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Lecture 14: Scattering
•Rutherford scattering
•Nuclear elastic scattering
•Nuclear inelastic scattering
•Quantum description
•The optical model



Rutherford (a.k.a. elastic Coulomb) scattering

2

H. Schieck, Nuclear Reactions (2014)

•Consider an interaction where only the Coulomb force matters

• The force between projectile and target is 𝐹𝐹𝑐𝑐 = 𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡
𝑟𝑟2

𝛼𝛼𝛼𝛼𝛼,

and so the potential energy is 𝑉𝑉𝑐𝑐 = 𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡
𝑟𝑟
𝛼𝛼𝛼𝛼𝛼

• Furthermore, take the case for which 𝐴𝐴𝑡𝑡 ≫ 𝐴𝐴𝑝𝑝, so we can ignore the target recoil

• The ∝ 1
𝑟𝑟 repulsive potential means the projectile will follow a hyperbolic trajectory

• For a projectile a distance 𝑏𝑏 above the target projectile-target center line and incoming with 
initial kinetic energy 𝑇𝑇 = 1

2𝑚𝑚𝑝𝑝𝑣𝑣𝑖𝑖
2, we can solve for the scattering angle with a trick:

• Note that, at closest approach 𝑑𝑑, energy conservation dictates: 12𝑚𝑚𝑝𝑝𝑣𝑣𝑖𝑖
2 = 1

2𝑚𝑚𝑝𝑝𝑣𝑣𝑚𝑚𝑖𝑖𝑚𝑚
2 + 𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡

𝑑𝑑
𝛼𝛼𝛼𝛼𝛼

• A.k.a. 𝑣𝑣𝑖𝑖2 = 𝑣𝑣𝑚𝑚𝑖𝑖𝑚𝑚
2 + 2𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡

𝑚𝑚𝑝𝑝𝑑𝑑
𝛼𝛼𝛼𝛼𝛼 ….or, 𝑣𝑣𝑚𝑚𝑖𝑖𝑚𝑚

𝑣𝑣𝑖𝑖

2
= 1 − 2𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡

𝑣𝑣𝑖𝑖
2𝑚𝑚𝑝𝑝𝑑𝑑

𝛼𝛼𝛼𝛼𝛼

• From angular momentum conservation, 𝑚𝑚𝑝𝑝𝑣𝑣𝑖𝑖𝑏𝑏 = 𝑚𝑚𝑝𝑝𝑣𝑣𝑚𝑚𝑖𝑖𝑚𝑚𝑑𝑑

… so 𝑏𝑏2 = 𝑑𝑑2 𝑣𝑣𝑚𝑚𝑖𝑖𝑚𝑚
𝑣𝑣𝑖𝑖

2
= 𝑑𝑑2 1 − 2𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡

𝑣𝑣𝑖𝑖
2𝑚𝑚𝑝𝑝𝑑𝑑

𝛼𝛼𝛼𝛼𝛼



G.R. Satchler, Introduction to Nuclear Reactions (1990)

Rutherford (a.k.a. elastic Coulomb) scattering
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H. Schieck, Nuclear Reactions (2014)

• 𝑏𝑏2 = 𝑑𝑑2 𝑣𝑣𝑚𝑚𝑖𝑖𝑚𝑚
𝑣𝑣𝑖𝑖

2
= 𝑑𝑑2 1 − 2𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡

𝑣𝑣𝑖𝑖
2𝑚𝑚𝑝𝑝𝑑𝑑

𝛼𝛼𝛼𝛼𝛼

• You can either integrate the force to get the change in
momentum (as in Schieck) or just accept the fact that
∝ 1

𝑟𝑟 repulsive potentials result in hyperbolic trajectories,
and note that for such cases: cot 𝜋𝜋−𝜃𝜃

4
= 𝑑𝑑

𝑏𝑏

• So, cot 𝜃𝜃
2

= 2𝑏𝑏
2𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡
𝑣𝑣𝑖𝑖
2𝑚𝑚𝑝𝑝

𝛼𝛼𝛼𝑐𝑐



Rutherford (a.k.a. elastic Coulomb) scattering
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• Now that we know the scattering angle 𝜃𝜃 corresponding to
an impact parameter 𝑏𝑏, we can solve for an experimentally
useful property: the angular distribution

• Let’s consider the intensity of particles arriving within a ring
in with the impact parameter range 𝑏𝑏 + 𝑑𝑑𝑏𝑏

• 𝑑𝑑𝑑𝑑 = 𝐼𝐼𝑚𝑚𝑡𝑡𝐼𝐼𝑚𝑚𝐼𝐼𝑖𝑖𝑡𝑡𝐼𝐼
𝑈𝑈𝑚𝑚𝑖𝑖𝑡𝑡 𝐴𝐴𝑟𝑟𝐼𝐼𝐴𝐴

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎 = 𝐹𝐹0 𝜋𝜋 𝑏𝑏 + 𝑑𝑑𝑏𝑏 2 − 𝜋𝜋𝑏𝑏2 ≈ 𝐹𝐹0 2𝜋𝜋𝑏𝑏𝑑𝑑𝑏𝑏

• By swapping in our previous result for 𝜃𝜃(𝑏𝑏), we get
the intensity of particles scattered through
a solid angle 𝑑𝑑Ω at angle 𝜃𝜃

• 𝑑𝑑𝑑𝑑 = 𝜋𝜋
4
𝑑𝑑0

2𝑍𝑍1𝑍𝑍2𝛼𝛼𝛼𝑐𝑐
𝑚𝑚𝑝𝑝𝑣𝑣𝑖𝑖

2

2 cos(𝜃𝜃/2)
sin3(𝜃𝜃/2)

𝑑𝑑𝜃𝜃

• The number scattered through 𝑑𝑑Ω = 2𝜋𝜋sin 𝜃𝜃 𝑑𝑑𝜃𝜃 sr at 𝜃𝜃 is:

• 𝑑𝑑𝜎𝜎
𝑑𝑑Ω

= 𝑑𝑑𝐼𝐼
𝐹𝐹0

1
𝑑𝑑Ω

= 𝑍𝑍1𝑍𝑍2𝛼𝛼𝛼𝑐𝑐
4𝐾𝐾𝐾𝐾𝑐𝑐𝑚𝑚

2 1
sin4 𝜃𝜃𝑐𝑐𝑚𝑚/2

Geiger & Marsden, Phil. Mag. (1913),
as reproduced by H. Schieck, Nuclear Reactions (2014)

Rutherford scattering creates a background for all charged 
particle experiments, but is minimal at backward angles
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Rutherford Scattering in the Lab
• In the lab frame, the number scattered through 𝑑𝑑Ω = 2𝜋𝜋sin 𝜃𝜃 𝑑𝑑𝜃𝜃 sr at 𝜃𝜃 is:

• 𝑑𝑑𝜎𝜎
𝑑𝑑Ω𝑙𝑙𝐴𝐴𝑏𝑏

= 𝑍𝑍1𝑍𝑍2𝛼𝛼𝛼𝑐𝑐
4𝐴𝐴𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚

2 𝐴𝐴+𝑐𝑐𝑐𝑐𝐼𝐼 𝜃𝜃𝑙𝑙𝑏𝑏𝑏𝑏
2

sin4 𝜃𝜃𝑙𝑙𝑏𝑏𝑏𝑏
, where 𝑎𝑎 = 1 − 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚

𝑀𝑀𝑡𝑡𝑏𝑏𝑟𝑟𝑡𝑡𝑏𝑏𝑡𝑡

2

2 MeV/u 4He on 20Ne 2 MeV/u 20Ne on 4He
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Rutherford Scattering Validity
• Once reach high enough energy, Rutherford scattering is no longer valid
• Qualitatively, you would expect this once the two nuclei

are (at least close to) touching, since at that point the
nuclear potential must be important

• Empirically, the deviation from Rutherford occurs when the
classical distance of closest approach 𝑑𝑑 is approximately
1.5× the sum of the nuclear radii, where

𝑑𝑑 =
𝑍𝑍1𝑍𝑍2𝛼𝛼𝛼𝛼𝛼

2𝐸𝐸𝑐𝑐𝑚𝑚
1 + csc 𝜃𝜃𝑐𝑐𝑚𝑚

2

• After this point (which depends a bit on the optical potential),
the optical potential details matter

P. Christensen et al. Nucl.Phys.A 1973

H. Schieck, Nuclear Reactions (2014)

4He on 86Kr (aop1)3MeV/u 4He on 86Kr

d/
(R

+r
) 
= 

1
.5

points with d/(R+r) =1.5



14MeV n on Pb

S. Fernbach, Rev.Mod.Phys. (1958)

Elastic Nuclear Scattering
•Considering a projectile as a plane wave and a target nucleus as an 
opaque disk, a creative person realizes this situation looks like 
diffraction of light off of an opaque disk

•The opticians among us recall that diffraction on a sharp edge 
results in a diffraction pattern with the first minimum at 𝜃𝜃 ≈ λ

2𝑅𝑅
and succeeding minima at roughly equal spacing, with
a decreasing maxima [like the sinc(θ) function]

7

W.E. Meyerhof, Elements of Nuclear Physics (1967)

K.S. Krane, Introductory Nuclear Physics (1987)

λ=10*2R



Coulomb + Elastic Nuclear
•Coulomb scattering dominates for charged particles 
at low angles at low energies

•…but at high energies nuclear scattering effects
can be seen even at low angles

8

14MeV n on Pb

S. Fernbach, Rev.Mod.Phys. (1958)

Eck & Thompson, Nuc.Phys.A (1975)

14MeV p on Pb

800MeV p on Pb

G.Igo High Energy Physics and 
Nuclear Structure (1975)

• Nuclear scattering is 
responsible for the small 
wiggles we saw earlier in 
ratio to Rutherford

3MeV/u 4He on 86Kr

𝜃𝜃𝑐𝑐𝑚𝑚 ≈ λ
2𝑅𝑅
≈ 22°, 

here 𝜃𝜃𝑐𝑐𝑚𝑚 ≈ 𝜃𝜃𝑙𝑙𝐴𝐴𝑏𝑏

2𝜃𝜃 3𝜃𝜃



Inelastic Scattering
•When the target absorbs energy from the projectile and
becomes excited, inelastic scattering has occurred

•At a fixed angle, charged particles observed at energies below
the energy expected for elastic scattering are signatures of excited states that were populated

•The relative intensity of each peak is  related
to the wavefunction overlap between the
initial state (beam + target)
and final state (recoil + ejectile)

•Angular distributions
constrain state
spins and parities

• Just like in the γ-decay
lecture, angular distributions
indicate the angular
momentum (L) transfer.

9

Hoffman, Sarantites, & Lu, Nuc.Phys.A (1971)

R. Petersen,
Ann. Phys. 1969



Scattering in terms of Quantum Mechanics

10

• We’ve avoided the cold, harsh world for too long!
To get more useful information, we have to bust out some QM

• Consider the beam as an incident plane wave: ψ𝑖𝑖𝑚𝑚𝑐𝑐 = 𝐴𝐴𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖

• For a central potential, we can make the switch to spherical-polar coordinates,
ψ𝑖𝑖𝑚𝑚𝑐𝑐 = 𝐴𝐴𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐴𝐴∑𝑙𝑙=0∞ 𝑟𝑟𝑙𝑙(2𝑙𝑙 + 1)𝑗𝑗𝑙𝑙(𝑘𝑘𝑟𝑟)𝑃𝑃𝑙𝑙(cos 𝜃𝜃 ) ,  where 𝑗𝑗𝑙𝑙 are spherical Bessel functions

• For 𝑘𝑘𝑟𝑟 ≫ 1, 𝑗𝑗𝑙𝑙 𝑘𝑘𝑟𝑟 ≈
sin 𝑖𝑖𝑟𝑟−𝑙𝑙𝑙𝑙2

𝑖𝑖𝑟𝑟
= 𝑟𝑟 𝐼𝐼

−𝑖𝑖 𝑘𝑘𝑟𝑟−𝑙𝑙𝑙𝑙/2 −𝐼𝐼𝑖𝑖 𝑘𝑘𝑟𝑟−𝑙𝑙𝑙𝑙/2

2𝑖𝑖𝑟𝑟

• So, ψ𝑖𝑖𝑚𝑚𝑐𝑐 ≈
𝐴𝐴
2𝑖𝑖𝑟𝑟

∑𝑙𝑙=0∞ 𝑟𝑟𝑙𝑙+1(2𝑙𝑙 + 1) 𝑎𝑎−𝑖𝑖 𝑖𝑖𝑟𝑟−𝑙𝑙𝜋𝜋/2 − 𝑎𝑎𝑖𝑖 𝑖𝑖𝑟𝑟−𝑙𝑙𝜋𝜋/2 𝑃𝑃𝑙𝑙(cos 𝜃𝜃 )

• The math enthusiasts among us will notice that our plane wave is now described in terms of an 
incoming spherical wave (𝑎𝑎−𝑖𝑖𝑖𝑖𝑟𝑟) and an outgoing spherical wave (𝑎𝑎𝑖𝑖𝑖𝑖𝑟𝑟)

• Scattering off of a central potential, known to its friends as the target nucleus,
of course will only impact the outgoing spherical wave

Of course, that’s one of 
the perks of grad school.



Scattering in terms of Quantum Mechanics
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• Scattering will modify ψ𝑖𝑖𝑚𝑚𝑐𝑐 = 𝐴𝐴
2𝑖𝑖𝑟𝑟

∑𝑙𝑙=0∞ 𝑟𝑟𝑙𝑙+1 2𝑙𝑙 + 1 𝑎𝑎−𝑖𝑖 𝑖𝑖𝑟𝑟−
𝑙𝑙𝑙𝑙
2 − 𝑎𝑎𝑖𝑖 𝑖𝑖𝑟𝑟−

𝑙𝑙𝑙𝑙
2 𝑃𝑃𝑙𝑙 cos 𝜃𝜃

to ψ = 𝐴𝐴
2𝑖𝑖𝑟𝑟

∑𝑙𝑙=0∞ 𝑟𝑟𝑙𝑙+1(2𝑙𝑙 + 1) 𝑎𝑎−𝑖𝑖 𝑖𝑖𝑟𝑟−𝑙𝑙𝜋𝜋/2 − 𝜼𝜼𝒍𝒍𝑎𝑎𝑖𝑖 𝑖𝑖𝑟𝑟−𝑙𝑙𝜋𝜋/2 𝑃𝑃𝑙𝑙(cos 𝜃𝜃 )

• 𝜼𝜼𝒍𝒍 is a complex coefficient that describes the impact to outgoing wavefunction for a particular 𝑙𝑙
(a.k.a. a particular “partial wave”) which can describe a change in
the angular distribution (a.k.a. a change in “phase”) 
and/or a change in
amplitude (e.g. due to absorption or emission of an ejectile different from the projectile)

• Subtracting the upper equation from the lower one results in the scattered wave:

ψ𝐼𝐼𝑐𝑐 = 𝐴𝐴
2𝑖𝑖𝑟𝑟

∑𝑙𝑙=0∞ 𝑟𝑟𝑙𝑙+1 2𝑙𝑙 + 1 1 − η𝑙𝑙 𝑎𝑎𝑖𝑖 𝑖𝑖𝑟𝑟−
𝑙𝑙𝑙𝑙
2 𝑃𝑃𝑙𝑙 cos 𝜃𝜃

which is equal to ψ𝐼𝐼𝑐𝑐 = 𝐴𝐴
2𝑖𝑖

𝐼𝐼𝑖𝑖𝑘𝑘𝑟𝑟

𝑟𝑟
∑𝑙𝑙=0∞ 𝑟𝑟(2𝑙𝑙 + 1) 1 − η𝑙𝑙 𝑃𝑃𝑙𝑙(cos 𝜃𝜃 )

• If this all seems like formalism for it’s own sake, have some patience!
We can now use the scattered and incident wave functions to determine cross sections



Scattering cross sections from quantum mechanics
• When you were younger and more full of life, you learned in your QM class that

a particle current density for a particle described by a wavefunction is 𝑗𝑗 = 𝛼
2𝑚𝑚𝑖𝑖

ψ∗ 𝜕𝜕ψ
𝜕𝜕𝜕𝜕
− ψ𝜕𝜕ψ∗

𝜕𝜕𝜕𝜕

• Moving to 3D and considering our scattered wave, 𝑗𝑗𝐼𝐼𝑐𝑐 = 𝛼
2𝑚𝑚𝑖𝑖

ψ𝐼𝐼𝑐𝑐∗
𝜕𝜕ψ𝑠𝑠𝑐𝑐
𝜕𝜕𝑟𝑟

− ψ𝐼𝐼𝑐𝑐
𝜕𝜕ψ𝑠𝑠𝑐𝑐

∗

𝜕𝜕𝑟𝑟

• From our previous work, 𝑗𝑗𝐼𝐼𝑐𝑐 = 𝐴𝐴 2 𝛼
4𝑚𝑚𝑖𝑖𝑟𝑟2

∑𝑙𝑙=0∞ 𝑟𝑟(2𝑙𝑙 + 1) 1 − η𝑙𝑙 𝑃𝑃𝑙𝑙(cos 𝜃𝜃 ) 2

• For the incident wave 𝑗𝑗𝑖𝑖𝑚𝑚𝑐𝑐 = 𝐴𝐴 2 𝛼𝑖𝑖
𝑚𝑚

• Logically, the probability particles will be scattered at some angle 𝜃𝜃 (through an area 𝑟𝑟2𝑑𝑑Ω) is 
𝑑𝑑𝜎𝜎
𝑑𝑑Ω

𝜃𝜃 = 𝑗𝑗𝑠𝑠𝑐𝑐
𝑗𝑗𝑖𝑖𝑚𝑚𝑐𝑐

𝑟𝑟2 = 1
4𝑖𝑖2

∑𝑙𝑙=0∞ 𝑟𝑟(2𝑙𝑙 + 1) 1 − η𝑙𝑙 𝑃𝑃𝑙𝑙(cos 𝜃𝜃 ) 2

• For the total cross section, we integrate over sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝑑𝑑, where it turns-out the integral over 
the Legendre polynomial product is 4𝜋𝜋

2𝑙𝑙+1

• So, the total scattered cross section is 𝜎𝜎𝐼𝐼𝑐𝑐 = ∑𝑙𝑙=0∞ 𝜋𝜋 λ
2𝜋𝜋

2
(2𝑙𝑙 + 1) 1 − η𝑙𝑙 2

12

Does this formula look familiar?
This is nearly the semi-classical cross section result



η𝑙𝑙 and the scattering phase shift, 𝛿𝛿𝑙𝑙
• 𝑑𝑑𝜎𝜎
𝑑𝑑Ω

𝜃𝜃 = 1
4𝑖𝑖2

∑𝑙𝑙=0∞ 𝑟𝑟(2𝑙𝑙 + 1) 1 − η𝑙𝑙 𝑃𝑃𝑙𝑙(cos 𝜃𝜃 ) 2 ,   𝜎𝜎𝐼𝐼𝑐𝑐 = ∑𝑙𝑙=0∞ 𝜋𝜋 λ
2𝜋𝜋

2
(2𝑙𝑙 + 1) 1 − η𝑙𝑙 2

• When only elastic scattering can occur, the outgoing amplitude is maintained and so η𝑙𝑙 =1
• For that case, people like to write η𝑙𝑙 = 𝑎𝑎2𝑖𝑖𝛿𝛿𝑙𝑙 , where 𝛿𝛿𝑙𝑙 is the phase shift of partial wave 𝑙𝑙

• Then, 1 − η𝑙𝑙 2 = 4sin2(𝛿𝛿𝑙𝑙),  so 𝜎𝜎𝐼𝐼𝑐𝑐 = ∑𝑙𝑙=0∞ 4𝜋𝜋 λ
2𝜋𝜋

2
(2𝑙𝑙 + 1)sin2(𝛿𝛿𝑙𝑙)

• … so how do we determine η𝑙𝑙 or 𝛿𝛿𝑙𝑙?
• Theorists:

1) Posit some potential for the scattering interaction
2) Solve the Schrödinger equation for 𝑘𝑘𝑟𝑟 → ∞
3) Profit

• Experimentalists:
1) Measure scattering and differential cross sections
2) Match the calculations to the data
3) Profit

13



Reaction and Total cross sections
• Let’s call everything other than elastic scattering, when considered together, the reaction
• For these other processes, some absorption does happen, so η𝑙𝑙 < 1
• The total reaction cross section will be the difference between the incoming particle current

density and the outgoing particle current density
𝑗𝑗𝑖𝑖𝑚𝑚 − 𝑗𝑗𝑐𝑐𝑜𝑜𝑡𝑡 =

= 𝐴𝐴 2 𝛼
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• The total cross section is therefore 
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A take-away from the above work is that pure elastic scattering can happen,
but reactions with no elastic scattering component cant. Elastic scattering always happens. 



The optical model
• As we just saw, the total and differential cross sections can be calculated by scattering a plane 

wave off of some nuclear potential
• Therefore, we can turn the problem on its head and instead use measured scattering data to 

figure out what potential we would need to have our solution to the Schrödinger equation 
provide the observed data

• The optical model is a way to do this, where the
potential is something like 𝑈𝑈 𝑟𝑟 = 𝑉𝑉 𝑟𝑟 + 𝑟𝑟𝑖𝑖(𝑟𝑟)

• As we saw much earlier in class, the Woods-Saxon
form is the best bet for 𝑉𝑉(𝑟𝑟)

• Since absorption is mostly going to happen on the
surface, typically 𝑖𝑖(𝑟𝑟) ∝ 𝑑𝑑𝑉𝑉/𝑑𝑑𝑟𝑟

• Solving for the optical model parameters for one case
means reaction cross sections can be solved for
many more cases with the same projectile
and similar A for the target
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V0=40MeV,
R=1.25A1/3,
a= 0.523fm
A=64

K.S. Krane, Introductory Nuclear Physics (1987)



Becchetti & Greenlees, Phys.Rev. (1969)

Optical model parameters
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• If you need to calculate a cross section 
and you don’t have the time or resources 
or inclination to measure the necessary 
scattering data, you’re in luck!

• Several compilations exist of not only 
local fits, but global potentials obtained 
from systematics to these fits 

Avrigeanu, Avrigeanu, & Manailescu, PRC (2014)

Koning & Delaroche, Nuc.Phys.A (2003)



Further Reading
• Chapter 10: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)
• Chapter 11: Introductory Nuclear Physics (K.S. Krane)
• Chapter 17: Introduction to Special Relativity, Quantum Mechanics, and Nuclear Physics for 

Nuclear Engineers (A. Bielajew)
• Chapters 1 & 2: Nuclear Reactions (H. Schieck)
• J. Blatt & L.C. Biedenharn, Reviews of Modern Physics, 24, 258 (1952)
• Lecture Notes for Advanced Quantum Mechanics (Ben Simons)
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http://www.umich.edu/%7Eners311/CourseLibrary/book.pdf
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.24.258
http://www.tcm.phy.cam.ac.uk/%7Ebds10/aqp.html
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