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Rolfs & Rodney, Cauldrons in the Cosmos (1988)

Non-resonant reactions
•Before we discuss resonant reactions,
let’s first consider a non-resonant reaction

•The non-resonant reaction is the process we’ve
discussed so far, e.g. when we considered
low-energy collisions with and without
Coulomb effects included

•An example is the direct capture reaction shown
in the figure on the right
•The interaction of the plane-wave of the projectile
with the potential of the target results in a
standing-wave in the compound nucleus that
is characterized by angular momentum 𝑙𝑙

•The transition between the initial and final states is 
accomplished directly via photon emission, so the matrix 
element connecting these states is the electromagnetic operator 
𝜎𝜎𝐴𝐴 𝑎𝑎,𝛾𝛾 𝐵𝐵 ∝ < 𝐵𝐵 𝐻𝐻𝛾𝛾 𝐴𝐴 + 𝑥𝑥 > 2

, where
semi-classical estimates can be obtained as we did previously 2
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Resonant reaction
• Now, like the good capitalists we are,

we’re going to add a middle-man
• If it so happens that the sum of the mass excesses of

our reactants and their center-of-mass energy lines-up 
with an excited state in the reactant’s compound nucleus  
{(AcompoundZcompound = Atarget+Aprojectile(Zproduct+Zprojectile)},
then capture can proceed into that state

• The excited state of the compound nucleus then decays in 
a second step, e.g. via γ-emission in the figure on the right

• This process requires 𝐸𝐸𝑐𝑐𝑐𝑐 = 𝐸𝐸𝐵𝐵∗ − 𝑄𝑄𝐴𝐴+𝑥𝑥→𝐵𝐵+𝑦𝑦
• This energy is referred to as the resonance energy, ER

• This process, as we’ll see, causes a strong enhancement in 
the cross section near the center-of-mass energy that 
fulfills the condition above
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Why a resonance?
• For a resonant reaction,

the basic phenomenon is that the incoming plane wave is scattering on a potential well
• You could solve for the wavefunction consistently inside and outside the well,

applying appropriate matching conditions for the function and its derivative,
and you would find that there are characteristic wavenumbers for which an integer number of 
wavelengths occur for the part of the wavefunction inside the well

• For those cases you would see the ratio of the amplitude of the wavefunction outside of the 
well to inside of the well is maximized

• You could see this, but you’ll have to go to Iliadis’s book, Nuclear Physics of Stars, to see that
• Instead, recall our result from the Scattering lecture for the scattering wavefunction:

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ∑𝑙𝑙=0∞ 2𝜋𝜋 λ
2𝜋𝜋

2
(2𝑙𝑙 + 1) 1 − Real(η𝑙𝑙(𝐸𝐸))

• Since η𝑙𝑙 < 1, we can see the total cross section will have a maximum when Real(η𝑙𝑙) = −1
• This corresponds to the scenario where 𝛿𝛿𝑙𝑙(𝐸𝐸) = 𝜋𝜋

2
, where η𝑙𝑙 = 𝑒𝑒2𝑖𝑖𝛿𝛿𝑙𝑙(𝐸𝐸)
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Why a resonance?
• To get the energy dependence, we need to expand 𝛿𝛿𝑙𝑙(𝐸𝐸 = 𝐸𝐸𝑅𝑅) = 𝜋𝜋

2
in terms of energy

• Ultimately we’re concerned with the scattering cross section, which you’ll recall goes as 
𝜎𝜎𝑠𝑠𝑠𝑠 = ∑𝑙𝑙=0∞ 4𝜋𝜋 λ

2𝜋𝜋

2
(2𝑙𝑙 + 1)sin2(𝛿𝛿𝑙𝑙(𝐸𝐸))

• Someone far more clever than me (Kenneth Krane, or whoever he copied for his book), realized that the best 
approach is to expand cot(𝛿𝛿𝑙𝑙(𝐸𝐸)) about ER so that you get something that converges

• Scientists tell us that this expansion looks like
cot 𝛿𝛿𝑙𝑙 𝐸𝐸 = cot 𝛿𝛿𝑙𝑙 𝐸𝐸𝑅𝑅 + 𝐸𝐸 − 𝐸𝐸𝑅𝑅

𝜕𝜕 cot 𝛿𝛿𝑙𝑙(𝐸𝐸)
𝜕𝜕𝜕𝜕

|𝐸𝐸=𝐸𝐸𝑅𝑅 + 1
2

(𝐸𝐸 − 𝐸𝐸𝑅𝑅)2 𝜕𝜕2 cot 𝛿𝛿𝑙𝑙(𝐸𝐸)
𝜕𝜕2𝐸𝐸

|𝐸𝐸=𝐸𝐸𝑅𝑅 + ⋯

• If you listen to Krane, or spend too much time on Wolfram Alpha verifying his claims,
you will see that 𝜕𝜕 cot 𝛿𝛿𝑙𝑙(𝐸𝐸)

𝜕𝜕𝜕𝜕
|𝐸𝐸𝑅𝑅 = 𝜕𝜕𝛿𝛿𝑙𝑙(𝐸𝐸)

𝜕𝜕𝜕𝜕
|𝐸𝐸𝑅𝑅

−1
sin2(𝛿𝛿𝑙𝑙 𝐸𝐸𝑅𝑅 )

• Since 𝛿𝛿𝑙𝑙 𝐸𝐸𝑅𝑅 = 𝜋𝜋
2

, sin2 𝛿𝛿𝑙𝑙(𝐸𝐸𝑅𝑅) = 1

• As such, 𝜕𝜕 cot 𝛿𝛿𝑙𝑙(𝐸𝐸)
𝜕𝜕𝜕𝜕

≈ − 𝜕𝜕𝛿𝛿𝑙𝑙(𝐸𝐸)
𝜕𝜕𝜕𝜕

• It turns out, in taking the derivative of −1
sin2(𝛿𝛿𝑙𝑙 𝐸𝐸 )

and evaluating the result at 𝐸𝐸𝑅𝑅,
the second-order term will go to zero
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Why a resonance?
•But wait, there’s more! Noting that cot 𝛿𝛿𝑙𝑙 𝐸𝐸𝑅𝑅 = 0, our hard-won effort for the expansion is 
cot 𝛿𝛿𝑙𝑙 𝐸𝐸 = − 𝐸𝐸 − 𝐸𝐸𝑅𝑅

𝜕𝜕𝛿𝛿𝑙𝑙(𝐸𝐸)
𝜕𝜕𝜕𝜕

|𝐸𝐸=𝐸𝐸𝑅𝑅

•For reasons that will become clear in a minute, we define the width Γ ≡ 2 𝜕𝜕𝛿𝛿𝑙𝑙 𝐸𝐸
𝜕𝜕𝜕𝜕

−1
|𝐸𝐸=𝐸𝐸𝑅𝑅

which is just some number that scales how rapidly the cross section falls-off near the resonance

•So, cot 𝛿𝛿𝑙𝑙 𝐸𝐸 = − 𝐸𝐸−𝐸𝐸𝑅𝑅
Γ/2

•The trigonometry wizards among us can show that,
therefore, sin 𝛿𝛿𝑙𝑙 𝐸𝐸 = Γ/2

(𝐸𝐸−𝐸𝐸𝑅𝑅)2+Γ2/4

•At long last, we finally have something we can use!
Returning to the scattering cross section,
and considering a single angular momentum transfer

𝜎𝜎𝑠𝑠𝑠𝑠,𝑙𝑙(𝐸𝐸) = 𝜋𝜋 λ
2𝜋𝜋

2
(2𝑙𝑙 + 1) Γ2

(𝐸𝐸−𝐸𝐸𝑅𝑅)2+Γ2/4

•This is the Lorentzian distribution,
which you’ve probably seen for resonances, e.g., in the damped harmonic oscillator 6

Wolfram



Breit-Wigner formula
• When we found the cross section for scattering a plane wave of a given λ transferring some 𝑙𝑙, 
𝜎𝜎𝑠𝑠𝑠𝑠,𝑙𝑙(𝐸𝐸) = 𝜋𝜋 λ

2𝜋𝜋

2
(2𝑙𝑙 + 1) Γ2

(𝐸𝐸−𝐸𝐸𝑅𝑅)2+Γ2/4
, we were a bit hasty and left out necessary details for 

reactions that aren’t elastic scattering
• Namely, we ignored the fact that the projectile entering the reaction is not necessarily the 

same particle as the ejectile leaving the reaction
• Since the width for forming the compound nucleus isn’t the same as decaying from it,
Γ2 in the numerator goes instead, for X(a,b)Y, to Γ𝑎𝑎𝑎𝑎Γ𝑏𝑏𝑏𝑏

• Γ𝑎𝑎𝑎𝑎 is the rate (recall Γ = ℎ/τ) at which a+X forms the compound nucleus,
…which is the same as the rate at which the compound nucleus decays via channel a+X

• Γ𝑏𝑏𝑏𝑏 is the rate at which the compound nucleus decays via channel b+Y
• However, Γ2 in the denominator is a sort of weighting factor that corresponds to the total 

decay rate of the compound nucleus, and therefore Γ = ∑Γ𝑖𝑖
• To make life more complicated, each of these widths are energy dependent, Γ(𝐸𝐸)
• Finally, 2𝑙𝑙 + 1 degeneracy was valid for a spinless particle. For an excited state with spin 𝐽𝐽 being 

populated by a projectile with spin 𝐽𝐽𝑎𝑎 impinging on a nucleus with ground-state spin 𝐽𝐽𝑋𝑋,
2𝑙𝑙 + 1 becomes the factor 𝑔𝑔 = 2𝐽𝐽+1

(2𝐽𝐽𝑎𝑎+1)(2𝐽𝐽𝑋𝑋+1)
7



• Our ho-hum Lorentzian, now becomes the bright and shiny Breit-Wigner formula,

𝜎𝜎𝐵𝐵𝐵𝐵,𝑋𝑋 𝑎𝑎,𝑏𝑏 𝑌𝑌(𝐸𝐸) = 𝜋𝜋
λ
𝜋𝜋

2 2𝐽𝐽 + 1
(2𝐽𝐽𝑎𝑎 + 1)(2𝐽𝐽𝑋𝑋 + 1)

Γ𝑎𝑎𝑎𝑎(𝐸𝐸)Γ𝑏𝑏𝑏𝑏(𝐸𝐸)
(𝐸𝐸 − 𝐸𝐸𝑅𝑅)2+(Γ(𝐸𝐸))2/4

• Each resonance adds a sharp spike
onto the non-resonant cross section

• This has some major implications:
1. If we just want to make a reaction

happen, it’s best to pick an energy
on a resonance

2. If we don’t want a reaction to
happen (e.g. background), we had
better avoid the resonance energy

3. If we’re considering an environment
with an energy distribution (e.g. a star),
the resonant rate is mostly what matters

4. Since 𝜎𝜎𝐵𝐵𝐵𝐵 has such a strong energy
dependence, we can use it to measure
energy-loss and therefore target thickness

8

Breit-Wigner formula

R.J. deBoer et al. Rev.Mod.Phys. (2017)



Resonance features
•Before we get too fat and sassy and start ignoring
the direct reaction contribution, we need to remember
that scattering directly off of the potential happens too

•This is the nuclear elastic scattering from the
Scattering lecture, which fancy folks like to call
potential scattering or shape elastic scattering

•The waves from shape elastic
scattering can interfere with
scattering off of the resonance,
producing a neat shape

•When we remove the trivial
component of the
cross section (which we’ll cover in a moment),
we can see these interference effects in our data.

•Resonances can also interfere with other resonances,
if one of them is broad enough

9

K.S. Krane, Introductory 
Nuclear Physics (1987)

R.J. deBoer et al. Rev.Mod.Phys. (2017)



Resonance features

•How can we understand this feature near the resonance?
•Because wave mechanics is in play here,
we can’t just add the outgoing wavefunctions for the different types of scattering

•Instead, we need to combine them as η𝑙𝑙 𝐸𝐸 = 𝑒𝑒2𝑖𝑖 𝛿𝛿𝑙𝑙,𝑟𝑟𝑟𝑟𝑟𝑟 𝐸𝐸 +𝛿𝛿𝑙𝑙,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸)

•The scattering cross section becomes:

𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑋𝑋 𝑎𝑎,𝑏𝑏 𝑌𝑌(𝐸𝐸) = 𝜋𝜋 λ
𝜋𝜋

2
𝑔𝑔 𝑒𝑒−2𝑖𝑖𝛿𝛿𝑙𝑙,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 1 + 𝑖𝑖Γ

(𝐸𝐸−𝐸𝐸𝑅𝑅)+𝑖𝑖Γ/2

2

•The last term inside || becomes negligible for (𝐸𝐸 − 𝐸𝐸𝑅𝑅) ≫ Γ/2, and we just have shape elastic 
scattering

•The last term dominates for 𝐸𝐸 ≈ 𝐸𝐸𝑅𝑅 and we just have the resonance scattering
•We also see that we expect a dip just below 𝐸𝐸 ≈ 𝐸𝐸𝑅𝑅, because the last term is significant, but 
negative

10
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𝐽𝐽𝜋𝜋 considerations
•Resonant reactions are due to the strong interaction, so spin is conserved
•Therefore, for a spin 𝐽𝐽1 particle impinging on a spin 𝐽𝐽2 target, bringing in an orbital angular 
momentum 𝑙𝑙, can only populate excited states for a limited range of spins 𝐽𝐽

•For example, nucleon capture on an even-A nucleus can only populate states with
𝑙𝑙 − 1

2
≤ 𝐽𝐽 ≤ 𝑙𝑙 + 1

2
•Similarly, the parity is constrained by π 𝐽𝐽 = 𝜋𝜋1𝜋𝜋2(−1)𝑙𝑙

•If 𝜋𝜋1 = 𝜋𝜋2 = +1, then π 𝐽𝐽 = (−1)𝑙𝑙,
i.e. the parity of the resonance is determined by the orbital angular momentum of the 
reaction channel

•Such a resonant state is said to have “natural parity”.
•If π 𝐽𝐽 ≠ (−1)𝑙𝑙, then that resonant state has “unnatural parity”

•These can occur because nuclear levels are seldom pure single-particle states,
but are rather a superposition of many single-particle states

11



Resonance widths
• As we noted, the resonant cross section is mostly described by the probability of forming the 

compound nucleus, represented by Γ𝑎𝑎𝑎𝑎(𝐸𝐸), multiplied by the probability of decaying from the 
compound nucleus by a particular channel, Γ𝑏𝑏𝑏𝑏(𝐸𝐸), weighted by the total probability of 
decaying from the compound nucleus via any channel Γ(𝐸𝐸)

• For charged particles, we can pretty easily imagine Γ𝑎𝑎𝑎𝑎(𝐸𝐸) is related to the tunneling 
probability, which we made an analytic estimate of when we went over α decay

•Recall, 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸 ≈ 𝑒𝑒−2𝜋𝜋η𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑒𝑒−2𝜋𝜋 𝑍𝑍1𝑍𝑍2𝑒𝑒2/ℏ𝑣𝑣 = 𝑒𝑒−2𝜋𝜋(𝑍𝑍1𝑍𝑍2𝛼𝛼𝑐𝑐/𝑣𝑣)

•But, there’s also a centrifugal barrier, so 𝑃𝑃𝑙𝑙 𝐸𝐸 ≈ 𝑒𝑒−2𝑙𝑙(𝑙𝑙+1) ⁄ℏ2 (2𝜇𝜇𝑍𝑍1𝑍𝑍2𝑒𝑒2𝑅𝑅)𝑒𝑒−2𝜋𝜋η

•Since nuclear excited states don’t necessarily correspond to a pure shell-model state that would 
be populated by the angular momentum transfer 𝑙𝑙, we need to take into account that probability 
as well

•Finally, Γ𝑎𝑎𝑎𝑎(𝐸𝐸) = 2𝑃𝑃𝑙𝑙,𝑎𝑎𝑎𝑎 𝐸𝐸𝑅𝑅 𝛾𝛾𝑙𝑙2, where the last term describes the aforementioned overlap
• If you have a shell-model result (or guess) for 𝛾𝛾𝑙𝑙2, then you can update Γ𝑎𝑎𝑎𝑎(𝐸𝐸) by scaling it with 𝑃𝑃𝑙𝑙,𝑎𝑎𝑎𝑎 𝐸𝐸𝑅𝑅

•For photons, the decay probability scales as the 𝛾𝛾-decay rate we have discussed in the past,
Γ𝛾𝛾 𝐸𝐸 = 𝐵𝐵𝑙𝑙𝐸𝐸𝛾𝛾2𝑙𝑙+1 , where 𝐵𝐵𝑙𝑙 is the matrix element connecting the resonance and decay product

12

𝜎𝜎𝐵𝐵𝐵𝐵,𝑋𝑋 𝑎𝑎,𝑏𝑏 𝑌𝑌(𝐸𝐸) ∝
Γ𝑎𝑎𝑎𝑎(𝐸𝐸)Γ𝑏𝑏𝑏𝑏(𝐸𝐸)

(𝐸𝐸 − 𝐸𝐸𝑅𝑅)2+(Γ(𝐸𝐸))2/4

should actually use 
the higher-order 
form presented in 
the α-decay lecture
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The Wigner Limit
• Particle widths have a theoretical upper-bound,

known as the Wigner limit
• This is the case where we assume the single-particle limit, 

i.e. a single nucleon populating (or de-populating) a 
single-particle level from our shell-model picture

• Here, Γ𝑎𝑎𝑎𝑎(𝐸𝐸) = 2 3ħ2

2𝜇𝜇𝑅𝑅2
𝑃𝑃𝑙𝑙,𝑎𝑎𝑎𝑎 𝐸𝐸𝑅𝑅 𝜃𝜃2 with 𝜃𝜃2 = 1, 𝜇𝜇 is the 

reduced mass and 𝑅𝑅 is the “channel radius”, which is a $10 
word for the sum of the particle & nuclear radii.

• Actual widths are generally far below this
• A decent way to estimate the width of a state is to use 

systematics to estimate the average reduced width (or to 
use an optical potential, as we’ll discuss in the Statistical Reactions 
lecture). Then, randomly select the width from a
Porter-Thomas distribution defined by that average width, 
where 𝑃𝑃 𝑥𝑥 = 1

2𝜋𝜋
exp − �𝑥𝑥2

2 and Γ = 𝑥𝑥2 Γ𝑐𝑐
(see e.g. DOI:10.1007/978-3-030-58082-7_5)

Pogrebnyak et al. PRC 2013

E*

E*
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(more accurate) Resonance widths
• The widths on the previous slide are analytic, which is nice, but they are approximate
• To do things properly, one wants to solve the Schrodinger equation assuming some potential

• Ultimately (see Appendix A of Nuclear Physics of Stars) the end result is that the penetration factor is 𝑃𝑃𝑙𝑙 = 𝑅𝑅 𝑘𝑘
𝐹𝐹𝑙𝑙
2+𝐺𝐺𝑙𝑙

2
𝑟𝑟=𝑅𝑅

where 𝐹𝐹𝑙𝑙 and 𝐺𝐺𝑙𝑙 are the spherical Bessel and Neumann functions for neutrons and the regular and irregular 
Coulomb functions for charged-particles. 𝑅𝑅 is the channel radius, and 𝑘𝑘 is the wave number

• This needs to be calculated with a code. You could use Alexander Volya’s nutcracker web-app.
• Interestingly, you’ll find that there’s enough uncertainty

in the potentials and in the channel radius, that the
analytic estimate is often accurate enough

• For example, compare results of 𝜔𝜔𝜔𝜔 at the Wigner limit,
for 24Mg(α,γ) from NuCracker, Adsley+ PRC 2020, & the analytic form of Merz & Meisel MNRAS 2018

(𝑃𝑃𝑙𝑙 𝐸𝐸 ≈ 𝑒𝑒−2𝑙𝑙(𝑙𝑙+1) ⁄ℏ2 (2𝜇𝜇𝑍𝑍1𝑍𝑍2𝑒𝑒2𝑅𝑅)exp 2𝜋𝜋 𝑒𝑒2

ћ𝑐𝑐
𝑍𝑍𝛼𝛼𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜇𝜇𝑐𝑐2

2𝑄𝑄𝛼𝛼
1 − 4

𝜋𝜋

𝑟𝑟0 𝐴𝐴𝛼𝛼
1/3+𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

1/3

𝑍𝑍𝛼𝛼𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒2

𝑄𝑄𝛼𝛼

).

Or 26Si(α,p) between the Analytic estimate,
NuCracker, & Almeraz-Calderon+ PRC 2013

• If you have proper QM results for several energies and angular momenta, you can achieve a good extrapolation 
using an analytic fit: 𝑃𝑃 𝐸𝐸 = exp �−𝑎𝑎

𝐸𝐸 − 𝑏𝑏𝑏𝑏(𝑙𝑙 + 1) , fitting 𝑎𝑎 and 𝑏𝑏. I’ve found this especially helps for very different 𝑙𝑙

Eres[MeV] Analytic [MeV] Adsley [MeV] nucracker [MeV]
0.198 2.2E-34 3.8E-34 2.1E-34
0.327 6.2E-26 1.4E-25 6.5E-26
0.684 8.2E-14 9.7E-14 6.8E-14
1.117 1.1E-13 1.7E-12 6.5E-13

Eres[MeV] Analytic [MeV] Alm.-Cal. [MeV] nucracker [MeV]
0.442 2.9E-23 1.4E-23 1.2E-22
0.932 6.7E-13 4.6E-14 5.2E-13
2.696 3.2E-03 4.8E-04 2.2E-03
2.696 5.2E-03 4.8E-04 1.4E-03



Resonance widths
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𝜎𝜎𝐵𝐵𝐵𝐵,𝑋𝑋 𝑎𝑎,𝑏𝑏 𝑌𝑌(𝐸𝐸) ∝
Γ𝑎𝑎𝑎𝑎(𝐸𝐸)Γ𝑏𝑏𝑏𝑏(𝐸𝐸)

(𝐸𝐸 − 𝐸𝐸𝑅𝑅)2+(Γ(𝐸𝐸))2/4

•Widths can have quite steep energy dependencies
•However, we have to pay attention to what 𝐸𝐸 we’re
talking about in Γ(𝐸𝐸)

•For a radiative capture, 𝐸𝐸𝑎𝑎𝑎𝑎 = 𝐸𝐸𝑅𝑅, 𝐸𝐸γ = 𝑄𝑄 + 𝐸𝐸𝑅𝑅
•Otherwise, 𝐸𝐸𝑎𝑎𝑎𝑎 = 𝐸𝐸𝑅𝑅, 𝐸𝐸𝑏𝑏𝑏𝑏 = 𝑆𝑆𝑏𝑏 + 𝐸𝐸𝑅𝑅
(where 𝑆𝑆𝑏𝑏 is the 𝑏𝑏 separation energy)

•Since 𝐸𝐸𝑅𝑅 ≪ 𝑄𝑄 and 𝐸𝐸𝑅𝑅 ≪ 𝑆𝑆𝑏𝑏, it’s clear that the incoming
particle width has a strong dependence on 𝐸𝐸𝑅𝑅,
but the outgoing width is relatively independent of 𝐸𝐸𝑅𝑅

•Note that there’s still the energy dependence from λ2

Rolfs & Rodney, Cauldrons in the Cosmos (1988)



Broad resonances

• When Γ/𝐸𝐸𝑅𝑅 > 10%,
this resonance is “broad”

• We’ll need to take these into account
in a different way when we
calculate the astrophysical reaction rate
in a future lecture
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Rolfs & Rodney, Cauldrons in the Cosmos (1988)



Subthreshold resonances
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Rolfs & Rodney, Cauldrons in the Cosmos (1988)

• Just because an excited state is below a reaction 
threshold doesn’t mean it can’t contribute as a 
resonance to the total reaction rate

• As long as the low-energy tail overlaps the threshold, 
the resonance can occur

• This is called a “sub-threshold” resonance
(because another name would be pretty bizarre)



Cross section features at low-ish energy (𝐸𝐸~𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
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Rolfs & Rodney, Cauldrons in the Cosmos (1988)



The S-factor

• Often it’s useful to remove the trivial 
energy dependence from the cross 
section, in particular for charged-
particle reaction rates

• We’ll discuss this more when we cover 
nuclear astrophysics, but suffice it to say 
for now that for a charged particle 
reaction rate,
𝜎𝜎 𝐸𝐸 = 1

𝐸𝐸
𝑒𝑒−2𝜋𝜋η𝑆𝑆(𝐸𝐸), where 𝑆𝑆(𝐸𝐸) is the 

S-factor that contains all of the 
interesting physics

19

Rolfs & Rodney, Cauldrons in the Cosmos (1988)



Further Reading
• Chapter 11: Introductory Nuclear Physics (K.S. Krane)
• Chapter 2: Nuclear Physics of Stars (C. Iliadis)
• Chapter 4: Cauldrons in the Cosmos (C. Rolfs & W. Rodney)
• Chapter 17: Introduction to Special Relativity, Quantum Mechanics, and Nuclear Physics for 

Nuclear Engineers (A. Bielajew)

20

http://www.umich.edu/%7Eners311/CourseLibrary/book.pdf
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