Lecture 2: Nuclear Phenomenology

- Mass models \& systematics
- Charge \& matter distributions
- Moments \& deformation
- Spin, parity, \& isospin

Empirically-motivated \& focused theory

How to explain the binding energy trend?

- Like, Gamow in 1929 \& 1930 (z. Phys. A), consider the nucleus as a group of nucleons (he assumed as) in a close configuration
- Nucleons will bind together via some attraction force, like water molecules in a drop, but there will be some penalty for like-charges repelling each other.

- Comparing to data, do a pretty decent job, but clearly missing something(s)

The Semi-Empirical Mass Formula (SEMF)

- More carefully consider all of the interactions going on in a nucleus:

Volume

Surface

Asymmetry

Pairing
- All nucleons are attracting each other via the strong force: generates some bulk binding energy
- However, nucleons near the surface don't have a neighbor: penalizes binding energy
- Protons are repel each other due to the Coulomb force: penalizes binding energy
- p-n attraction is stronger than p-p or n-n \& p-n favored space-wise by Pauli exclusion: penalizes N-Z asymmetry
- Nucleons want a dance partner (make spin-0 pair): bonus for even-even, penalty for odd-odd, neutral for even-odd
- These considerations lead C . von Weizsäcker to develop the first usable theory for nuclear masses (z.Phys. A 1935), now dubbed the semi-empirical mass formula, or SEMF if you're extra-cool

The Semi-Empirical Mass Formula

- $B E(Z, A)=$ Volume - Surface - Coulomb - Asymmetry \pm Pairing
- One mathematical parameterization* (of many!):
- $B E(Z, A)=a_{v} f_{v}(A)-a_{s} f_{s}(A)-a_{c} f_{c}(Z, A)-a_{a} f_{a}(Z, A)+i a_{p} f_{p}(A)$
-Volume: Nucleons cohesively bind, so: $f_{v}(A)=A$
- Surface: Since radius goes as $R \propto A^{1 / 3}$ and surface area goes as $S A \propto R^{2}, \boldsymbol{f}_{\boldsymbol{S}}(\boldsymbol{A})=A^{2 / 3}$
- Coulomb: Energy for a charged sphere goes as $\frac{q^{2}}{R}$ and $R \propto A^{1 / 3}$, so $f_{c}(Z, A)=\frac{Z(Z-1)}{A^{1 / 3}}$
-Asymmetry: $Z=N$ favored (want $Z=A / 2$) but lesser problem for large A, so $f_{a}(Z, A)=\frac{\left(Z-\frac{A}{2}\right)^{2}}{A}$
-Pairing: Favor spin-0 nucleon pairs \& disfavor unpaired nucleons, empirically $f_{p}(A)=(\sqrt{A})^{-1}$
-Even-Z, Even-N: $\boldsymbol{i}=+\mathbf{1}$
-Odd-Z, Odd-N: $i=-1$
-Even-Odd: $\boldsymbol{i}=\mathbf{0}$
- a_{i} are fit to data

A mnemonic for remembering SEMF contributions is "VSCAP".

The Semi-Empirical Mass Formula

- Gives a pretty remarkable reproduction of the data: $\sim 1 \mathrm{MeV}$ deviations compared to $\sim 8 \mathrm{MeV} / \mathrm{A}$

The Semi-Empirical Mass Formula

- Good enough for many modern applications, e.g. identifying the dominant effect setting the equilibrium composition of neutron star crusts

See also neutron star crustal heating (A. Steiner Phys. Rev. C 2012) and pristine crust composition (Roca-Maza \& Piekarewicz PRC 2008)

Nuclear Mass Models: Common Recent-ish Global Models

FRDM: P.Möller et al., PRL (2012)

Duflo-Zuker: J.Duflo \& A.Zuker, PRC R. (1995)

WS3: N.Wang \& M.Liu, PRC R. (2011)

Others:

- Energy density functionals (EDF), e.g. M.Kortelainen et al. PRC (2012) (see the FRIB Mass Explorer)
- KTUY from Koura, Tachibana, Uno, Yamada, Prog. Theor. Phys. (2005)
- Local, algebraic relations:
- Garvey-Kelson
- Isobaric Mass Multiplet Equation
- Smooth mass-surface extrapolations from the AME
- many more ...

HFB: S.Goriely, N.Chamel, J.Pearson PRC (2010)

The main point is that even the best theoretical descriptions struggle to do better than the ~100keV level. Structure \& astrophysics often need keV-level precision.

Nuclear Mass Differences

- The energy released in a nuclear reaction is the " Q -value"
- $Q=\sum_{\text {reactants }} M E(Z, A)-\sum_{\text {products }} M E(Z, A)$,
- For example, $Q^{68}{ }_{S e}(p, \gamma){ }^{69}{ }_{B r}=M E\left({ }^{68} S e\right)+M E(p)-M E\left({ }^{69} B r\right)$
- $\quad=(-54.189 \mathrm{MeV})+(7.288 \mathrm{MeV})-(-46.260 \mathrm{MeV})$
- $=-0.641 \mathrm{MeV}$
- Considering the case above, we calculated the energy released by adding one proton to ${ }^{68} \mathrm{Se}$, which corresponds to the energy it takes to remove one proton from ${ }^{69} \mathrm{Br}$, a.k.a. the "proton separation energy", S_{p}
- Similarly, can calculate the energy to remove 1-neutron S_{n}, two-protons $S_{2 p}$, or two-neutrons $S_{2 n}$
- $S_{p}(Z, N)=M E(Z-1, N)+M E(p)-M E(Z, N)$
- $S_{n}(Z, N)=M E(Z, N-1)+M E(n)-M E(Z, N)$
- $S_{2 p}(Z, N)=M E(Z-2, N)+2 * M E(p)-M E(Z, N)$
- $S_{2 n}(Z, N)=M E(Z, N-2)+2 * M E(n)-M E(Z, N)$

Nuclear Masses \& Nuclear Structure

Information is encoded in separation energies (\& separation energy differences)

Deviation provided $1^{\text {st }}$ evidence for "island of inversion" [C. Thibault et al. PRC 1975]

See that some mass models do more poorly than it looks when looking only at mass predictions.

$$
D_{n}(Z, A)=(-1)^{N+1}\left[S_{n}(Z, A+1)-S_{n}(Z, A)\right]
$$

Nuclear masses define the nuclear landscape

Nuclear Masses in Astrophysics (Selected Examples)

X-ray burst light curves

Neutron star crust temperature

r-process abundance yields

Cosmic Abundance Pattern

Charge \& Matter Distributions

- The nucleus can't be a point object.
- Nucleons are fermions: Pauli exclusion forbids putting several in the same place.
- The radial distribution of charge \& matter are probed via scattering.
- Electrons are best for the charge radius, because structure-less but charged
- Neutrons are best for the matter radius, because not charged and simple-ish structure

Nuclear charge distribution

- Scattering of point charged particles (with charges e and ze) is well-described by the relativistic correction to Rutherford scattering, i.e. the Mott scattering cross section
- $\sigma_{M o t t}\left(\theta_{c m}\right)=\left(\frac{Z e^{2}}{2 E_{c m}}\right)^{2} \frac{\left(\cos \left(\theta_{c m} / 2\right)\right)^{2}}{\left(\sin \left(\theta_{c m} / 2\right)\right)^{4}}$

```
another notation for }\sigma(0)\mathrm{ is d }\sigma/d\Omega(0
```

- It turns out, from considering scattering of a plane wave off of an extended object and solving for the outgoing spherical wave, one realizes a form factor needs to be included*:

```
*It's there for a point object,
but it's a delta function
```

- $\sigma_{\text {scatt }}\left(\theta_{C M}\right)=\sigma_{\text {Mott }}\left(\theta_{C M}\right) *\left|\int_{\text {nuclear volume }} \rho_{\text {charge }}(r) e^{i \boldsymbol{q} \cdot \boldsymbol{r}}\right|^{2}$ where \boldsymbol{q} is the momentum transfer
- $\sigma_{\text {scatt }}\left(\theta_{C M}\right)=\sigma_{M o t t}\left(\theta_{C M}\right) *\left|F\left(\boldsymbol{q}^{2}\right)\right|^{2}$
- i.e. the form factor $F\left(\boldsymbol{q}^{2}\right)$ is the Fourier transform of the charge distribution

Nuclear charge distribution

- Luckily, sharp people have solved for form factors corresponding to typical charge distributions See, e.g. Table 1 of R. Hofstadter, Rev. Mod. Phys. (1956)

- Comparing measured $\sigma_{\text {scatt }}(\theta)$ to calculations reveals a Fermi-like distribution: Typical values are

$$
\text { - } \rho_{\text {ch,Fermi }}(r)=\frac{\rho_{0}}{1+\exp \left(\frac{r-R}{a}\right)} \quad \begin{aligned}
& R \sim 1.1 * A 1 / 3 \mathrm{fm}, a \sim 0.5 \mathrm{fm}, \\
& \rho_{0} \sim 0.07
\end{aligned}
$$

- The associated form factor is absurdly cumbersome, so usually a sum of Gaussians is used instead, since they have more manageable $F(\boldsymbol{q})$:

Nuclear charge distribution

- Comparing measured $\sigma_{\text {scatt }}(\theta)$ to calculations w/ various $F(\boldsymbol{q})$ reveals a Fermi-like distribution
(R. Woods \& D. Saxon, Phys. Rev. (1954))

$125 \mathrm{MeV} \mathrm{e}^{-}$on Be

R. Hofstadter, H. Fechter, \& J. McIntyre, Phys. Rev. (1953)
$125 \mathrm{MeV} \mathrm{e}^{-}$on Au

Measured ρ_{ch} examples

Many estimated distributions can be obtained at the Nuclear Charge Density Archive: http://faculty.virginia.edu/ncd/, based on the data of Atomic and Nuclear Data Tables, Volumes 14, 36 and 60

What about our handy relationship for $R(A)!?$

- Recall, an estimate for the nuclear radius was stated last time as: $R(A)=r_{0} A^{1 / 3}$
- Can compare RMS radius from Fermi distribution, $\left\{\rho_{c h, F e r m i}(r)=\frac{\rho_{0}}{1+\exp ([-\bar{R})}\right\}$, to $R(A)$:

...interesting trends in the residual

You can find experimental charge-radii here: Angeli \& Marinova ADNDT 2013

Nuclear matter distribution

-The low-budget technique to obtain the matter density, $\rho_{\text {matt }}(r)$, would be:

- $\rho_{\text {matt }}(r)=\rho_{c h}(r) *(A / Z)$
- Since $\rho_{c h}(0)$ steadily decreases with A , this leads to a near constant $\rho_{\text {matt }}(0)$ for all nuclides, which turns out to be $\rho_{\text {matt }}(0) \sim 0.16$ nucleons $/ \mathrm{fm}^{3}$

A recent measurement of the neutron radius used neutrino(!) scattering
-Those with more discerning tastes prefer actual data, (cadeddu et al. rRL 2018) which is generally* obtained via neutron scattering, but can be using any hadron
-The appreciable de Broglie wavelength of the probe (e.g. a neutron) and significant contributions from strong-force interactions, mean that the plane wave of the probe will undergo diffraction, as in optics

- A light probe (e.g. n, p, d) at appreciable energy (e.g. 10's of MeV),
... is sort of like light passing by an absorbing disk*: Get Fraunhofer diffraction
- $\sigma(\theta) \propto \operatorname{sinc}^{2}(a \theta)$

[^0]
Nuclear matter distribution

- The analogy is taken further with the "optical model"
- Like a photon, incoming nucleons can be scattered or absorbed by the scattering medium (i.e. the target)
- In optics, the imaginary part of the refractive index accounts for absorption of the incident light wave
- Here, the imaginary part of a complex potential (which describes the interaction between the projectile and target) corresponds to all inelastic reactions
[As a refresher, elastic means kinetic energy is conserved. Everything else is inelastic]
- An important feature of the optical model is that the main property of relevance for the target is the nuclear size, so an interaction potential for similar target and a similar projectile \& energy should do a decent job
- This allows for "global optical models", e.g. Perey \& Perey, Phys. Rev. 1966 and

Fig. 8. Angular distributions of the elastically (1) and inelastically $(2,3,4,5)$ scattered deuterons from ${ }^{54} \mathrm{Fe}$ and optical-model fit (O.M.), one-phonon collective-model (C.M.) and shell-model (S.M.) calculations.

Exceptions to the rule: Halo nuclei

- Some nuclei exhibit radii far larger than expected from the $\mathrm{r}_{0} \mathrm{~A}^{1 / 3}$ estimate
- Their large radius is due to 1,2 , or 4 loosely bound nucleons
- The small binding energy of these valence nucleons corresponds to a low tunneling barrier
- From Heisenberg's uncertainty principle, the nucleon(s) can exist in the classically forbidden region beyond the barrier for a rather long time, since $\hbar \propto \Delta E \Delta t$ and ΔE is small
- Examples:
- $1 \mathrm{n}:{ }^{11} \mathrm{Be},{ }^{19} \mathrm{C}$
- $1 p:{ }^{8} B,{ }^{26} p$
- $2 \mathrm{n}:{ }^{6} \mathrm{He},{ }^{11} \mathrm{Li},{ }^{17} \mathrm{~B},{ }^{22} \mathrm{C}$
- 2p: ${ }^{17} \mathrm{Ne},{ }^{27} \mathrm{~S}$
- $4 \mathrm{n}:{ }^{8} \mathrm{He},{ }^{14} \mathrm{Be},{ }^{19} \mathrm{~B}$

Electric \& Magnetic Moments

- The nuclear magnetic moments describe the distribution of electric currents in the nucleus
- Causes nuclei to align along an external magnetic field, which can be exploited using NMR, MRI, etc.
- The nuclear electric moments describe the distribution of electric charges in the nucleus
- Used as a measure of the nuclear shape

Nuclear magnetic dipole moment

- For a classical charge, e, orbiting in a circle with radius r at velocity v, the magnetic dipole moment is: $|\mu|=($ Circle Area $) *($ Current $)=i A=\left(\frac{e v}{2 \pi r}\right)\left(\pi r^{2}\right)=\frac{e v r}{2}$
- Since angular momentum of the charge with mass m is $l=m v r$:
- $|\mu|=\frac{e l}{2 m}$, where m would be the proton mass for an orbiting proton
- In quantum mechanics, the analogous circular orbit is given by the z-projection of l, m_{l} :
- $\mu=\frac{e}{2 m} m_{l} \hbar \ldots$...defining the nuclear magneton to be $\left|\mu_{N}\right| \equiv \frac{e \hbar}{2 m_{p}}$, then: $\mu=m_{l} \mu_{N}$
- $\mu_{N}=3.15 \times 10^{-12} \frac{\mathrm{eV}}{\mathrm{gauss}}=0.105 \mathrm{efm}$
- ...but that relationship turns out to not quite be true, so we include a fudge-factor, called the g-factor: $\mu=g_{l} m_{l} \mu_{N}$
- On top of that, there is also a contribution from the intrinsic spin angular momentum and we usually just quantify μ in terms of magnetons: $\mu=g_{l} m_{l}+g_{s} m_{s}$
- For the free proton and free neutron, $\mu=g_{s} \frac{1}{2}$, where $g_{s, p}=5.58, g_{s, n}=-3.83$
- ...if they were structure-less, one would expect $g_{s, p}=2$ and $g_{s, n}=0$

Nuclear electric quadrupole moment

- The nucleus is a charged volume, V, with some shape
- The potential at some point a distance I away from the nucleus due to a small slice of the nucleus that has some charge density $\rho(r, \theta, \varphi)$, where r, θ, φ are w.r.t. the nuclear centroid, is:

$$
\text { - } d \phi=\frac{\rho d V}{l}=\frac{\rho d V}{\sqrt{D^{2}+r^{2}-2 D r \cos \theta}}=\frac{\rho d V}{D}\left(1-2 D r \cos \theta+\frac{r^{2}}{D^{2}}\right)^{-1 / 2}
$$

- Someone clever noticed a Taylor expansion of the quantity in parentheses yields a multipole expansion:
- $d \phi=\frac{\rho d V}{D}\left(1+\frac{2 \cos \theta}{2} \frac{r}{D}+\frac{1}{8}\left(3(2 \cos \theta)^{2}-4\right) \frac{r^{2}}{D^{2}}+\cdots\right)$
- $=\frac{\rho d V}{D}\left(1+\frac{r}{D} \cos \theta+\left(\frac{3}{2}(\cos \theta)^{2}-\frac{1}{2}\right) \frac{r^{2}}{D^{2}}+\cdots\right)$
- allowing us to spot the Legendre Polynomials, $P_{1}(\cos \theta)=\cos \theta, P_{2}(\cos \theta)=\frac{3}{2}(\cos \theta)^{2}-\frac{1}{2}$:
- $d \phi=\frac{\rho d V}{D}\left(1+\frac{r}{D} P_{1}(\cos \theta)+\frac{r^{2}}{D^{2}} P_{2}(\cos \theta)+\cdots\right)$
- When we integrate over the nuclear volume to get the full potential, all odd Legendre polynomials will drop-out, so:
- $\phi=\frac{1}{D} \iiint \rho(r, \theta, \varphi) r^{2} d r \sin \theta d \theta d \varphi+\frac{1}{D^{3}} \iiint r^{2} \rho(r, \theta, \varphi) r^{2} d r \sin \theta d \theta d \varphi+\cdots$

Nuclear electric quadrupole moment, Q

- $Q=\iiint r^{2} \rho(r, \theta, \varphi) r^{2} d r \sin \theta d \theta d \varphi$
- Note that if ρ is spherically symmetric, the integral over $d \theta$ will make $Q=0$
- So, any non-zero Q indicates a non-spherical nuclear shape
- Choosing an ellipsoid model for the nucleus and evaluating Q above yields (it turns out)

$$
\text { - } Q=\frac{2}{5} Z e\left(a^{2}-c^{2}\right)
$$

Q is generally provided in units of e

- With a measurement of Q, we can solve for a and c using the formula for the radius of an ellipsoid:

$$
\text { - } R^{2}=\frac{1}{2}\left(a^{2}+c^{2}\right)=\left(r_{0} A^{1 / 3}\right)^{2}
$$

- If $a>c, Q>0$ and the nucleus is "prolate"
- If $a<c, Q<0$ and the nucleus is "oblate"

Nuclear electric quadrupole moment, Q

- Q / e is commonly reported, which has units of area
- A convenient unit for such small areas is the barn:
- 1 barn $=10^{-24} \mathrm{~cm}^{2}$
higher-order deformation is also possible:

Q and deformation, β

- For an ellipsoid, radius can be represented as an expansion in spherical harmonics
- $R(\theta, \varphi)=R_{\text {sph }}\left(1+\sum_{\lambda=2}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda, \mu} Y_{\lambda, \mu}(\theta, \varphi)\right)$
- where $R_{s p h}$ is the radius of sphere with the same volume, $r_{0} A^{1 / 3}$
- λ is the multipole (1 is neglected because that's c.о.м. motion), and μ is the z-projection
- ...for an axially symmetric nucleus (e.g. prolate \& oblate), $\mu=0$
 - $\beta_{2} \equiv \alpha_{2,0}=\frac{4}{3} \sqrt{\frac{\pi}{5}} \frac{(a-c)}{R_{s p h}}$...which is a commonly used metric for deformation

P. Möller et al. ADNDT (2016)

Spin

- The quantized nature of atomic observables was noted early on in quantum mechanics (e.g. x-ray energies from electrons changing orbitals)
- Stern \& Gerlach set-out to prove this quantization by taking advantage of the fact that an inhomogeneous magnetic field exerts a force on a magnetic dipole (w. Gerlach \& G. Stern, z.Phys. (1922)):
- $\vec{F}=\nabla(\vec{\mu} \cdot \vec{B})$
- Upon sending neutral silver atoms through their apparatus, they found a split beam

Luckily the stable isotopes of 107 Ag and $1^{109} \mathrm{Ag}$ both have spin-1/2 ground-states ...otherwise I feel like this experiment would have generated quite a bit of confusion!

- Since $\mu=g_{s} m_{s}$, this demonstrated there were two spin projections and thus spin=1/2.
- A follow-up (Phipps \& Taylor, Phys. Rev. (1927)) demonstrated spin=1/2 for Hydrogen

- Neutrons \& protons each have intrinsic spin of $1 / 2$
- Thus, nuclei have intrinsic spins which are half-integer multiples, where the exact value depends on the nucleus's structure.
- Nucleons pair, when possible, in a nucleus, cancelling spins. For example, ALL even-Z,even $-N$ nuclides Thus unpaired nucleons determine a nucleus's spin.

Parity, π

- The quantum mechanical state a nucleus is in is described by a wave function, which will either be even or odd
- Even wave-functions are symmetric about the origin (e.g. cosine) and thus, upon flipping the spatial coordinate and spin:
- $\psi(r, s)=\psi(-r,-s)$
- This is known as positive parity

When referring to a state of a nucleus, we
typically denote
both the spin \& parity by: $J \pi$

- Odd wave-functions are antisymmetric about the origin (e.g. sine) and thus, upon flipping the special coordinate and spin
- $\psi(r, s)=-\psi(-r,-s)$
- This is known as negative parity
- For a spherically symmetric potential (i.e. $V(r, \theta, \varphi)=V(r)$), the parity of a particle is given by its orbital angular momentum:
- $\pi=(-1)^{\ell}$
- For a state of several nucleons, $\pi=\prod_{i} \pi_{i} \quad$...as with spin, it 's the unpaired nucleons that matter
- Parity is conserved for strong \& electromagnetic interactions

Isospin

- Empirically, the nuclear force between nucleons appears to be charge-independent, i.e. it doesn't matter if you're dealing with neutrons or protons. For instance:
- Masses of isobars differ only by the different Coulomb energy and the n-p mass difference
- Nuclear charge radii are well predicted by considering A, not Z and N separately
- Then, one can consider the neutron and proton as two states of the same particle, the nucleon
(W. Heisenberg, Z. Phys. A (1932))
- Since the mechanics have already been developed for something in two quantized states (spin-1/2 particles), the associated machinery can be hijacked and assign nuclear states the quantity isospin, T
- The nucleon has $T=1 / 2$ with two projections, $T_{z}=+\frac{1}{2}$ (proton) and $T_{z}=-\frac{1}{2}$ (neutron)
- For nucleus, $T_{Z}=\frac{Z-N}{2}$ and $\left|T_{Z}\right| \leq T \leq \frac{A}{2}$. Usually, for the ground-state $T=T_{Z}$
- Isospin is conserved (approximately) in strong interactions

Isospin symmetry

- As an example what isospin gets you, the ground-state spin-parity is the same for "mirror nuclei" (swap N \& Z) except for 2 cases (as of 2021)
- This works for low-ish lying excited states too
- This can be useful for astrophysical reaction rates, using the structure of the less-exotic nucleus in the pair to inform the structure of the moreexotic nucleus in the pair

D. Hoff et al. Nature 2020

Isospin symmetry

- A state with isospin T is a part of an isospin multiplet with $2 \mathrm{~T}+1$ members, which each are described by the same (or very similar) wave function but have different nuclear charge
- This isospin symmetry implies the members of the multiplet should have the same energy and, corrected for coulomb effects, indeed they do:
- The $T>T_{z}$ states in the multiplet are termed "isobaric analogue states" and they are favored when transitioning from a ground-state in the mulitplet with $\mathrm{T}=\mathrm{T}_{2}$
- The isobaric mass multiplet equation (IMME) describes the binding energies of the states which are members of the multiplet:
- $\operatorname{ME}\left(T, T_{Z}\right)=a(A, T)+b(A, T) T_{Z}+c(A, T) T_{Z}^{2}$
- This fact is taken advantage of to make predictions about exotic nuclides which are difficult to measure
- Nuclides with N \& Z switched are "mirror" nuclides

${ }^{9} \mathrm{C}$

Further Reading

- Review of nuclear masses: D. Lunney, J. Pearson, C. Thibault, Rev. Mod. Phys. (2003)
- Review of charge distributions from electron scattering: R. Hofstadter, Rev. Mod. Phys. (1956)
- Chapter 2,5: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)
- Chapters 2,7: Nuclear \& Particle Physics (B.R. Martin)
- Chapters 1-3,10: Lecture Notes in Nuclear Structure Physics (B.A. Brown)
- Chapter 4, Example 4.4: Introduction to Quantum Mechanics, D. Griffiths (2005)

[^0]: *If you're a glutton for punishment, the mathematics for diffraction from an absorbing disk is here: R.E. English
 \& N. George, Applied Optics (1988)

