Lecture 2: Nuclear Phenomenology

- Mass models & systematics
- Charge & matter distributions
- Moments & deformation
- Spin, parity, & isospin

Empirically-motivated & focused theory

How to explain the binding energy trend?

- Like, Gamow in 1929 & 1930 (Z. Phys. A), consider the nucleus as a group of nucleons (he assumed αs) in a close configuration
- Nucleons will bind together via some attraction force, like water molecules in a drop, but there will be some penalty for like-charges repelling each other.
- Comparing to data, do a pretty decent job, but clearly missing something(s)

The Semi-Empirical Mass Formula (SEMF)

More carefully consider all of the interactions going on in a nucleus:

- All nucleons are attracting each other via the strong force: generates some bulk binding energy
- However, nucleons near the surface don't have a neighbor: penalizes binding energy
- Protons are repel each other due to the Coulomb force: penalizes binding energy
- p-n attraction is stronger than p-p or n-n & p-n favored space-wise by Pauli exclusion: penalizes N-Z asymmetry
- Nucleons want a dance partner (make spin-0 pair): bonus for even-even, penalty for odd-odd, neutral for even-odd
- These considerations lead C. von Weizsäcker to develop the first usable theory for nuclear masses (Z.Phys. A 1935), now dubbed the semi-empirical mass formula, or SEMF if you're extra-cool

The Semi-Empirical Mass Formula

- BE(Z,A) = Volume Surface Coulomb Asymmetry ± Pairing
- One mathematical parameterization* (of many!):

*from B. Martin, Nuclear and Particle Physics (2009)

- $\bullet BE(Z,A) = a_v f_v(A) a_s f_s(A) a_c f_c(Z,A) a_a f_a(Z,A) + i a_p f_p(A)$
 - •Volume: Nucleons cohesively bind, so: $f_v(A) = A$
 - •Surface: Since radius goes as $R \propto A^{1/3}$ and surface area goes as $SA \propto R^2$, $f_s(A) = A^{2/3}$
 - •Coulomb: Energy for a charged sphere goes as $\frac{q^2}{R}$ and $R \propto A^{1/3}$, so $f_c(Z, A) = \frac{Z(Z-1)}{A^{1/3}}$
 - •Asymmetry: Z=N favored (want Z=A/2) but lesser problem for large A, so $f_a(Z,A) = \frac{\left(Z \frac{A}{2}\right)^2}{A}$
 - •Pairing: Favor spin-0 nucleon pairs & disfavor unpaired nucleons, empirically $f_p(A) = (\sqrt{A})^{-1}$
 - Even-Z, Even-N: i = +1
 - •Odd-Z, Odd-N: i = -1
 - •Even-Odd: i = 0
 - • a_i are fit to data

A mnemonic for remembering SEMF contributions is "VSCAP".

The Semi-Empirical Mass Formula

• Gives a pretty remarkable reproduction of the data: ~1MeV deviations compared to ~8MeV/A

The Semi-Empirical Mass Formula

 Good enough for many modern applications, e.g. identifying the dominant effect setting the equilibrium composition of neutron star crusts

Nuclear Mass Models: Common Recent-ish Global Models

Others:

- Energy density functionals (EDF), e.g. M.Kortelainen et al. PRC (2012) (see the FRIB Mass Explorer)
- KTUY from Koura, Tachibana, Uno, Yamada, Prog. Theor. Phys. (2005)
- Local, algebraic relations:
 - Garvey-Kelson
 - Isobaric Mass Multiplet Equation
- Smooth mass-surface extrapolations from the AME
 - many more ...

HFB: S.Goriely, N.Chamel, J.Pearson PRC (2010)

The main point is that even the best theoretical descriptions struggle to do better than the ~100keV level. Structure & astrophysics often need keV-level precision.

Nuclear Mass Differences

- The energy released in a nuclear reaction is the "Q-value"
 - $Q = \sum_{reactants} ME(Z, A) \sum_{products} ME(Z, A)$,
 - For example, $Q_{68}_{Se(p,\gamma)}{}^{69}_{Br} = ME(^{68}Se) + ME(p) ME(^{69}Br)$
 - = (-54.189MeV) + (7.288MeV) (-46.260MeV)
 - =-0.641 MeV
- Considering the case above, we calculated the energy released by adding one proton to 68 Se, which corresponds to the energy it takes to remove one proton from 69 Br, a.k.a. the "proton separation energy", S_p
- Similarly, can calculate the energy to remove 1-neutron S_n , two-protons S_{2p} , or two-neutrons S_{2n}
 - $\bullet S_p(Z,N) = ME(Z-1,N) + ME(p) ME(Z,N)$
 - $\bullet S_n(Z,N) = ME(Z,N-1) + ME(n) ME(Z,N)$
 - $S_{2p}(Z, N) = ME(Z 2, N) + 2 * ME(p) ME(Z, N)$
 - $S_{2n}(Z, N) = ME(Z, N 2) + 2 * ME(n) ME(Z, N)$

Nuclear Masses & Nuclear Structure

Information is encoded in separation energies (& separation energy differences)

Deviation provided 1st evidence for "island of inversion" [C. Thibault et al. PRC 1975]

See that some mass models do more poorly than it looks when looking only at mass predictions.

$$D_n(Z,A) = (-1)^{N+1} [S_n(Z,A+1) - S_n(Z,A)]$$

Nuclear masses define the nuclear landscape

Nuclear Masses in Astrophysics (Selected Examples)

X-ray burst light curves

Neutron star crust temperature

r-process abundance yields

Cosmic Abundance Pattern

Charge & Matter Distributions

- The nucleus can't be a point object.
 - Nucleons are fermions: Pauli exclusion forbids putting several in the same place.

- The radial distribution of charge & matter are probed via scattering.
 - Electrons are best for the charge radius, because structure-less but charged
 - Neutrons are best for the matter radius, because not charged and simple-ish structure

Nuclear charge distribution

•Scattering of point charged particles (with charges e and Ze) is well-described by the relativistic correction to Rutherford scattering, i.e. the Mott scattering cross section

•
$$\sigma_{Mott}(\theta_{cm}) = \left(\frac{Ze^2}{2E_{cm}}\right)^2 \frac{\left(\cos(\theta_{cm/2})\right)^2}{\left(\sin(\theta_{cm/2})\right)^4}$$
 another notation for $\sigma(\theta)$ is $d\sigma/d\Omega(\theta)$

• It turns out, from considering scattering of a plane wave off of an extended object and solving for the outgoing spherical wave,

one realizes a form factor needs to be included*:

*It's there for a point object, but it's a delta function

•
$$\sigma_{scatt}(\theta_{CM}) = \sigma_{Mott}(\theta_{CM}) * \left| \int_{nuclear\ volume} \rho_{charge}(r) e^{i \mathbf{q} \cdot \mathbf{r}} \right|^2$$
 where \mathbf{q} is the momentum transfer

- $\sigma_{scatt}(\theta_{CM}) = \sigma_{Mott}(\theta_{CM}) * |F(\mathbf{q}^2)|^2$
- ullet i.e. the form factor $F(q^2)$ is the Fourier transform of the charge distribution

Nuclear charge distribution

• Luckily, sharp people have solved for form factors corresponding to typical charge distributions See, e.g. Table 1 of R. Hofstadter, Rev. Mod. Phys. (1956)

• Comparing measured $\sigma_{scatt}(\theta)$ to calculations reveals a Fermi-like distribution:

• The associated form factor is absurdly cumbersome, so usually a sum of Gaussians is used instead, since they have more manageable F(q):

Nuclear charge distribution

• Comparing measured $\sigma_{scatt}(\theta)$ to calculations w/ various F(q) reveals a Fermi-like distribution (R. Woods & D. Saxon, Phys. Rev. (1954))

Many estimated distributions can be obtained at the Nuclear Charge Density Archive: http://faculty.virginia.edu/ncd/, based on the data of Atomic and Nuclear Data Tables, Volumes 14, 36 and 60

What about our handy relationship for R(A)!?

- Recall, an estimate for the nuclear radius was stated last time as: $R(A)=r_0A^{1/3}$
- Can compare RMS radius from Fermi distribution, $\{\rho_{ch,Fermi}(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{a})}\}$, to R(A):

Nuclear matter distribution

- The low-budget technique to obtain the matter density, $\rho_{matt}(r)$, would be:
 - $\bullet \, \rho_{matt}(r) = \rho_{ch}(r) * (A/Z)$
 - Since $\rho_{ch}(0)$ steadily decreases with A, this leads to a near constant $\rho_{matt}(0)$ for all nuclides, which turns out to be $\rho_{matt}(0) \sim 0.16$ nucleons/fm³ A recent measurement of the neutron radius used neutrino(!) scattering
- Those with more discerning tastes prefer actual data, (Cadeddu et al. PRL 2018) which is generally* obtained via neutron scattering, but can be using any hadron
- The appreciable de Broglie wavelength of the probe (e.g. a neutron) and significant contributions from strong-force interactions, mean that the plane wave of the probe will undergo diffraction, as in optics
- A light probe (e.g. n, p, d) at appreciable energy (e.g. 10's of MeV), ... is sort of like light passing by an absorbing disk*: Get Fraunhofer diffraction
 - $\sigma(\theta) \propto sinc^2(a\theta)$

*If you're a glutton for punishment, the mathematics for diffraction from an absorbing disk is here: R.E. English & N. George, Applied Optics (1988)

Nuclear matter distribution

- The analogy is taken further with the "optical model"
- Like a photon, incoming nucleons can be scattered or absorbed by the scattering medium (i.e. the target)
- In optics, the imaginary part of the refractive index accounts for absorption of the incident light wave
- Here, the imaginary part of a complex potential (which describes the interaction between the projectile and target) corresponds to all inelastic reactions [As a refresher, elastic means kinetic energy is conserved. Everything else is inelastic]
- An important feature of the optical model is that the main property of relevance for the target is the nuclear size, so an interaction potential for similar target and a similar projectile & energy should do a decent job
- This allows for "global optical models",
 e.g. Perey & Perey, Phys. Rev. 1966
 and
 Koning & Delaroche, Nuc. Phys. A 2003

Fig. 8. Angular distributions of the elastically (1) and inelastically (2, 3, 4, 5) scattered deuterons from ⁵⁴Fe and optical-model fit (O.M.), one-phonon collective-model (C.M.) and shell-model (S.M.) calculations.

Exceptions to the rule: Halo nuclei

- Some nuclei exhibit radii far larger than expected from the $r_0A^{1/3}$ estimate
- Their large radius is due to 1, 2, or 4 loosely bound nucleons
- The small binding energy of these valence nucleons corresponds to a low tunneling barrier
- From Heisenberg's uncertainty principle, the nucleon(s) can exist in the classically forbidden region beyond the barrier for a rather long time, since $\hbar \propto \Delta E \Delta t$ and ΔE is small

• Examples:

- 1n: ¹¹Be, ¹⁹C
- 1p: 8B, 26P
- 2n: ⁶He, ¹¹Li, ¹⁷B, ²²C
- 2p: ¹⁷Ne, ²⁷S
- 4n: 8He, 14Be, 19B

Electric & Magnetic Moments

In general, a moment is a distance multiplied by a physical quantity. For distributions you integrate the quantity's distribution with respect to distance.

- The nuclear magnetic moments describe the distribution of electric currents in the nucleus
 - Causes nuclei to align along an external magnetic field, which can be exploited using NMR, MRI, etc.
- The nuclear *electric* moments describe the distribution of electric charges in the nucleus
 - Used as a measure of the nuclear shape

Nuclear magnetic dipole moment

• For a classical charge, e, orbiting in a circle with radius r at velocity v,

the magnetic dipole moment is:
$$|\mu| = (Circle\ Area) * (Current) = iA = \left(\frac{ev}{2\pi r}\right)(\pi r^2) = \frac{evr}{2}$$

- Since angular momentum of the charge with mass m is l = mvr:
 - $|\mu| = \frac{el}{2m}$, where m would be the proton mass for an orbiting proton
- In quantum mechanics, the analogous circular orbit is given by the z-projection of l, m_l :
 - $\mu=rac{e}{2m}m_l\hbar$ defining the nuclear magneton to be $|\mu_N|\equivrac{e\hbar}{2m_p}$, then: $\mu=m_l\mu_N$
 - $\mu_N = 3.15 \times 10^{-12} \frac{\text{eV}}{\text{gauss}} = 0.105 \text{ efm}$
- ...but that relationship turns out to not quite be true, so we include a fudge-factor, called the g-factor: $\mu = g_1 m_1 \mu_N$
- On top of that, there is also a contribution from the intrinsic spin angular momentum and we usually just quantify μ in terms of magnetons : $\mu=g_lm_l+g_sm_s$
- For the free proton and free neutron, $\mu = g_{s_2}^{-1}$, where $g_{s,p} = 5.58$, $g_{s,n} = -3.83$
 - ...if they were structure-less, one would expect $g_{s,p}=2$ and $g_{s,n}=0$

Nuclear electric quadrupole moment

Nuclear surface $I = (D^2 - 2Dr \cos \theta + r^2)^{\frac{1}{2}}$

- The nucleus is a charged volume, *V*, with some shape
- The potential at some point a distance I away from the nucleus due to a small slice of the nucleus that has some charge density $\rho(r,\theta,\varphi)$, where r,θ,φ are w.r.t. the nuclear centroid, is:

•
$$d\phi = \frac{\rho dV}{l} = \frac{\rho dV}{\sqrt{D^2 + r^2 - 2Dr\cos\theta}} = \frac{\rho dV}{D} \left(1 - 2Dr\cos\theta + \frac{r^2}{D^2}\right)^{-1/2}$$

- Someone clever noticed a Taylor expansion of the quantity in parentheses yields a multipole expansion:
 - $d\phi = \frac{\rho dV}{D} \left(1 + \frac{2\cos\theta}{2} \frac{r}{D} + \frac{1}{8} (3(2\cos\theta)^2 4) \frac{r^2}{D^2} + \cdots \right)$
 - $=\frac{\rho dV}{D} \left(1 + \frac{r}{D}\cos\theta + \left(\frac{3}{2}(\cos\theta)^2 \frac{1}{2}\right)\frac{r^2}{D^2} + \cdots\right)$
- allowing us to spot the Legendre Polynomials, $P_1(\cos\theta) = \cos\theta$, $P_2(\cos\theta) = \frac{3}{2}(\cos\theta)^2 \frac{1}{2}$:

•
$$d\phi = \frac{\rho dV}{D} \left(1 + \frac{r}{D} P_1(\cos \theta) + \frac{r^2}{D^2} P_2(\cos \theta) + \cdots \right)$$

- When we integrate over the nuclear volume to get the full potential, all odd Legendre polynomials will drop-out, so:
 - $\Phi = \frac{1}{D} \iiint \rho(r, \theta, \varphi) r^2 dr \sin \theta d\theta d\varphi + \frac{1}{D^3} \iiint r^2 \rho(r, \theta, \varphi) r^2 dr \sin \theta d\theta d\varphi + \cdots$ Nuclear charge, Ze

Nuclear electric quadrupole moment, Q

- $Q = \iiint r^2 \rho(r, \theta, \varphi) r^2 dr \sin \theta d\theta d\varphi$
- ullet Note that if ho is spherically symmetric, the integral over d heta will make Q=0
- ullet So, any non-zero Q indicates a non-spherical nuclear shape
- Choosing an ellipsoid model for the nucleus and evaluating Q above yields
 (it turns out)
 - $Q = \frac{2}{5} Ze(a^2 c^2)$

Q is generally provided in units of e

With a measurement of Q, we can solve for a and c using the formula for the

radius of an ellipsoid:

•
$$R^2 = \frac{1}{2}(a^2 + c^2) = (r_0 A^{1/3})^2$$

- If a > c, Q > 0 and the nucleus is "prolate"
- If a < c, Q < 0 and the nucleus is "oblate"

Nuclear electric quadrupole moment, Q

- Q/e is commonly reported,
 which has units of area
- A convenient unit for such small areas is the barn:
 - 1barn = 10^{-24} cm²

higher-order deformation is also possible:

A. Gaamouci et al. PRC (2021)

Q and deformation, β

- For an ellipsoid, radius can be represented as an expansion in spherical harmonics
 - $R(\theta, \varphi) = R_{sph} \left(1 + \sum_{\lambda=2}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda,\mu} Y_{\lambda,\mu}(\theta, \varphi) \right)$
 - where R_{sph} is the radius of sphere with the same volume, $r_0A^{1/3}$
 - λ is the multipole (1 is neglected because that's C.O.M. motion), and μ is the z-projection
 - ...for an axially symmetric nucleus (e.g. prolate & oblate), $\mu=0$

• $\beta_2 \equiv \alpha_{2,0} = \frac{4}{3} \sqrt{\frac{\pi}{5} \frac{(a-c)}{R_{sph}}}$...which is a commonly used metric for deformation

Spin

- The quantized nature of atomic observables was noted early on in quantum mechanics (e.g. x-ray energies from electrons changing orbitals)
- Stern & Gerlach set-out to prove this quantization by taking advantage of the fact that an inhomogeneous magnetic field exerts a force on a magnetic dipole (W. Gerlach & G. Stern, Z.Phys. (1922)):
 - $\bullet \ \vec{F} = \nabla (\vec{\mu} \cdot \vec{B})$
 - Upon sending neutral silver atoms through their apparatus, they found a split beam

Luckily the stable isotopes of ¹⁰⁷Ag and ¹⁰⁹Ag both have spin-1/2 ground-states ... otherwise I feel like this experiment would have generated quite a bit of confusion!

- Since $\mu = g_S m_S$, this demonstrated there were two spin projections and thus spin=1/2.
- A follow-up (Phipps & Taylor, Phys. Rev. (1927)) demonstrated spin=1/2 for Hydrogen
- Neutrons & protons each have intrinsic spin of ½
- Thus, nuclei have intrinsic spins which are half-integer multiples, where the exact value depends on the nucleus's structure.
- Nucleons pair, when possible, in a nucleus, cancelling spins. For example, ALL even-Z, even-N nuclides Thus unpaired nucleons determine a nucleus's spin.

 have a ground-state spin of zero.

Parity, π

- The quantum mechanical state a nucleus is in is described by a wave function, which will either be even or odd
- **Even** wave-functions are symmetric about the origin (e.g. cosine) and thus, upon flipping the spatial coordinate and spin:
 - $\bullet \ \psi(r,s) = \psi(-r,-s)$
 - This is known as positive parity
- *Odd* wave-functions are antisymmetric about the origin (e.g. sine) and thus, upon flipping the special coordinate and spin
 - $\bullet \ \psi(r,s) = -\psi(-r,-s)$
 - This is known as *negative parity*
- For a spherically symmetric potential (i.e. $V(r, \theta, \varphi) = V(r)$), the parity of a particle is given by its orbital angular momentum:
 - $\pi = (-1)^{\ell}$
- ullet For a state of several nucleons, $\pi=\prod_i\pi_i$...as with spin, it's the unpaired nucleons that matter
- Parity is conserved for strong & electromagnetic interactions

When referring to a state of a nucleus, we typically denote both the spin & parity by: J^{π}

Isospin

- Empirically, the nuclear force between nucleons appears to be charge-independent, i.e. it doesn't matter if you're dealing with neutrons or protons. For instance:
 - Masses of isobars differ only by the different Coulomb energy and the n-p mass difference
 - Nuclear charge radii are well predicted by considering A, not Z and N separately
- Then, one can consider the neutron and proton as two states of the same particle, the nucleon (W. Heisenberg, Z. Phys. A (1932))
- Since the mechanics have already been developed for something in two quantized states (spin-1/2 particles), the associated machinery can be hijacked and assign nuclear states the quantity isospin, T
 - The nucleon has T=1/2 with two projections, $T_z=+\frac{1}{2}$ (proton) and $T_z=-\frac{1}{2}$ (neutron)
- For nucleus, $T_Z = \frac{Z-N}{2}$ and $|T_Z| \le T \le \frac{A}{2}$. Usually, for the ground-state $T = T_Z$
- Isospin is conserved (approximately) in strong interactions

Isospin symmetry

- As an example what isospin gets you, the ground-state spin-parity is the same for "mirror nuclei" (swap N & Z) except for 2 cases (as of 2021)
- This works for low-ish lying excited states too
 - This can be useful for astrophysical reaction rates, using the structure of the less-exotic nucleus in the pair to inform the structure of the moreexotic nucleus in the pair

Isospin symmetry

- A state with isospin T is a part of an isospin multiplet with 2T+1 members, which each are described by the same (or very similar) wave function but have different nuclear charge
- This isospin symmetry implies the members of the multiplet should have the same energy and, corrected for coulomb effects, indeed they do:
- The T>T_z states in the multiplet are termed "isobaric analogue states" and they are favored when transitioning ^{7,58ll}/_{He+1} from a ground-state in the mulitplet with T=T_z
- The isobaric mass multiplet equation (IMME) describes the binding energies of the states which are members of the multiplet:
 - $ME(T, T_z) = a(A, T) + b(A, T)T_z + c(A, T)T_z^2$
- This fact is taken advantage of to make predictions about exotic nuclides which are difficult to measure
- Nuclides with N & Z switched are "mirror" nuclides

W. Benenson & E. Kashy, Rev. Mod. Phys. (1979)

Further Reading

- Review of nuclear masses: <u>D. Lunney, J. Pearson, C. Thibault, Rev. Mod. Phys.</u> (2003)
- Review of charge distributions from electron scattering: R. Hofstadter, Rev. Mod. Phys. (1956)
- Chapter 2,5: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)
- Chapters 2,7: Nuclear & Particle Physics (B.R. Martin)
- Chapters 1-3,10: <u>Lecture Notes in Nuclear Structure Physics (B.A. Brown)</u>
- Chapter 4, Example 4.4: Introduction to Quantum Mechanics, D. Griffiths (2005)