,,;,;, =

e Since valence nucleons are necessary to amplify the effect,

this predicts ground-state deformation occurring in between closed shells

-k

2a

* Note that the value for [ is going to depend on the specific nuclear structure,

which shell-model calculations are often used to estimate



Predicted regions of deformation
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Rotation: Rigid rotor

* The energy associated with a rotating object is: E,.,; = %Ia)2

* We’re working with quantum stuff, so we need angular momentum instead where ] = lw
o SO, ET'Ot —_ %

: : h2j(j+1
e ..and ] is quantized, so E,.,; = ];]1 )

 Thus our rotating nucleus will have excited states spaced as j(j + 1) corresponding to rotation

* For a solid constant-density ellipsoid, I;4iq = %MRZ(l + 0.318 + 0.44p% + --+)

4 ,n (a=b)
where B = g E F (A.Bohr & B.Mottelson, Dan. Matematisk-fysiske Meddelelser (1955))
sph



http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2030-39/mfm-30-1.pdf

Rotation: Irrotational Motion

e Rather than the whole nucleus rotating, a tide-like effect could produce something like rotation

* Here nucleons just move in and out in a synchronized fashion,
kind of like people doing “the wave” in a stadium

i it N. Andreacci

 Since nucleons aren’t orbiting,
but are just bobbing in and out,
this type of motion is called
“irrotational”

* Thankfully, Lord Rayleigh
worked-out the moment of inertia
for continuous, classical fluid
with a sharp surface

* lipro = gﬂMRZ,BZ



Moment of inertia comparison

* As an example, we can calculate the moment of inertia for 233pu.
e The NNDC chart says for this nucleus f = 0.285

o Lyigia = ZMR2(1 + 0.318 + 0.44p2 + ) ~ 2A(rpAY/3)" (1 + 0.318 + 0.4452)
= 2(1. me)Z(A5/3amu)(1 + 0.318 + 0.44B%) = 5874 amu fm?

o Iiyro = 2nMR?B? =~ 2mA(r AL/3)* 2
= 21(1.2fm)*(A>amu)p? = 3778 amu fm?

e We can obtain an empirical rotation constant for 233Pu
* The energy assouated W|th excitation from the 15t 2+ exuted state to the 1% 4* state is:

AE = Erot Erot — 57 (4(4 + 1)) Y (2(2 + 1)) — 7_
e From NNDC, E(27) = 44keV & E(4f) = 146keV , so Iexpt = L h%keV 1

102

 Take advantage of fact that hc = 197MeV fm and lamu =~ 931.5MeV /c?,

_ 14 2 1lamu h?c? (197MeV fm)?
Loxpt = O_lonth S3TsMevIE = = 0. 074 oz MU = 0.074 o2 amu
= 2859 amu fm?

...closer to irrotational



Empirical moment of inertia

rot

_ hZj(j+1)

, SO measuring AE between levels should give us |

* Itturns out, generally: l;yro < loxpt < Iyigia
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IPig. 2, Dependence of Nuclear doments of Inerlia on the Nuclear Deformalion.

The empirical momen(s of inerlia for even-even niaclei in the region 150 =
A == 188 are plotted as a function of the nuclear deformation. The moments of
inertia, obtained [rom the data in Table I, are given in uniis of the rigid moment
(18), while the delormation parameters f are obtained from the Q,-values in
Table T by means of (19). The nuclear radins has been taken to be R, = 1.2 A#
10733 cm. The full-drawn curve represents a theoretical estimate, based on the
two-nucleon model with an interaction parameter » = 1/3 (ef. Fig. 1). For com-
Parison, the moment of inertia corresponding to irrotational flow is shown by the

dotted curve.

A.Bohr & B.Mottelson, Dan. Matematisk-fysiske Meddelelser (1955))



http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2030-39/mfm-30-1.pdf

Rotational bands: sequences of excited states

0514
h?j(j+1 : ..
E ..t = J;]1+ ), soforagivenI, AE «<j(j + 1)
0.3036

Note that parity needs to be maintained because rotation is
symmetric upon reflection and so 0" ground-states can L
only have j=0,2,4,... (becausem = (—1)/) .
Without observing the decay scheme, picking-out associated o

rotational states could be pretty difficult

Experimentally, coincidence measurements allow schemes to be mapped
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238p,,

Jwr

6+

2+
0+

692
535&.9‘ 20%
648
46821 ¢ 187
652
40287 ¢ 3]
651
S35 74 9 147
593




Rotational bands 1
84
e Rotation can exist on top of other excitations I ,
e As such, a nucleus can have several different T / =
rotational bands and the moment of inertia . Jr v A .
I is often different for different bands o Jumas \ I / [ e
e The different I lead to different energy o Toer \ : / / ol
spacings for the different bands \ B ey
Er'-‘ —— “ \%\ o 4?237923 3774 ¢ 14
5 |
87,

> Figure 1: Partial decay scheme of ""®Er showing the ground-state, S and 07 bands, which are labelled 1, 2 and 3, respectively.




Rotational bands: Backbend

e The different I for different rotational bands

creates the so-called “backbend”

e This is when we follow the lowest-energy
state for a given spin-parity (the “yrast” state)

belonging to a given rotational band
and plot the moment of inertia and
square of the rotational frequency
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Inferring structure from rotational bands

: h?j(j+1

and I « [, we can use rotational bands to probe deformation

e More deformed nuclei have larger 3, so excited state energies for the band should be low
*The 15t 2+ excited state energy is often used to probe this

* The rotor model for rotational bands is
validated by the comparison of band
excited state energy ratios to the rotor
prediction

* The ratio of the yrast 4* and 2* excited state

€nergles 1s Asaro & Perlm'an, Phys.l Rev. (19153)
generally close |
to the rotor Rotor (6+/24) e  ow am |

prediction for
nuclei far from
closed shells
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Inferring structure from rotational bands

e To keep life interesting, I can change for a single band, indicating a change in structure,
e.g. how particular nucleons or groups of nucleons are interacting
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Vibrational modes

e Considering the nucleus as a liquid drop, the nuclear volume should be able to vibrate .., wolershein
Isoscalar Isovector

e Several multipoles are possible , ,
P P The gifs to the right are

e Monopole: in & out motion (A = 0) for giant resonances,

*a.k.a the breathing mode when all protons/neutrons
act collectively

Dipole: sloshing back & forth (A = 1)
e If all nucleons are moving together, this is just CM motion

e Quadrupole: alternately compressing & stretching (A = 2)

e Octupole: alternately pinching on one end & then the other (A = 3)
e + Higher

* Protons and neutrons can oscillate separately (“isovector” vibrations)

e All nucleons need not move together .
e e.g.the “pygmy dipole” is the neutron skin oscillation



https://web-docs.gsi.de/%7Ewolle/TELEKOLLEG/KERN/index-s.html

VI b rat|o n a | m Od eS Gjliertsch, Sci.Am. (%983) H

e Additionally, oscillations can be grouped by spin

...leaving a pretty dizzying range of possibilities

AS=0AT=0 AS=0.AT=1 AS=1,AT=0 AS=1 AT=1

0090

TAMU

Scattering experiments are key to identifying the
vibrational properties of particular excited states
because one obtains characteristic diffraction patterns.

A=2

S5 SECTION (10-# CENTIMETER}

1,600 —— == -

SCATTERING ANGLE = .2 DEGREE

The myriad of possible nuclear vibrations are discussed in a friendly manner here: [ |j
Vibrations of the Atomic Nucleus, G. Bertsch, Scientific American (1983) R s el ne M

COUNTS IN DETECTOR



http://www.int.washington.edu/users/bertsch/general_interest/scientific_american_1983.pdf

Rough energetics of vibrational excitations

e In essence, a nuclear vibration is like a harmonic oscillator

 There is some oscillating deviation from a default shape and a restoring force attempts to
return the situation to the default shape

e The restoring force differs for each mode and so therefore do the characteristic frequencies w,
which have a corresponding energy hw

* Nuclear matter is nearly incompressible, so the monopole oscillation takes a good bit of
energy to excite.

For even-even nuclei, the monopole oscillation creates a 0* state at ~ 80A~1/3MeV

 Neutrons and protons are relatively strongly bound together, so exciting an isovector dipole
also takes a good bit of energy

For even-even nuclei, the dipole oscillation creates a 1- state at =~ 77A~Y/3MeV

 The squishiness of the liquid drop is more amenable to quadrupole excitations,
so these are the lowest-energy excitations

For even-even nuclei, the quadrupole oscillation creates a 2* state at ~1-2MeV.
The giant quadrupole oscillation is at ~ 63A~1/3MeV

e Similarly, octupolar shapes can also be accommodated
For even-even nuclei, the octupole oscillation creates a 3" state at ~4MeV



Vibrational energy levels P 02,3

4, 6°

 Just as the quantum harmonic oscillator eigenvalues 3-phonon N 'J
are quantized, so too will the energy levels for different
quanta (phonons) of a vibrational mode. 7 0
. . 0,2 4+ =777 >
e Similarly, the energy levels have an even spacing, 2 5honon
_ 1
E, =n+)hw .o |
 Even-even nuclides have 0+ ground states, and thus, '-phonon -
for a A = 2 vibration, n = 2 excitations will maintain the
symmetry of the wave-function Pure Vibrational
. _ . . . . vibrational states inl
. . — real nuciel
(i.e. n = 1 excitations would violate parity) | nucl

 Therefore, the 1t vibrational state will be 2*
* We can excite an independent quadrupole vibration by adding a second phonon
* The second phonon will build excitations on the first, coupling to either 0+*,2*, or 4*

 Employing a nuclear potential instead winds up breaking the degeneracy for states associated
with a given number of phonons



Vibrational energy levels are pretty obvious for spherical nuclei
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* The typical sighature for vibrating spherical nucleus is E(47)/E(27) = 2
...though that obviously won’t be the case for a deformed nucleus

1-phonon 2-phonons



Yo clawg, | heara you like collective excitations

\

radware

M-m X

D. Inglis, Phys. Rev. (1955)

so | put some rotations on your vibrations so
you can oscillate while you rotate



Rotational bands can build on vibrational states

e Deformed nuclei can simultaneously vibrate and rotate Side view Top view  Side view Top view

 The coupling depends on whether the vibration maintains -
axial symmetry or not ; .
e The two types, # and y, are in reference to how the '
vibration deforms the shape in terms of Hill-Wheeler ¥
coordinates ~vibration

e Exemplary spectra:
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Single-particle states can build on vibrational states

. . E(MeV) Jr
e For some odd-A nuclei, excited states appear to result from PV
the unpaired nucleon to a vibrational phonon £ (MeV) e
63 . 1172 24
* For *°Cu, the ground state has an unpaired p;,, nucleon
096|———2 -~
. Coupllng this to a 2* state allows |2 — | <jJ< |2 + ?
| e. - ,z ,; , Z_ Particle - Core Coupling Experiment Particle -Core Coupling
48Ca + 2ps, or lf—,f neutron . - °Oca + 1f7, “ neutron 0668--— —— 1
. Another example: * rTra— 2
AT? T Tz T
&53 ________ afzm \\
e R
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Canada, Ellegaard, & Barnes, Phys.Rev.C (1971)
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Recap of basic structure models discussed thus far

e Schematic shell model
e Great job for ground-state J™
e Decent job of low-lying excited states for spherical nuclei, particularly near closed shells
e Miss collective behavior that arises away from shell closures

e Collective model

* Rotational excitations explain several /™ for deformed, even-even nuclei
These are “wud shell” nucler, because they'rve not near a shell closure

 Vibrational excitations explain several /™ for spherical, even-even nuclei
These are “near shell” nucler, because theyve near a shell closure

e Miss single-particle behavior that can couple to collective excitations

What do we do for collective behavior for odd-A nuclei?
the Nilsson model (a.k.a. deformed shell model)



Nilsson Model: combining collective & single-particle approaches

e Our schematic shell model was working perfectly fine
until you threw it away like a cheap suit because of a little deformation!

Luckily, Mottelson & Nilsson (ehys. rev. 1955) Wweren’t so hasty. A Nuclear

e Consider a deformed nucleus with axial symmetry that has a Rotation Axis
single unpaired nucleon orbiting the nucleus

« We're sticking to axial symmetry because
* Most deformed nuclei have this property (mostly prolate)
*The math, diagrams, and arguments are easier

> 7
* The nucleon has some spin, j, which has a projection onto
the axis of symmetry, K
*j has 2“1 possible projections K
® ThGFEfore, eaCh Slngle pa rt|C|e State from our She” mOdEI R.Casten, Nuclear Structure from a Simple Perspective (1990)

now splits into multiple states, identified by their K, each of which can contain
two particles (spin up and spin down) for that given projection



Nilsson model: single-particle level splitting

e Consider the options for our nucleon’s orbit around the nucleus

e Orbits with the same principle quantum number will have the same radius

R.Casten, Nuclear Structure from a
Simple Perspective (1990)

* Notice that the orbit with the smaller projection of j (K;)
sticks closer to the bulk of the nucleus during its orbit

* Since the nuclear force is attractive,
the K, orbit will be more bound (i.e. lower energy) than the K, orbit

* The opposite would be true if the nucleus in our picture was oblate,
squishing out toward the K, orbit
* Therefore, for prolate nuclei, lower K single-particle levels :fz ;,I.L
will be more bound (lower-energy), 3f2>< 512
whereas larger K states will be more bound for oblate nuclei — ,——— | <<—— yo
7/2 1/2
B < O (oblate) B > O (prolate)

B=0



.Casten, Nuclear Structure from a

Nilsson model: single-particle level splitting p smvierpecie o

e Continuing with our schematic picture, we see that the proximity of thi
orbiting nucleon to the nucleus isn’t linear with K, since sin 8 ~§

Classical orbit angles, relative to the nuclear equator, for j = 13/2.
- = 1y -y T 112 13/2 )" Z
172 3/2 ME I 1 1/, ML
g{deg) 4.4 13.3 22.6 32.6 43.8 57.8 )]
Af(deg) 8.9 9.3 10.0 11.2 14.0 J2.2
R.Casten, Nuclear Structure from a Simple Perspective (1990)

13
e So the difference in binding for AK = 1 increases as K increases ¢
* Now, considering the fact that single particle levels of different j 1
2

can have the same projection K, £}
we arrive at a situation that is
essentially the two-state mixing

of degenerate perturbation theory, £
where it turns out the perturbation

|
!
!
]
i
!
|
|
|
|
b
|
i
i
l
{

breaks the degeneracy and causes ] I
the States to repel each Other D.Griffiths, Introduction to Quantum Mechanics (1995)

in a quadratic fashion where the strength of the deflection
depends on the proximity of the states in energy

R.Casten, Nuclear Structure from a
Simple Perspective (1990)



Nilsson Model: single particle levels vs 5

Protons: 50<Z<82 32+ Protons: Z>82V2_

Nucleons: 8 < Z < 200r8 < N <20 5/2+
G782
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Nilsson Model: Example

* Consider 2°Al, for which we expect 5, = 0.2, like ?7Al

375
e There are 13 protons and 12 neutrons,
. . . — &
so the unpaired proton will be responsible for J™ clhas
e Filling the single-particle levels, 2 325 de2 324
* We place two protons in the 1s, , level, which isn’t shown 3 ]
e Then two more in 1/2-, two more in 3/2°, two more in 1/2, 5 200 ®
. . T 172 +
two more in the 1/2*, two more in the 3/2* 2 \\____@@/ 1/2-
e And the last one winds up in the 5/2* level Prre /-
. + _ '
e So, we predict ]};_S = >/, ’ o Tare
 For the first excited sate, ! 404 3¢ oo g, 229 @) .
it seems likely the proton will hop o B Y o« W R
+ 0.4 -0.2 o —0Z 04
up to the nearby 1/2* level | o a a e
e Agrees with data

EXCITATION ENERGY {MeV)

* Since Al is deformed, 2 I ii:
we should see rotational bands -
with states that have (integer)+j - 0.9
and o« j(j + 1) spacing L. ‘;"Z’Kz

2
fi
=
I
(S
+



Further Reading

Chapter 6: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)
Chapter 7: Nuclear & Particle Physics (B.R. Martin)

Chapter 14, Section 13: Quantum Mechanics for Engineers (L. van Dommelen)

Chapter 5, Section G: Introduction to Nuclear Physics & Chemistry (B. Harvey)

Chapter 8: Nuclear Structure from a Simple Perspective (R. Casten)


http://www.umich.edu/%7Eners312/CourseLibrary/Dommelen.pdf
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