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Lecture 14: Scattering
•Rutherford scattering
•Nuclear elastic scattering
•Nuclear inelastic scattering
•Quantum description
•The optical model



Rutherford (a.k.a. elastic Coulomb) scattering

2

H. Schieck, Nuclear Reactions (2014)

•Consider an interaction where only the Coulomb force matters

• The force between projectile and target is 𝐹𝐹𝑐𝑐 = 𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡
𝑟𝑟2

𝛼𝛼𝛼𝛼𝛼,

and so the potential energy is 𝑉𝑉𝑐𝑐 = 𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡
𝑟𝑟
𝛼𝛼𝛼𝛼𝛼

• Furthermore, take the case for which 𝐴𝐴𝑡𝑡 ≫ 𝐴𝐴𝑝𝑝, so we can ignore the target recoil

• The ∝ 1
𝑟𝑟 repulsive potential means the projectile will follow a hyperbolic trajectory

• For a projectile a distance 𝑏𝑏 above the target projectile-target center line and incoming with 
initial kinetic energy 𝑇𝑇 = 1

2𝑚𝑚𝑝𝑝𝑣𝑣𝑖𝑖
2, we can solve for the scattering angle with a trick:

• Note that, at closest approach 𝑑𝑑, energy conservation dictates: 12𝑚𝑚𝑝𝑝𝑣𝑣𝑖𝑖
2 = 1

2𝑚𝑚𝑝𝑝𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
2 + 𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡

𝑑𝑑
𝛼𝛼𝛼𝛼𝛼

• A.k.a. 𝑣𝑣𝑖𝑖2 = 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
2 + 2𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡

𝑚𝑚𝑝𝑝𝑑𝑑
𝛼𝛼𝛼𝛼𝛼 ….or, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣𝑖𝑖

2
= 1 − 2𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡

𝑣𝑣𝑖𝑖
2𝑚𝑚𝑝𝑝𝑑𝑑

𝛼𝛼𝛼𝛼𝛼

• From angular momentum conservation, 𝑚𝑚𝑝𝑝𝑣𝑣𝑖𝑖𝑏𝑏 = 𝑚𝑚𝑝𝑝𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑

… so 𝑏𝑏2 = 𝑑𝑑2 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑖𝑖

2
= 𝑑𝑑2 1 − 2𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡

𝑣𝑣𝑖𝑖
2𝑚𝑚𝑝𝑝𝑑𝑑

𝛼𝛼𝛼𝛼𝛼



G.R. Satchler, Introduction to Nuclear Reactions (1990)

Rutherford (a.k.a. elastic Coulomb) scattering
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H. Schieck, Nuclear Reactions (2014)

• 𝑏𝑏2 = 𝑑𝑑2 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑖𝑖

2
= 𝑑𝑑2 1 − 2𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡

𝑣𝑣𝑖𝑖
2𝑚𝑚𝑝𝑝𝑑𝑑

𝛼𝛼𝛼𝛼𝛼

• You can either integrate the force to get the change in
momentum (as in Schieck) or just accept the fact that
∝ 1

𝑟𝑟 repulsive potentials result in hyperbolic trajectories,
and note that for such cases: cot 𝜋𝜋−𝜃𝜃

4
= 𝑑𝑑

𝑏𝑏

• So, cot 𝜃𝜃
2

= 2𝑏𝑏
2𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡
𝑣𝑣𝑖𝑖
2𝑚𝑚𝑝𝑝

𝛼𝛼𝛼𝛼𝛼



Rutherford (a.k.a. elastic Coulomb) scattering
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H. Schieck, Nuclear Reactions (2014)

• Now that we know the scattering angle 𝜃𝜃 corresponding to
an impact parameter 𝑏𝑏, we can solve for an experimentally
useful property: the angular distribution

• Let’s consider the intensity of particles arriving within a ring
in with the impact parameter range 𝑏𝑏 + 𝑑𝑑𝑑𝑑

• 𝑑𝑑𝑑𝑑 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐹𝐹0 𝜋𝜋 𝑏𝑏 + 𝑑𝑑𝑑𝑑 2 − 𝜋𝜋𝑏𝑏2 ≈ 𝐹𝐹0 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

• By swapping in our previous result for 𝜃𝜃(𝑏𝑏), we get
the intensity of particles scattered through
a solid angle 𝑑𝑑Ω at angle 𝜃𝜃

• 𝑑𝑑𝑑𝑑 = 𝜋𝜋
4
𝐼𝐼0

2𝑍𝑍1𝑍𝑍2𝛼𝛼𝛼𝛼𝛼
𝑚𝑚𝑝𝑝𝑣𝑣𝑖𝑖

2

2 cos(𝜃𝜃/2)
sin3(𝜃𝜃/2)

𝑑𝑑𝜃𝜃

• The number scattered through 𝑑𝑑Ω = 2𝜋𝜋sin 𝜃𝜃 𝑑𝑑𝑑𝑑 sr at 𝜃𝜃 is:

• 𝑑𝑑𝜎𝜎
𝑑𝑑Ω

= 𝑑𝑑𝑑𝑑
𝐹𝐹0

1
𝑑𝑑Ω

= 𝑍𝑍1𝑍𝑍2𝛼𝛼𝛼𝛼𝛼
4𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐

2 1
sin4 𝜃𝜃𝑐𝑐𝑐𝑐/2

Geiger & Marsden, Phil. Mag. (1913),
as reproduced by H. Schieck, Nuclear Reactions (2014)

Rutherford scattering creates a background for all charged 
particle experiments, but is minimal at backward angles



14MeV n on Pb

S. Fernbach, Rev.Mod.Phys. (1958)

Elastic Nuclear Scattering
•Considering a projectile as a plane wave and a target nucleus as an 
opaque disk, a creative person realizes this situation looks like 
diffraction of light off of an opaque disk

•The opticians among us recall that diffraction on a sharp edge 
results in a diffraction pattern with the first minimum at 𝜃𝜃 ≈ λ

2𝑅𝑅
and succeeding minima at roughly equal spacing, with
a decreasing maxima [like the sinc(θ) function]

5

W.E. Meyerhof, Elements of Nuclear Physics (1967)

K.S. Krane, Introductory Nuclear Physics (1987)

λ=10*2R



Coulomb + Elastic Nuclear
•Coulomb scattering dominates for charged particles 
at low angles at low energies

•…but at high energies nuclear scattering effects
can be seen even at low angles

6

14MeV n on Pb

S. Fernbach, Rev.Mod.Phys. (1958)

Eck & Thompson, Nuc.Phys.A (1975)

14MeV p on Pb

800MeV p on Pb

G.Igo High Energy Physics and 
Nuclear Structure (1975)



Inelastic Scattering
•When the target absorbs energy from the projectile and
becomes excited, inelastic scattering has occurred

•At a fixed angle, charged particles observed at energies below
the energy expected for elastic scattering are signatures of excited states that were populated

•The relative intensity of each peak is  related
to the wavefunction overlap between the
initial state (beam + target) and final state (recoil + ejectile)

•Angular distributions constrain state
spins and parities
•E.g. for 13C(α,n)16O, the

ground-state Jπ are known
for 13C, 16O, α, and n.

•At low energy, only
low ℓ are relevant,
and here ℓ=1 is the
lowest ℓ that conserves spin
…so the neutron
angular distribution
gives ℓ-neutron, which is
determined by J
of the 17O state

7

Hoffman, Sarantites, & Lu, Nuc.Phys.A (1971)

Walton, Clement, & Boreli, Phys. Rev. (1957)



Scattering in terms of Quantum Mechanics

8

• We’ve avoided the cold, harsh world for too long!
To get more useful information, we have to bust out some QM

• Consider the beam as an incident plane wave: ψ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

• For a central potential, we can make the switch to spherical-polar coordinates,
ψ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐴𝐴∑𝑙𝑙=0∞ 𝑖𝑖𝑙𝑙(2𝑙𝑙 + 1)𝑗𝑗𝑙𝑙(𝑘𝑘𝑘𝑘)𝑃𝑃𝑙𝑙(cos 𝜃𝜃 ) ,  where 𝑗𝑗𝑙𝑙 are spherical Bessel functions

• For 𝑘𝑘𝑘𝑘 ≫ 1, 𝑗𝑗𝑙𝑙 𝑘𝑘𝑘𝑘 ≈
sin 𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙2

𝑘𝑘𝑘𝑘
= 𝑖𝑖 𝑒𝑒

−𝑖𝑖 𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙/2 −𝑒𝑒𝑖𝑖 𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙/2

2𝑘𝑘𝑘𝑘

• So, ψ𝑖𝑖𝑖𝑖𝑖𝑖 ≈
𝐴𝐴
2𝑘𝑘𝑘𝑘

∑𝑙𝑙=0∞ 𝑖𝑖𝑙𝑙+1(2𝑙𝑙 + 1) 𝑒𝑒−𝑖𝑖 𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙/2 − 𝑒𝑒𝑖𝑖 𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙/2 𝑃𝑃𝑙𝑙(cos 𝜃𝜃 )

• The math enthusiasts among us will notice that our plane wave is now described in terms of an 
incoming spherical wave (𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖) and an outgoing spherical wave (𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖)

• Scattering off of a central potential, known to its friends as the target nucleus,
of course will only impact the outgoing spherical wave

Of course, that’s one of 
the perks of grad school.



Scattering in terms of Quantum Mechanics

9

• Scattering will modify ψ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐴𝐴
2𝑘𝑘𝑘𝑘

∑𝑙𝑙=0∞ 𝑖𝑖𝑙𝑙+1 2𝑙𝑙 + 1 𝑒𝑒−𝑖𝑖 𝑘𝑘𝑘𝑘−
𝑙𝑙𝑙𝑙
2 − 𝑒𝑒𝑖𝑖 𝑘𝑘𝑘𝑘−

𝑙𝑙𝑙𝑙
2 𝑃𝑃𝑙𝑙 cos 𝜃𝜃

to ψ = 𝐴𝐴
2𝑘𝑘𝑘𝑘

∑𝑙𝑙=0∞ 𝑖𝑖𝑙𝑙+1(2𝑙𝑙 + 1) 𝑒𝑒−𝑖𝑖 𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙/2 − 𝜼𝜼𝒍𝒍𝑒𝑒𝑖𝑖 𝑘𝑘𝑘𝑘−𝑙𝑙𝑙𝑙/2 𝑃𝑃𝑙𝑙(cos 𝜃𝜃 )

• 𝜼𝜼𝒍𝒍 is a complex coefficient that describes the impact to outgoing wavefunction for a particular 𝑙𝑙
(a.k.a. a particular “partial wave”) which can describe a change in
the angular distribution (a.k.a. a change in “phase”) 
and/or a change in
amplitude (e.g. due to absorption or emission of an ejectile different from the projectile)

• Subtracting the upper equation from the lower one results in the scattered wave:

ψ𝑠𝑠𝑐𝑐 = 𝐴𝐴
2𝑘𝑘𝑘𝑘

∑𝑙𝑙=0∞ 𝑖𝑖𝑙𝑙+1 2𝑙𝑙 + 1 1 − η𝑙𝑙 𝑒𝑒𝑖𝑖 𝑘𝑘𝑘𝑘−
𝑙𝑙𝑙𝑙
2 𝑃𝑃𝑙𝑙 cos 𝜃𝜃

which is equal to ψ𝑠𝑠𝑐𝑐 = 𝐴𝐴
2𝑘𝑘

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟
∑𝑙𝑙=0∞ 𝑖𝑖(2𝑙𝑙 + 1) 1 − η𝑙𝑙 𝑃𝑃𝑙𝑙(cos 𝜃𝜃 )

• If this all seems like formalism for it’s own sake, have some patience!
We can now use the scattered and incident wave functions to determine cross sections



Scattering cross sections from quantum mechanics
• When you were younger and more full of life, you learned in your QM class that

a particle current density for a particle described by a wavefunction is 𝑗𝑗 = ℏ
2𝑚𝑚𝑚𝑚

ψ∗ 𝜕𝜕ψ
𝜕𝜕𝜕𝜕
− ψ𝜕𝜕ψ∗

𝜕𝜕𝑥𝑥

• Moving to 3D and considering our scattered wave, 𝑗𝑗𝑠𝑠𝑠𝑠 = ℏ
2𝑚𝑚𝑚𝑚

ψ𝑠𝑠𝑠𝑠∗
𝜕𝜕ψ𝑠𝑠𝑠𝑠
𝜕𝜕𝑟𝑟

− ψ𝑠𝑠𝑠𝑠
𝜕𝜕ψ𝑠𝑠𝑠𝑠

∗

𝜕𝜕𝑟𝑟

• From our previous work, 𝑗𝑗𝑠𝑠𝑠𝑠 = 𝐴𝐴 2 ℏ
4𝑚𝑚𝑚𝑚𝑟𝑟2

∑𝑙𝑙=0∞ 𝑖𝑖(2𝑙𝑙 + 1) 1 − η𝑙𝑙 𝑃𝑃𝑙𝑙(cos 𝜃𝜃 ) 2

• For the incident wave 𝑗𝑗𝑖𝑖𝑖𝑖𝑐𝑐 = 𝐴𝐴 2 ℏ𝑘𝑘
𝑚𝑚

• Logically, the probability particles will be scattered at some angle 𝜃𝜃 (through an area 𝑟𝑟2𝑑𝑑Ω) is 
𝑑𝑑𝜎𝜎
𝑑𝑑Ω

𝜃𝜃 = 𝑗𝑗𝑠𝑠𝑠𝑠
𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟2 = 1
4𝑘𝑘2

∑𝑙𝑙=0∞ 𝑖𝑖(2𝑙𝑙 + 1) 1 − η𝑙𝑙 𝑃𝑃𝑙𝑙(cos 𝜃𝜃 ) 2

• For the total cross section, we integrate over sin 𝜃𝜃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, where it turns-out the integral over 
the Legendre polynomial product is 4𝜋𝜋

2𝑙𝑙+1

• So, the total scattered cross section is 𝜎𝜎𝑠𝑠𝑠𝑠 = ∑𝑙𝑙=0∞ 𝜋𝜋 λ
2𝜋𝜋

2
(2𝑙𝑙 + 1) 1 − η𝑙𝑙 2

10



η𝑙𝑙 and the scattering phase shift, 𝛿𝛿𝑙𝑙
• 𝑑𝑑𝜎𝜎
𝑑𝑑Ω

𝜃𝜃 = 1
4𝑘𝑘2

∑𝑙𝑙=0∞ 𝑖𝑖(2𝑙𝑙 + 1) 1 − η𝑙𝑙 𝑃𝑃𝑙𝑙(cos 𝜃𝜃 ) 2 ,   𝜎𝜎𝑠𝑠𝑠𝑠 = ∑𝑙𝑙=0∞ 𝜋𝜋 λ
2𝜋𝜋

2
(2𝑙𝑙 + 1) 1 − η𝑙𝑙 2

• When only elastic scattering can occur, the outgoing amplitude is maintained and so η𝑙𝑙 =1
• For that case, people like to write η𝑙𝑙 = 𝑒𝑒2𝑖𝑖𝛿𝛿𝑙𝑙 , where 𝛿𝛿𝑙𝑙 is the phase shift of partial wave 𝑙𝑙

• Then, 1 − η𝑙𝑙 2 = 4sin2(𝛿𝛿𝑙𝑙),  so 𝜎𝜎𝑠𝑠𝑠𝑠 = ∑𝑙𝑙=0∞ 4𝜋𝜋 λ
2𝜋𝜋

2
(2𝑙𝑙 + 1)sin2(𝛿𝛿𝑙𝑙)

• … so how do we determine η𝑙𝑙 or 𝛿𝛿𝑙𝑙?
• Theorists:

1) Posit some potential for the scattering interaction
2) Solve the Schrödinger equation for 𝑘𝑘𝑘𝑘 → ∞
3) Profit

• Experimentalists:
1) Measure scattering and differential cross sections
2) Match the calculations to the data
3) Profit

11



Reaction and Total cross sections
• Let’s call everything other than elastic scattering, when considered together, the reaction
• For these other processes, some absorption does happen, so η𝑙𝑙 < 1
• The total reaction cross section will be the difference between the incoming particle current

density and the outgoing particle current density
𝑗𝑗𝑖𝑖𝑖𝑖 − 𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜 =

= 𝐴𝐴 2 ℏ
4𝑚𝑚𝑚𝑚𝑟𝑟2

�
𝑙𝑙=0

∞

𝑖𝑖𝑙𝑙+1(2𝑙𝑙 + 1)𝑒𝑒𝑖𝑖
𝑙𝑙𝑙𝑙
2 𝑃𝑃𝑙𝑙(cos 𝜃𝜃 )

2

− �
𝑙𝑙=0

∞

𝑖𝑖𝑙𝑙+1(2𝑙𝑙 + 1)𝑒𝑒−𝑖𝑖
𝑙𝑙𝑙𝑙
2 𝑃𝑃𝑙𝑙(cos 𝜃𝜃 )

2

• Which reduces to 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ∑𝑙𝑙=0∞ 𝜋𝜋 λ
2𝜋𝜋

2
(2𝑙𝑙 + 1) 1 − η𝑙𝑙 2

• The total cross section is therefore 

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝑙𝑙=0

∞

2𝜋𝜋
λ

2𝜋𝜋

2

(2𝑙𝑙 + 1) 1 − Real(η𝑙𝑙)

12

A take-away from the above work is that pure elastic scattering can happen,
but reactions with no elastic scattering component cant. Elastic scattering always happens. 



The optical model
• As we just saw, the total and differential cross sections can be calculated by scattering a plane 

wave off of some nuclear potential
• Therefore, we can turn the problem on its head and instead use measured scattering data to 

figure out what potential we would need to have our solution to the Schrödinger equation 
provide the observed data

• The optical model is a way to do this, where the
potential is something like 𝑈𝑈 𝑟𝑟 = 𝑉𝑉 𝑟𝑟 + 𝑖𝑖𝑖𝑖(𝑟𝑟)

• As we saw much earlier in class, the Woods-Saxon
form is the best bet for 𝑉𝑉(𝑟𝑟)

• Since absorption is mostly going to happen on the
surface, typically 𝑊𝑊(𝑟𝑟) ∝ 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑

• Solving for the optical model parameters for one case
means reaction cross sections can be solved for
many more cases with the same projectile
and similar A for the target
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V0=40MeV,
R=1.25A1/3,
a= 0.523fm
A=64

K.S. Krane, Introductory Nuclear Physics (1987)



Becchetti & Greenlees, Phys.Rev. (1969)

Optical model parameters
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• If you need to calculate a cross section 
and you don’t have the time or resources 
or inclination to measure the necessary 
scattering data, you’re in luck!

• Several compilations exist of not only 
local fits, but global potentials obtained 
from systematics to these fits 

Avrigeanu, Avrigeanu, & Manailescu, PRC (2014)

Koning & Delaroche, Nuc.Phys.A (2003)



Further Reading
• Chapter 10: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)
• Chapter 11: Introductory Nuclear Physics (K.S. Krane)
• Chapter 17: Introduction to Special Relativity, Quantum Mechanics, and Nuclear Physics for 

Nuclear Engineers (A. Bielajew)
• Chapters 1 & 2: Nuclear Reactions (H. Schieck)
• J. Blatt & L.C. Biedenharn, Reviews of Modern Physics, 24, 258 (1952)
• Lecture Notes for Advanced Quantum Mechanics (Ben Simons)
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http://www.umich.edu/%7Eners311/CourseLibrary/book.pdf
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.24.258
http://www.tcm.phy.cam.ac.uk/%7Ebds10/aqp.html
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