Lecture 3: Nuclear Structure 1

- Why structure?
- The nuclear potential
- Schematic shell model

Lecture 3: Ohio University PHYS7501, Fall 2019, Z. Meisel (mei sel @ohi o. edu)

Empirically, several striking trends related to Z,N. e.g.

...reminiscent of atomic structure

Shell Structure

Atomic

• Central potential (Coulomb) generated by nucleus

• Electrons are essentially non-interacting

• Solve the Schrödinger equation for the Coulomb potential and find characteristic (energy levels) shells: *shells at 2, 10, 18, 36, 54, 86*

Nuclear

• No central object

...but each nucleon is interacted on by the other A-1 nucleons and they're relatively compact together

• Nucleons interact very strongly

...but if nucleons in nucleus were to scatter, Pauli blocking prevents them from scattering into filled orbitals. Scattering into higher-E orbitals is unlikely. i.e. there is no "weak interaction paradox"

• Can also solve the Schrödinger equation for energy levels (shells) ...but obviously must be a different potential: *shells at 2, 8, 20, 28, 50, 82, 126*

...you might be discouraged by points 1 and 2 above, but, remember: If it's stupid but it works, it isn't stupid.

Calculating eigenstates of the system, a.k.a single particle levels

- \bullet The behavior of a quantum-mechanical system is described by the wave function ψ
- For a particle in some potential, we can solve for ψ using the Schrödinger equation,

•
$$H\psi = E\psi$$
 a.k.a. $T\psi + V\psi = E\psi$ a.k.a. $-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = E\psi$ (in cartesian coordinates, $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$)

- The solutions ψ are the eigenfunctions and their eigenvalues are the corresponding energy E
- As a bonus, when ψ can be expressed in terms of spherical harmonics, $\psi = R(r) \Upsilon_m(\theta, \phi)$ we also get the angular momentum for that particular eigenfunction, and parity, since the function is either odd or even
- Mathematical challenges aside, to get any traction we obviously need to assume a potential V
- For a single nucleon in the field of a nucleus,
 - \bullet V should approximate the mean-field generated by all other nucleons
 - •The solutions will be single-particle levels,
 - i.e. discrete states the nucleon can occupy
- Since nucleons are indistinguishable, we only need to solve for the single-particle levels for a nucleon and then we can fill those levels (working in terms of increasing *E*) to generate a model to calculate the properties of our nucleus

5

First stab at the potential, V: The Harmonic Oscillator

- Based on some evidence (and logic) that nuclei aren't perfectly constant in density, Heisenberg (Z. Phys. 1935) posited that a parabolic potential could be assumed, conveniently allowing the adoption of the harmonic oscillator solutions (one of the few analytically solved systems!)
- This provides evenly spaced energy levels $n \ge 1$, with $E_n = (n 1 + \frac{1}{2})\hbar\omega$. allowed for each
- The corresponding angular momenta are $l = n 1, n 3, ... \ge 0.$
- The number of particles per angular momentum is 2(2l + 1) for 2l + 1 projections & 2 spins
- So, the number of particles per level is:

	0	~
Loveland, Morrissey,	& Seaborg, Modern Nuclear Chemistry (2006)

n	l	# per level	Cumulative
1	0	2(2*0+1) = 2	2
2	1	2(2*1+1) = 6	8
3	0,2	2(2*0+1) = 2 + = 12 2*(2*2+1) = 10	20
4	1,3	2*(2*1+1) = 6 + = 20 2*(2*3+1) = 14	40
5	0,2,4	2*(2*0+1) = 2 + 2*(2*2+1) = 10 = 30 + 2*(2*4+1) = 18	70

Could the HO potential still be useful for some cases? ...can get the job done for light nuclei (e.g. <u>H. Guo et al. PRC 2017</u>) ...but need to be careful, because can impact results (B.Kay et al PRL 2017)

i.e. only odd or even functions are oscillator shell

Move to an empirical potential: Woods-Saxon

- Since the nuclear interaction is short-range, a natural improvement would be to adopt a central potential mimicking the empirical density distribution
- This is basically a square well with soft edges, as described by the Woods-Saxon potential:

 Using the Woods-Saxon is a good idea because of commitment to reality... but we're no wiser as to the origin of the magic numbers

Was this step completely useless? No! It broke the degeneracy in l

-

The missing link: the spin-orbit interaction

- Due to desperation or genius (or both) Maria Göppert-Mayer [Phys. Rev. February 1949] (and nearly simultaneously Haxel, Jensen, & Suess [Phys. Rev. April 1949]) posited that nucleon spin and orbital angular momentum interacted strongly, making j the good quantum number for a nucleon: $\vec{j} = \vec{l} + \vec{s}$
- Prior to this approach, angular momentum was coupled as is typically done for atoms, where $\vec{J} = \vec{L} + \vec{S}$, $\vec{L} = \sum_{nucleons} \vec{l}$, and $\vec{S} = \sum_{nucleons} \vec{S}$
 - This is "LS coupling"
- Positing that the spin-orbit interaction is stronger than spin-spin or orbit-orbit means that instead, $\vec{J} = \sum_{nucleons} \vec{j}$ and $\vec{j} = \vec{l} + \vec{s}$
 - This is "jj coupling"

8

The missing link: the spin-orbit interaction

- Now, in considering a valence nucleon, we should calculate its *j*
- *j* can only take on values: $|l s| \le j \le |l + s|$...so for our nucleons, $|l \frac{1}{2}| \le j \le |l + \frac{1}{2}|$, i.e. *l* and *s* are either aligned (l + s) or anti-aligned (l s)
 - For l = 0: $j = \frac{1}{2}$; l = 1: $j = \frac{1}{2} \text{ or } \frac{3}{2}$; l = 2: $j = \frac{3}{2} \text{ or } \frac{5}{2}$; l = 3: $j = \frac{5}{2} \text{ or } \frac{7}{2}$... etc.
- Each j has 2j + 1 projections (a.k.a. # of protons or neutrons, depending which nucleon we're discussing)
 - i.e. 2 states for $j = \frac{1}{2}$, 4 states for $j = \frac{3}{2}$, 6 states for $j = \frac{5}{2}$, 8 states for $j = \frac{7}{2}$... etc.
- The spin-orbit interaction means there's a *j*-dependent part of the nuclear potential, so the levels corresponding to different *j* for some *l* will be split in energy.
- For nucleons, cases with aligned l and j are energetically favored, so, for example, $l = 1, j = \frac{3}{2}$ will be lower in energy than $l = 1, j = \frac{1}{2}$
- While we're at it, note the spectroscopic notation:

Result: the nuclear potential

- Nucleons within a nucleus can be treated as if they are
 - Attracted by a Woods-Saxon central potential
 - **Repelled** by a Coulomb potential from a charged sphere (if proton)
 - Attracted or Repelled if *l* and *s* are parallel or anti-parallel by the spin-orbit force (Peaks at surface)
 - **Repelled** by a centrifugal barrier (if the nucleon were to exit the nucleus, carrying away angular momentum l > 0)

Putting it all together: "shells" from the nuclear potential

- Considering the nucleus as nucleons interacting in a mean-field potential, generated by the spatial distribution of all other nucleons, and each nucleon having a strong interaction between its orbital & spin angular momentum, properly predicts the magic numbers.
- Note that neutrons and protons are considered separately.
- When adding neutrons or protons to a nucleus, the lowest energy state will (generally) consist of filling each orbital as you go upward.
- The regions between the large gaps in nucleon energy are referred to as "shells".
 - E.g. Between 8 and 20 neutrons (or protons) is the "sd-shell", between 28 and 40 neutrons (or protons) is the "fp-shell".
 - More exotic neutron-rich nuclides exist, so typically people are talking about the neutron shell
 - Nucleons can get excited into higher-lying states, so states above the ground-state are relevant in calculations

oveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006)

As a heads-up, level ordering doesn't follow a fixed set of rules

For, e.g, n-rich O isotopes:

Magic numbers "break down" and new ones can appear for exotic nuclides

Bohr & Mottelson, Nuclear Structure, Vol. I (1969)

Common form for the nuclear potential

• $V(r) = V_{central}(r) + V_{spin-orbit}(r)\vec{l}\cdot\vec{s} + V_{Coulomb}(r) + V_{centrifugal}(r)$

Filling the shells

- We can construct a nucleus using our "shell model":
 - A nucleon will go in the lowest-energy level which isn't already filled, i.e.
 - the largest angular momentum, *j*
 - \bullet for the lowest orbital angular momentum, l
 - for the lowest oscillator shell, n
 - 2j + 1 protons or neutrons are allowed per level
 - Each level is referred to by its *nlj*
 - n by the # for the oscillator shell (convention either starts with 0 or 1)
 - *l* by spectroscopic notation (s=0,p=1,d=2,f=3,...)
 - *j* by the half-integer corresponding to the spin

Basic properties from the shell model: J^{π}

- Recall that, from the pairing hypothesis, nucleons pair & cancel spins.
- So, the unpaired nucleons determine the properties of a nucleus. Unpaired nucleons sum to determine the spin & multiply to determine the parity

- The only nucleon without a dance partner is the $1p_{3/2}$ proton; i.e. J = 3/2, $\pi = (-1)^1$ So, the ⁷Li ground-state should be $J^{\pi} = \frac{3}{2}^{-1}$
- What's the lowest energy excitation possible? (note pairing is strong) Moving the $p_{3/2}$ proton up to $p_{1/2}$
- So, the first excited state of ⁷Li should be $J^{\pi} = \frac{1}{2}^{-1}$
- Compare to data:

Basic properties from the shell model: J^{π}

 $1d_{3/2}$

 $2s_{1/2}$

 $1d_{5/2}$

 $1p_{1/2}$

 $1p_{3/2}$

 $1s_{1/2}$

- Now that we're feeling fat & sassy, let's try another case: ³⁷Ar
- Based on our shell-model, we expect the ground-state to be 3/2⁺

...and it is!

- Now for the first excited state, a logical thought would be the odd d_{3/2} neutron would pop up to the f_{7/2} level, creating a state with 7/2⁻
 - ...but the first excited state is $1/2^+$ (the 2nd x.s. is 7/2⁻)
- What happened?
 - We have to keep in mind pairing & energy-costs
 - The $2s_{1/2}$ -1d_{3/2} gap is smaller than the $1d_{3/2}$ -1f_{7/2} gap (for low A)
 - And, pairing energy increases with the l of the level

Basic properties from the shell model: J^{π}

• Looking at a more complicated case, ³⁸Cl (Z=17, N=21)

- 2 valence nucleons: one $d_{3/2}$ proton and one $f_{7/2}$ neutron
- Allowed couplings are $|j_1 j_2| \le J \le |j_1 + j_2|$
- So for this case: *J* = 2, 3, 4, 5
- How do we decide which combination has the lowest energy?

Using the descriptively named: "jj coupling rules for Odd-Odd nuclei" from Brennan & Bernstein (Phys. Rev. 1960) Basic properties from the shell model: J^{π} for odd-odd

- For Odd-Z, Odd-N nuclides, need a method to determine which jj-coupling is the lowest energy
- An empirically-based set of rules was developed by Brennan & Bernstein (Phys. Rev. 1960)
- They noticed that, when coupling j, $j_1 = l_1 \pm s_1$ and $j_2 = l_2 \pm s_2$, • Rule 1: If $(j_1 = l_1 + s_1 \text{ and } j_s = l_2 - s_2) \underline{or} (j_1 = l_1 - s_1 \text{ and } j_s = l_2 + s_2)$, then $J = |j_1 - j_2|$ • e.g. for a d_{3/2} proton $(j_p = 2 - \frac{1}{2} = \frac{3}{2})$ and a f_{7/2} neutron $(j_n = 3 + \frac{1}{2} = \frac{7}{2})$, $J = \frac{7}{2} - \frac{3}{2} = 2$ For this case, $\pi = \prod \pi_i = (-1)^2 * (-1)^3 = -$ • Rule 2: If $(j_1 = l_1 + s_1 \text{ and } j_s = l_2 + s_2) \underline{or} (j_1 = l_1 - s_1 \text{ and } j_s = l_2 - s_2)$, then $J = |j_1 \pm j_2|$
 - e.g. for a d_{5/2} proton $(j_p = 2 + \frac{1}{2} = \frac{5}{2})$ and a d_{5/2} neutron $(j_n = 2 + \frac{1}{2} = \frac{5}{2})$, $J = \frac{5}{2} + \frac{5}{2} = 5$ **Ex:** ²⁶Al For this case, $\pi = \prod \pi_i = (-1)^2 * (-1)^2 = +$
 - •Rule 3: If one odd nucleon has been promoted (e.g. to an s-orbital to pair with a nucleon), leaving behind a "hole", and the other odd nucleon stays a particle, then $J = j_1 + j_2 - 1$ •e.g. for a d_{3/2} proton hole $(j_p = \frac{3}{2})$ and a f_{7/2} neutron $(j_n = \frac{7}{2}), J = \frac{7}{2} + \frac{3}{2} - 1 = 4$ For this case, $\pi = \prod \pi_i = (-1)^2 * (-1)^3 = -$

*These don't always work...but when they don't, this can tell you something: Either there's more than a single-particle level interaction going on, or your particle(s)/hole(s) don't occupy the levels we naïvely assumed. (e.g. S. Liddick et al. Phys. Rev. C 2004)

Shell-model is pretty good at predicting J^{π}

(among other things)

Experiment

SDPF-U

SDPF-MU

19

What else are J^{π} predictions good for? Magnetic dipole moments

- Recall that for a single particle, the magnetic dipole moment is: $\mu = jg_j\mu_N$
- After some fancy footwork, it can be shown that the Landé g-factor can be expressed as:

$$g_j = \left(\frac{j(j+1) + l(l+1) - s(s+1)}{2j(j+1)}\right) g_l + \left(\frac{j(j+1) - l(l+1) + s(s+1)}{2j(j+1)}\right) g_s$$

Since spins cancel for paired nucleons, we might expect the magnetic dipole moment of a nucleus with 1-unpaired nucleon to be determined by that nucleon
Expected values of μ are therefore:

•
$$\mu = jg_j = lg_l + \frac{1}{2}g_s$$
 for $j = l + \frac{1}{2}$

•
$$\mu = jg_j = j(1 + \frac{1}{2l+1})g_l - j(\frac{1}{2l+1})g_s$$
 for $j = l - \frac{1}{2}$

• Protons:
$$g_l = 1, g_s = 5.6$$
 , Neutrons: $g_l = 0, g_s = -3.8$

• These boundaries are the "Schmidt lines" (Th. Schmidt, Z.Phys. (1937)) and nearly all measured g_i fall between these

As with excited state J^{π} 's, deviation between experiment & shell model predictions tell us something interesting is going on. E.g. mixing between single-particle occupations, $I_{J}^{Rh^{103}}$, I_{J

What else are J^{π} predictions good for? **Isomers** (long-lived x.s.)

- Most excited states decay via γ-emission in a matter of femto-seconds, but some stick around for many nanoseconds, milliseconds, seconds, or even universe lifetimes.
- These are meta-stable states, a.k.a. isomers
- The reason is γ -emission is suppressed, since it would require large angular momentum transfer
- So, where do we expect low-lying high-*j* excited states?
 - Where a large Δj exists between neighboring levels (thanks to the spin-orbit interaction) that are near the last single particle orbit.
 - Namely, below magic #'s 50, 82, 126
 - For these cases, we expect a parity change
 - Where multiple *j* are possible for the ground-state (but one is favored by the Brennan-Bernstein rules) and high-*j* single-particle levels are involved
 - Namely, odd-odd nuclei
 - For these cases, we don't expect a parity change

Loveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006)

Isomers on the Nuclear Chart

L. van Dommelen, Quantum Mechanics for Engineers (2012)

Special cases exist (mostly for higher-A nuclides) where even-even nuclei have isomers (e.g. M. Müller-Veggian et al., Z.Phys.A (1979))

Impact of Isomers (selected examples)

Medical Imaging

e.g. mapping blood flow in the brain with SPECT using ^{99m}Tc

K. Ogasawara et al. American Journal of Neuroradiology (2001)

Nuclear Astrophysics

e.g. ^{26m}Al complicating nova nucleosynthesis calculations

J. José, Stellar Explosions (2015)

Nuclear Energy Storage

Controlled energy storage and release using isomers and lasers was a hot topic for a while

...but it turns out to be really difficult. P. Walker & J. Carrol, Physics Today (2005)

Recent theoretical work has found a possible avenue using dielectric cavities.

E. Tkalya Phys. Rev. Lett. 2018

What else are J^{π} predictions good for? Mirror Nuclei

- Note that our methods to determine J^{π} didn't depend on whether we were working with protons or neutrons
- If we interchange N for Z, we will get the same answer
- Such pairs are called "mirror nuclei"
- When we examine the levels for mirror nuclei, correcting for the different Coulomb energy, we see a remarkable similarity

• Such mirror symmetry is evidence for charge-independence of the nuclear force and a justification for the concept of isospin It's also handy when you need estimates for a nucleus you can't access when you can access its mirror (e.g. C.Akers et al. PRC 2016)

The Shell Model: It slices, it dices, it makes julienne fries! What can't it do!?

Shell Model Limitations:

- You'll often find the shell model description isn't as good as you would hope
- The detailed reasons for failures are varied, however, they mostly indicate the basic premise of the calculation is incorrect
- Shell Model calculations (generally speaking) assume
 - Minimally-interacting nucleons (i.e. mostly independent, except pairing)
 - Spherical inert cores of nucleons
- Solutions to these problems are:
 - Modify the shell-model calculation to get the added level of realism
 - Use a different model

L. van Dommelen, Quantum Mechanics for Engineers (2012) 545/3 5g7/2 47 22 Ti 11/25/2Imperfect pairing. 3s1/2 5/21/3 Wrong shell. 6h11/2 5g7/2 6h11/2 5g9/ $^{77}_{34}$ Se Promotion. 545/2 $^{181}_{73}$ Ta ---1s1/2 Nonspherical nucleus spin: $-0 \quad -\frac{1}{2} \quad -1 \quad -\frac{3}{2} \quad -2 \quad -\frac{5}{2} \quad -3 \quad -\frac{7}{2} \quad -4 \quad -\frac{9}{2} \quad -5 \quad -\frac{11}{2} \quad -6 \quad -\frac{13}{2} \quad -7 \quad -\geqslant \frac{15}{2} \quad -> \frac{29}{2} \quad -?$

26

Shell Model Limitations:

- For example, nuclei have series of states that are spaced in energy and linked via transitions that can be described by a collective rotation/vibration of the nucleus.
- The rotational bands of even-even nuclei link the ground state to 2+,4+,6+,8+, etc., excited states
- Another example is the inability to predict nuclear masses.
- Shell model potentials must be adjusted to reproduce the ground-state binding energy
- Some other approach, such as a collective model (e.g. the liquid drop model) is needed instead

Further Reading

- Chapter 6, Appendix E: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)
- Chapters 7: Nuclear & Particle Physics (B.R. Martin)
- Chapters 6-8: Lecture Notes in Nuclear Structure Physics (B.A. Brown)
- Chapter 14, Section 12: Quantum Mechanics for Engineers (L. van Dommelen)
- Chapter 1, Section 6: Nuclear Physics of Stars (C. Iliadis)
- Chapter 11: The Atomic Nucleus (R. Evans)