Lecture 2: Nuclear Phenomenology

 Mass models & systematics Empirically-motivated
& focused theory

 Charge & matter distributions
e Moments & deformation
e Spin, parity, & isospin




B.A. Brown, Lecture Notes in Nuclear Structure Physics, 2005.

How to explain the binding energy trend? | o=
. _m .
e Like, Gamow in 1929 & 1930 (z phys. A), . ¥ ]
consider the nucleus as a group of nucleons (he assumed as) § 6 ‘
in a close configuration R i
* Nucleons will bind together via some attraction force, z — :
like water molecules in a drop, but there will be some 0 S
penalty for like-charges repelling each other. R R e
e Comparing to data, do a pretty decent job, g " o e s o

but clearly missing something(s)
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-'hi G. Gamow, Proc. Roy. Soc. A, 1930.



The Semi-Empirical Mass Formula (SEMF)

e More carefully consider all of the interactions goingonin a nucleu5'
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e All nucleons are attracting each other via the strong force: generates some bulk binding energy

e However, nucleons near the surface don’t have a neighbor: penalizes binding energy

e Protons are repel each other due to the Coulomb force: penalizes binding energy

e p-n attraction is stronger than p-p or n-n & p-n favored space-wise by Pauli exclusion: penalizes N-Z asymmetry

* Nucleons want a dance partner (make spin-0 pair): bonus for even-even, penalty for odd-odd, neutral for even-odd

 These considerations lead C. von Weizsacker to develop
the first usable theory for nuclear masses (z.phys. A 1935), ok
now dubbed the semi-empirical mass formula, Tw \
or SEMF if you're extra-cool
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The Semi-Empirical Mass Formula Cﬁ&ﬁ%%ﬁ&%@

e BE(Z,A) = Volume - Surface - Coulomb - Asymmetry * Pairing

e One mathema‘“cal parameter|zat|on* (ofmany’): *from B. Martin, Nuclear and Particle Physics (2009)
° BE(Z:A) — ava(A) _ asfs(A) o acfc(ZrA) o aafa(ZrA) + iapfp(A)
*Volume: Nucleons cohesively bind, so: f,(4) = A

*Surface: Since radius goes as R o A"/ and surface area goes as SA « R2, f (A) = A'/3
Z(Z-1)

a'/3

*Coulomb: Energy for a charged sphere goes as % and R < A'/3, so fc(Z A) =

z-5)

eAsymmetry: Z=N favored (want Z=A/2) but lesser problem for large A, so f,(Z,A) =

*Pairing: Favor spin-0 nucleon pairs & disfavor unpaired nucleons, empirically f,(4) = (\/ﬁ)_l
°Even-Z, Even-N: i = +1
*0dd-Z, Odd-N: i = —1
*Even-Odd: i =0

ea; are fit to data , ,
A mnemonic for remembering

SEMF contributions is “VSCAP’.



The Semi-Empirical Mass Formula
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f‘r Up to ~10MeV

deviations for masses on 10
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Z. Meisel, PhD Thesis (Mich. St. U.)

* Gives a pretty remarkable reproduction of the data: ~1MeV deviations compared to ~8MeV/A



The Semi-Empirical Mass Formula Cﬁ&ﬁ&%%%‘g

Volume Surface Coulomb symmetry Pairing
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e Good enough for many modern applications,
e.g. identifying the dominant effect setting the equilibrium composition of neutron star crusts

| ’ | . | . | v |
140 = Z. Meisel et al. JPG (2018) =

120 =N

100

T 25
u_ [MeV]

See also neutron star crustal heating (A. Steiner Phys. Rev. C 2012) and pristine crust composition (Roca-Maza & Piekarewicz PRC 2008)




Nuclear Mass Models: Common Recent-ish Global Models

FRDM: P.Moller et al., PRL (2012)
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Duflo-Zuker: J.Duflo & A.Zuker, PRC R. (1995)
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Others:

* Energy density functionals (EDF),
e.g. M.Kortelainen et al. PRC (2012)
(see the FRIB Mass Explorer)

e KTUY from Koura, Tachibana, Uno,
Yamada, Prog. Theor. Phys. (2005)

* Local, algebraic relations:

* Garvey-Kelson
* |sobaric Mass Multiplet Equation

* Smooth mass-surface
extrapolations from the AME

°* many more ...

HFB: S.Goriely, N.Chamel, J.Pearson PRC (2010)

The main point is that
even the best theoretical
descriptions struggle to
do better than the
~100keV level. Structure
& astrophysics often need
keV-level precision.


http://massexplorer.frib.msu.edu/content/DFTMassTables.html

Nuclear Mass Differences

* The energy released in a nuclear reaction is the “Q-value”

* Q = Xreactants ME(Z,A) — Zproducts ME(Z, A),
= ME(°®Se) + ME (p) — ME(°°Br)

e For example, Q685e(p,y)693r
. = (—54.189MeV) + (7.288MeV) — (—46.260MeV)

* Considering the case above, we calculated the energy released by adding one proton to ©3Se,
which corresponds to the energy it takes to remove one proton from ®°Br,
a.k.a. the “proton separation energy”, S,

e Similarly, can calculate the energy to remove 1-neutron S,, two-protons S
*S,(Z,N) =ME(Z—-1,N) + ME(p) — ME(Z,N)
S, (Z,N)=ME(Z,N—-1)+ ME(n) —ME(Z,N)
*Sy,(Z,N) =ME(Z —2,N) + 2+ ME(p) — ME(Z,N)
*Son(Z,N)=ME(Z,N —2)+2+«ME(n)— ME(Z,N)

2p» OF two-neutrons S,,



Information is encoded in separation energies

Nuclear Masses & Nuclear StrUCTUIre (s spmsion sy itferencey

See that some mass models do more poorly than
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Deviation provided 15t evidence for “island of inversion’
[C. Thibault et al. PRC 1975] D,(Z,A) = (DS, (Z, A+ 1) — S, (Z,A)]



Nuclear masses define the nuclear landscape

Proton number, Z
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Nuclear Masses in Astrophysics (Selected Examples)

X-ray burst light curves r-process abundance yields

M. del Santo et al., Phys. Lett. B (2014) 0? B . | M Mumpo‘wer, R. Sur‘man, & A.‘Aprahamlgn, EPJWC (2015)
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Charge & Matter Distributions

* The nucleus can’t be a point object.

* Nucleons are fermions: Pauli exclusion forbids putting several in the same place.

* The radial distribution of charge & matter are probed via scattering.
 Electrons are best for the charge radius, because structure-less but charged

* Neutrons are best for the matter radius, because not charged and simple-ish
structure



Review: R. Hofstadter, Rev. Mod. Phys. (1956)

Nuclear charge distribution

eScattering of point charged particles (with charges e and ze) is well-described by the
relativistic correction to Rutherford scattering, i.e. the Mott scattering cross section

2
. 0..) = ( Ze? )2 (COS (Gcm/ 2)) another notation for o(0) is do/dQ(6)
Mott\Ycm 2E;m, (sin(acm/z))4

* |t turns out, from considering scattering of a plane wave off of an extended object
and solving for the outgoing spherical wave, “1Ps there for a point object,

one realizes a form factor needs to be included*: but it's a delta function
2

— iqr .
* Oscatt (Ocm) = Oport (Ocm) * fnuclear volume Pcharge (r)e'?"| where gis the momentum transfer

* Oscatt (Ocm) = Omort (Ocm) * [F(q?)]?
e i.e. the form factor F(g?) is the Fourier transform of the charge distribution




Nuclear charge distribution

e Luckily, sharp people have solved for form factors corresponding to typical charge distributions

See, e.g. Table 1 of R. Hofstadter, Rev. Mod. Phys. (1956)

5 T

iCharge Density)*(4*pi*(Rch,rms)®)

Review: R. Hofstadter, Rev. Mod. Phys. (1956)

0.5 1

— ' —
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R/Rch,rms

e Comparing measured o, 8 ) to calculations

reveals a Fermi-like distribution:

®* Pch,Fermi (7‘) —

Po

1+exp(

r—R
a

)

'qaussian 1.0000000 —
exponential —
Yukawa
uniform 0.1000000 F
Fermi
0.0100000 f
1 w~_ 0.0010000 f gaussian
= exponential
T Yukawa
= 0.0001000 F unifarm
0.0000100 F
0.0000010 F
0.0000001 L ' . . L
" 0 1 2 3 4 5
25 3 g*(Rch,rms)
0.1 [ I
009 |~
008 [

Typical values are
R~1.1*AY3fm, a~0.5fm,
Po~0.07

e The associated form factor is absurdly cumbersome,
so usually a sum of Gaussians is used instead,
since they have more manageable £ (q):

0.01

=]
)
e
@ L
[s=]
-y
o




Review: R. Hofstadter, Rev. Mod. Phys. (1956)

Nuclear charge distribution

e Comparing measured o,...( ) to calculations w/ various F(q) reveals a Fermi-like distribution
(R. Woods & D. Saxon, Phys. Rev. (1954))
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Many estimated distributions can be obtained at the Nuclear Charge Density Archive: http://faculty.virginia.edu/ncd/,
based on the data of Atomic and Nuclear Data Tables, Volumes 14, 36 and 60



http://faculty.virginia.edu/ncd/

What about our handy relationship for R(A)!?

e Recall, an estimate for the nuclear radius was stated last time as: R(A)=r,Al/3
e Can compare RMS radius from Fermi distribution, (v, rermi(r) = —22—1, to R(A):
B.A. Brown, Lecture Notes in Nuclear Structure Physics, 2005.

T [T—-R\
+exp(=>)
Adapted from B.A. Brown, C.R. Bronk, & P.E. Hodgson, J. Phys. G (1984)
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http://dx.doi.org/10.1016/j.adt.2011.12.006

Nuclear matter distribution
*The low-budget technique to obtain the matter density, p,,...(r), would be:

* Pmatt (1) = pcp (1) *

(Y/2)

* Since p., (0) steadily decreases with A, this leads to a near constant p,_...(0) for all nuclides,

which turns out to be p, ,,(0) ~

0.16nucleons/fm3

A recent measurement of the neutron
radius used neutrino(!) scattering

* Those with more discerning tastes prefer actual data, (cadeddu et al. PRL 2018)
which is generally* obtained via neutron scattering, but can be using any hadron

* The appreciable de Broglie wavelength of the probe (e.g. a neutron)
and significant contributions from strong-force interactions,
mean that the plane wave of the probe will undergo diffraction, as in optics

° A Iight probe (e.g. n, p, d) at appreciable energy (e.g. 10’s of MeV),
. is sort of like light passmg by an absorblng disk*: Get Fraunhofer diffraction

e g(0) x sinc?(ab)

00000000

000000000

000000000

000000000

00000000

sinclx)

R.E. English
& N. George, Applied Optics (1988)



http://atoc.colorado.edu/%7Epilewskp/diffraction_math.pdf

Nuclear matter distribution

 The analogy is taken further with the “optical model”

i | 1 I

S%redd)>re’
() Q=00 Mev O* —OM

(2} Q=-141 Mev 2*
—emd100
Iy

e Like a photon, incoming nucleons can be scattered or 100
absorbed by the scattering medium (i.e. the target)

(3) ©=-296 MeV 2*
(4} Q=-48  Mev 37 ---5M
(5) Q=64  Mev I
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* |n optics, the imaginary part of the refractive index
accounts for absorption of the incident light wave

* Here, the imaginary part of a complex potential
(which describes the interaction between the projectile

and target) corresponds to all inelastic reactions
[As a refresher, elastic means kinetic energy is conserved. Everything else is inelastic]

doldQ [mb/sr]

e An important feature of the optical model is that the
main property of relevance for the target is the nuclear . L \
Size, so an interaction potential for similar target and a I |
similar projectile & energy should do a decent job o 1

. ] 20° 40° 60° 80° ©
 This allows for “global optical models”, , - ™
Fig. 8. Angular distributions of the elastically (1) and inelastically

e.g. Perey & Perey, Phys. Rev. 1966 (2, 3, 4, 5) scattered deuterons from %Fe and optical-model fit (0.M.),
and one-phonon collective-model (C.M.) and shell-model (S.M.} calculations.

Koning & Delaroche, Nuc. Phys. A 2003 F. Hinterberger et al. Nuc. Phys. A (1968)



Exceptions to the rule: Halo nuclei

e Some nuclei exhibit radii far larger than expected
from the r,Al/3 estimate

e Their large radius is due to 1, 2, or 4 loosely bound
nucleons

 The small binding energy of these valence nucleons
corresponds to a low tunneling barrier

 From Heisenberg’s uncertainty principle,
the nucleon(s) can exist in the classically forbidden

region beyond the barrier for a rather long time,
since h o< AEAt and AE is small

e Examples:

e 1n:
1p:
2n:
2p:
4n:

1lBe, 19C

8B, 26p

6He, 11Li, 17B, 22C
17Ne, 27S

8He, 14Be, 19B
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Electric & Magnetic Moments

* The nuclear magnetic moments describe the distribution of electric currents in
the nucleus

* Causes nuclei to align along an external magnetic field, which can be
exploited using NMR, MRI, etc.

* The nuclear electric moments describe the distribution of electric charges in the
nucleus

e Used as a measure of the nuclear shape



Nuclear magnetic dipole moment R

a

For a classical charge, e, orbiting in a circle with radius r at velocity v,

evr

the magnetic dipole moment is: |u| = (Circle Area) * (Current) = iA = (an) (nr?) = >

Since angular momentum of the charge with mass mis | = muvr:

o |ul= —m where m would be the proton mass for an orbiting proton
In quantum mechanics, the analogous circular orbit is given by the z-projection of [, m;:
h
e U= %mlh ..defining the nuclear magneton to be |uy| = % then: u = myuy
p

e

. _ ~12 _
uy = 3.15x 10 — = 0.105 efm

...but that relationship turns out to not quite be true, so we include a fudge-factor, called the
g-factor: u = gym;uy

On top of that, there is also a contribution from the intrinsic spin angular momentum and we
usually just quantify u in terms of magnetons : u = gym; + gomg

For the free proton and free neutron, u = gS%, where gs,, = 5.58, g5, = —3.83

* ..if they were structure-less, one would expect g5, = 2and g5, = 0

N. Stone’s Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments



https://www.psi.ch/low-energy-muons/DocumentsEN/nuclear-moments.pdf

Nuclear surface

Nuclear electric quadrupole moment

 The nucleus is a charged volume, I/ with some shape

| = (D?-2Dr cos 6+ rz)é_
— - z-axis

P

The potential at some point a distance / away from the nucleus due to a small slice of the nucleus that
has some charge density p(7, 0, ¢), where 1, 8, @ are w.r.t. the nuclear centroid, is:

-1
pdv pdv pdv (
e dd = = = 1—2Drcos@ + )
d) l VD2+41r2-2Dr cos 6 D

Someone clever noticed a Taylor expansion of the quantity in parentheses yields a multipole expansion:

pav 2cosfr r?
o dp =— (1+ ~+ (3(2C059)2 4)§+---)

2
. pdV(1+—C059+(2(C059)2——)T—+---)

D 2/ D2

* allowing us to spot the Legendre PonnomiaIs P;(cos8) = cos O, P,(cos ) = g(cos 0)?% —
e dop = pav (1 + — Pl(cos 0) + Pz(cos 0) + - )

 When we integrate over the nuclear volume to get the full potential, all odd Legendre polynomials will
drop-out, so:

0 ——fffp(r 6, <p)r2drsm9d9d<p + = fffr p(r,0, <p)r2drsm9d0d<p + -

Nuclear cb\arge, Ze Electric quadmpo(e moment, Q




Nuclear electric guadrupole moment, Q

e Q = [[[r?p(r,0,p)r*drsin 0 dOdyp

* Note that if pis spherically symmetric, the integral over d@ will make Q = 0
* SO, any non-zero (Jindicates a non-spherical nuclear shape

e Choosing an ellipsoid model for the nucleus and evaluating Q above yields

(it turns out) 4 /T‘W
¢ ( =§Ze(a2—cz) : NG
4——3a

e With a measurement of Q, we can solve for a and c using the formula for the

radius of an ellipsoid:
2
o p2 1 2\ 1/3
R —z(a + ¢2) = (r,AY/3)
e Ifa > c,Q > 0and the nucleus is “prolate”
e Ifa < c, Q < 0andthe nucleus is “oblate”




Nuclear electric guadrupole moment, Q

M.A. Preston, Physics of the Nucleus (1962)
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Q and deformation,

e For an ellipsoid, radius can be represented as an expansion in spherical harmonics

* R(6,9) = Ropp (1 + X5, X0ieoa o u Va0 (6, 9))
* where R,y is the radius of sphere with the same volume, ryA1/3
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e \is the multipole (1isneglected because that’s c.o.m. motion), and (i is the z-projection

e ...for an axially symmetric nucleus (e.g. prolate & oblate), u = 0
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Spin

 The quantized nature of atomic observables was noted early on in quantum mechanics

(e.g. x-ray energies from electrons changing orbitals)

e Stern & Gerlach set-out to prove this quantization by taking advantage of the fact that an
inhomogeneous magnetic field exerts a force on a magnetic dipole w.serlach & 6. stern, z.phys. (1922)):

« F=V(ji-B)
e Upon sending neutral silver atoms

through their apparatus,
they found a split beam

e Since u = g,mg, this demonstrated there were
two spin projections and thus spin=1/2.

o A follow-up (phipps & Taylor, Phys. Rev. (1927) demonstrated spin=1/2 for Hydrogen

* Neutrons & protons each have intrinsic spin of %

Classical
prediction

/actually observed/

7

N

What was Silver atoms

S

N

Inhomogeneous
magnetic field

e Thus, nuclei have intrinsic spins which are half-integer multiples, where the exact value

depends on the nucleus’s structure.

* Nucleons pair, when possible, in a nucleus, cancelling spins. For example, ALL even-Z,even-N nuclides
have a ground-state spin of zero.

Thus unpaired nucleons determine a nucleus’s spin.

Furnace



Parity,

 The quantum mechanical state a nucleus is in is described by a wave function,
which will either be even or odd

e Even wave-functions are symmetric about the origin (e.g. cosine) and thus, When referving
to a state of a

upon flipping the spatial coordinate and spin: nuclous we

o Y(r,s) = Y(—r,—s) typically denote

e This is known as positive parity }ii{%‘tghgg,slﬁr &

e Odd wave-functions are antisymmetric about the origin (e.g. sine) and thus,
upon flipping the special coordinate and spin

* Y(r,s) = —Y(=1,~—s)

e This is known as negative parity

For a spherically symmetric potential (i.e. V(r, 8, @) = V (1)), the parity of a particle is given by
its orbital angular momentum:

e = (-1)f

For a state of several nucleons, m = []; m; ..as with spin, it’s the unpaired nucleons that matter

e Parity is conserved for strong & electromagnetic interactions



|sospin

e Empirically, the nuclear force between nucleons appears to be charge-independent,
i.e. it doesn’t matter if you’'re dealing with neutrons or protons. For instance:

 Masses of isobars differ only by the different Coulomb energy and the n-p mass difference
* Nuclear charge radii are well predicted by considering A, not Z and N separately

 Then, one can consider the neutron and proton as two states of the same particle, the nucleon
(W. Heisenberg, Z. Phys. A (1932))

e Since the mechanics have already been developed for something in two quantized states
(spin-1/2 particles), the associated machinery can be hijacked and assign nuclear states the
quantity isospin, T

 The nucleon has T = 1/2 with two projections, T, = +% (proton)and T, = —% (neutron)

* For nucleus, T, = 27N and IT,| <T< 2 Usually, for the ground-state T =T,
2 2

* |sospin is conserved (approximately) in strong interactions

*just to keep life interesting, sometimes the opposite convention is used,
where Tz,protom =-1/2, szeutrom:j’/z and szuc(eus - (N —Z)/Z



|lsospin symmetry

e As an example what isospin gets you,
the ground-state spin-parity is the same
for “mirror nuclei” (swap N & Z) except
for 2 cases (as of 2021)

e This works for low-ish lying excited
states too

e This can be useful for astrophysical
reaction rates, using the structure of
the less-exotic nucleus in the pair to
inform the structure of the more-
exotic nucleus in the pair

D. Hoff et al. Nature 2020




|sospin symmetry

e A state with isospin T is a part of an isospin multiplet with 2T+1 members, which each are
described by the same (or very similar) wave function but have different nuclear charge

e This isospin symmetry implies the members of the multiplet should have the same energy

and, corrected for coulomb effects, indeed they do:

The T>T, states in the multiplet are
termed “isobaric analogue states”
and they are favored when transitioning =#&-
from a ground-state in the mulitplet
with T=T,

The isobaric mass multiplet equation
(IMME) describes the binding energies
of the states which are members

of the multiplet:

« ME(T,T,) = a(4,T) + b(4, T)T, + c(4, T)T2

This fact is taken advantage of to make
predictions about exotic nuclides
which are difficult to measure

* Nuclides with N & Z switched are “mirror” nuclides
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Further Reading

Review of nuclear masses: D. Lunney, J. Pearson, C. Thibault, Rev. Mod. Phys. (2003)

Review of charge distributions from electron scattering: R. Hofstadter, Rev. Mod. Phys. (1956)

Chapter 2,5: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)
Chapters 2,7: Nuclear & Particle Physics (B.R. Martin)

Chapters 1-3,10: Lecture Notes in Nuclear Structure Physics (B.A. Brown)
Chapter 4, Example 4.4: Introduction to Quantum Mechanics, D. Griffiths (2005)



https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.75.1021
https://doi.org/10.1103/RevModPhys.28.214
https://people.nscl.msu.edu/%7Ebrown/Jina-workshop/BAB-lecture-notes.pdf
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