Lecture 14: Scattering

e Rutherford scattering
*Nuclear elastic scattering
*Nuclear inelastic scattering
e Quantum description

*The optical model



Rutherford (a.k.a. elastic Coulomb) scattering

eConsider an interaction where only the Coulomb force matters
zpz

T2

e The force between projectile and targetis F. = ahc,

ZpZt

and so the potential energy is . = ahc

* Furthermore, take the case for which A; > A,,, so we can ignore the target recoil
e The x % repulsive potential means the projectile will follow a hyperbolic trajectory

e For a projectile a distance b above the target projectile-target center line and incoming with
initial kineticenergy T = %mpviz, we can solve for the scattering angle with a trick:
ZpZt

ahc
d

* Note that, at closest approach d, energy conservation dictates: %mpv,? = %mpv,,%m + —

zzpzt
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(v mpd
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2
27,7 oo
E—ahc ..o, ( mm) =1 —
myd Vi

* From angular momentum conservation, m,v;b = my, vy, d
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Rutherford (a.k.a. elastic Coulomb) scattering
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Rutherford (a.k.a. elastic Coulomb) scattering

 Now that we know the scattering angle 6 corresponding to
an impact parameter b, we can solve for an experimentally
useful property: the angular distribution
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* Let’s consider the intensity of particles arriving within a ring Egi |
in with the impact parameter range b + db ! |
e dI = (IntenSity) (ring area) = Fy(n(b + db)* — nb?) =~ Fy(2mbdb) ‘:fé
Unit Area 0 0 "*351
e By swapping in our previous result for 8(b), we get i A :
the intensity of particles scattered through 112 Ao Dependence of e
a SOIld angle dQ at angle 9 1107 [ Countsadjustedtosin4(®!2) _
2 ]
. _ T 2Z1Zyahc) cos(0/2) § o’ ]
al = 4 lo ( myv;f ) sin3(0/2) ag g m :
e The number scattered through dQ = 2msin(6)d@ srat 8 is: ~ ..
G 4o __dl 1 _ Z1Zyahc 2 1 1x1oj ]
o Fo df - 4KEcm sin*(0cm/2) :X:zﬂ L ]
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Rutherford scattering creates a background for all charged Scattering angle ©_ (deg)

particle experiments, but is minimal at backward angles



Elastic Nuclear Scattering

eConsidering a projectile as a plane wave and a target nucleus a
opaque disk, a creative person realizes this situation looks like
diffraction of light off of an opaque disk

*The opticians among us recall that diffraction on a sharp edge

results in a diffraction pattern with the first minimum at 8 = P

and succeeding minima at roughly equal spacing, with
a decreasing maxima [like the sinc(0) function]

K.S. Krane, Introductory Nuclear Physics (1987)
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Eck & Thompson, Nuc.Phys.A (1975)
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Inelastic Scattering

\When the target absorbs energy from the projectile and

becomes excited, inelastic scattering has occurred

*At a fixed angle, charged particles observed at energies below
the energy expected for elastic scattering are signatures of excited states that were populated

*The relative intensity of each peak is related
to the wavefunction overlap between the
initial state (beam + target) and final state (recoil + ejectile)

eAngular distributions constrain state
spins and parities

E.g. for 3C(a,n)'®0, the
ground-state J*are known c(®/c(8) (CM)
for 13C, 160, Q, and n. 30} e EXPERIMENTAL DATA Eq:2.675

e At low energy, onIy —— SINGLE LEVEL 5/2 RESONANCE
low € are relevant,
and here £=1is the
lowest £ that conserves spin
...50 the neutron
angular distribution
gives £-neutron, which is
determined by J

of the 170 state 01505 06 04 02 0 02 04 “08 —08 -io
cos & (CM)

a0 Walton CIement & Boreli, Phys Rev (1957)
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Scattering in terms of Quantum Mechanics

. Of course, that'’s one of
* We've avoided the cold, harsh world for too long! tie perks of grad school

WHEN I GET THE PROTONS UP
To 9C, \T STARTS &0IN&
'CHUGEA CHUGGA CHUGGA

aamsiE

HMHM, SOUNDS LIKE YA
GOT YER WAVES MIIN
WITH YER PARTICLES.

T

To get more useful information, we have to bust out some QM

e Consider the beam as an incident plane wave: ;. = Ae'*? U

* For a central potential, we can make the switch to spherical-polar coordinates,

Yine = Ae®2 =AY, iY (21 + 1)j,(kr)P;(cos(8)) , where j; are spherical Bessel functions

kr—l—n)

) sin( >
e Forkr » 1, j;(kr) = — v

¢ S0, Uj,, ~ 2%2?10 120 + 1) (e—i(kr—ln/z) _ ei(kr—ln/z))Pl(COS(H))

_ p—i(kr=lm/2) _ ,i(kr—lm/2)

* The math enthusiasts among us will notice that our plane wave is now described in terms of an

incoming spherical wave (e **") and an outgoing spherical wave (e**")

 Scattering off of a central potential, known to its friends as the target nucleus,
of course will only impact the outgoing spherical wave




Scattering in terms of Quantum Mechanics

e Scattering will modify Y, = Zz o it (21 + 1)(9 (kr__) —e (kr__))Pl(cos(H))

to l|J — ;Zl 0 ll+1(2l + 1) (e i(kr—Im/2) __ n, el(kr ln/Z))P (COS(Q))
* 1; is a complex coefficient that describes the impact to outgoing wavefunction for a particular [
(a.k.a. a particular “partial wave”) which can describe a change in

the angular distribution (a.k.a. a change in “phase”)
and/or a change in

amplitude (e.g. due to absorption or emission of an ejectile different from the projectile)

e Subtracting the upper equation from the lower one results in the scattered wave:
Ve = 220122+ 1)(1 = 1) (7)) cos (o)

A elkrzl Ol(2l 4 1)(1 nl)Pl(COS(H))

e If this all seems like formallsm for it’s own sake, have some patience!
We can now use the scattered and incident wave functions to determine cross sections

which is equal to Yg. =



Scattering cross sections from quantum mechanics

 When you were younger and more full of life, you learned in your QM class that

a particle current density for a particle described by a wavefunction is j = L (L|J* a—ij — )

ox
— (1|Jsc OWsc — U, allisc)

12720021 + 1) (1 — )P (cos(B))]*

e Moving to 3D and considering our scattered wave, j.. =

* From our previous work, jo. = |A|* amk r2

. . ’ hk
* For the incident wave j;,,, = |A|?—

. Loglcally, the probability particles will be scattered at some angle 0 (through an area r?df}) is
SC 1 o .
Z(0) = L4712 = — T2 i(21 + 1) (1 — ;) P(cos(6)) 2

]mc

* For the total cross section, we integrate over sin(6) dfdg, where it turns-out the integral over
: . 4
the Legendre polynomial product is Tfl

* So, the total scattered cross section is g, = Yijog T ( ) 21+ D1 —ny?



n; and the scattering phase shift, 0,

d
99 (9) = L1520 i(2L + DA =P (cos@O? , 0y = Eom () (2L + DI1 -2
e When only elastic scattering can occur, the outgoing amplitude is maintained and so |n;|=1

e For that case, people like to write 1; = €29, where 6 is the phase shift of partial wave !

* Then, |1 — n;|? = 4sin?(8}), so g5. = D12 04n( ) (21 + 1)51n2(5l)

e ...s0 how do we determine n; or §;?

e Theorists:
1) Posit some potential for the scattering interaction
2) Solve the Schrodinger equation for kr — o
3) Profit

e Experimentalists:
1) Measure scattering and differential cross sections
2) Match the calculations to the data
3) Profit




Reaction and Total cross sections

* Let’s call everything other than elastic scattering, when considered together, the reaction
* For these other processes, some absorption does happen, so |n;| < 1

* The total reaction cross section will be the difference between the incoming particle current
density and the outgoing particle current density

Jinl = Vouel =, . 2 - 27
2 h 41 l(l—n) l+1 _i(l_n)
= |A]| i‘T1(21 + 1)e \2/P)(cos(0))| — (‘T (2L + 1)e "\2/P;(cos(8))
Amkr?
=0 =0

. - A\ 2
* Which reduces to Gy eqction = Q2o T (E) 2L+ DA -

 The total cross section is therefore

2
A
Ototal = Oclastic T Oreaction = z 2T (%) (Zl + 1)(1 — Real(nl))
[=0

A take-away from the above work is that pure elastic scattering can happen,
but reactions with no elastic scattering component cant. Elastic scattering always happens.




The optical model

e As we just saw, the total and differential cross sections can be calculated by scattering a plane
wave off of some nuclear potential

 Therefore, we can turn the problem on its head and instead use measured scattering data to
figure out what potential we would need to have our solution to the Schrodinger equation
prOV|de the Observed data K.S. Krane, Introductory Nuclear Physics (1987)

]
o

* The optical model is a way to do this, where the
potential is something like U(r) =V (r) + iW (1)

e As we saw much earlier in class, the Woods-Saxon
form is the best bet for V(r)

e Since absorption is mostly going to happen on the
surface, typically W (r) o« dV /dr

e Solving for the optical model parameters for one case
means reaction cross sections can be solved for

dVidr (MeV/fm)

T

9 10 r (fm)

V (MeV)

, e V,=40MeV,
many more cases with the same projectile R=1 25AL/3
and similar A for the target a=0.523fm

A=64




Becchetti & Greenlees, Phys.Rev. (1969)

Optical model parameters [

* If you need to calculate a cross section 1.0;

and you don’t have the time or resources
or inclination to measure the necessary
scattering data, you're in luck!

* Several compilations exist of not only
local fits, but global potentials obtained
from systematics to these fits

u, Avrigeanu, & Manailescu, PRC (2014)
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Further Reading

Chapter 10: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)
Chapter 11: Introductory Nuclear Physics (K.S. Krane)

Chapter 17: Introduction to Special Relativity, Quantum Mechanics, and Nuclear Physics for
Nuclear Engineers (A. Bielajew)

Chapters 1 & 2: Nuclear Reactions (H. Schieck)
J. Blatt & L.C. Biedenharn, Reviews of Modern Physics, 24, 258 (1952)

Lecture Notes for Advanced Quantum Mechanics (Ben Simons)



http://www.umich.edu/%7Eners311/CourseLibrary/book.pdf
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.24.258
http://www.tcm.phy.cam.ac.uk/%7Ebds10/aqp.html
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