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Lecture 13: Reactions Overview
•Terminology and types
•Energetics & kinematics
•Cross sections



Defining a reaction
• A nuclear reaction consists of the interaction of two or more nuclei 

or nucleons that results in some final product
• The initial stuff is known as the reactants [projectile and target, in the lab]

and the final stuff is known as the products [recoil and ejectile, in the lab]

• Several sets of products are often possible for a pair of reactants
colliding at a given energy, including simple scattering

• The ways of “decaying” from the nucleus briefly formed by the
reaction are known as channels

• The modern notation for a reaction is always to put the
lighter of the reactants and products on the inside of a pair
of brackets, like A(b,c)D, where MA>Mb and MD>Mc

• Nuclear reactions are governed by the strong force and so
they conserve baryon number, nuclear charge, energy,
linear momentum, angular momentum, and parity
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1st nuclear fusion reaction 
observed in the lab

P. Blackett, Proc. R. Soc. A (1925)



Reaction types
• Reactions are categorized by the participants and by the mechanism
• Participants:

•Particle comes in and only a γ comes out: radiative capture
•γ comes in and one or a few particles comes out: photodisintegration
•A multi-nucleon beam transfers a nucleon (or nucleons) to/from the target: transfer

•A projectile exits as an ejectile, taking one or more nucleons with it: pick-up
•A projectile exits as an ejectile, losing one or more nucleons in the process: knock-out

•The projectile and target aren’t transmuted and exit in their ground states: elastic scattering
•The projectile and target aren’t transmuted and one (or both) is excited: inelastic scattering

•Mechanism:
•Few nucleons take part in the reaction (e.g. transfer): direct
•The projectile and target briefly fuse, sharing energy amongst all nucleons: statistical
•The projectile and target briefly fuse, forming a loosely bound state: resonant
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Energetics
• Conservation of energy requires
𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐2 + 𝐾𝐾𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐2 = 𝑚𝑚𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐2 + 𝐾𝐾𝐾𝐾𝑝𝑝𝑟𝑟𝑟𝑟 + 𝑚𝑚𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐2 + 𝐾𝐾𝐾𝐾𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟,
where 𝑚𝑚𝑖𝑖 could refer to the mass of a nucleus in an excited state

• The Q-value is equal to any excess kinetic energy resulting from the reaction, 
𝑄𝑄 = 𝑀𝑀𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑀𝑀𝐾𝐾𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 −𝑀𝑀𝐾𝐾𝑝𝑝𝑟𝑟𝑟𝑟 − 𝑀𝑀𝐾𝐾𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟 = 𝐾𝐾𝐾𝐾𝑝𝑝𝑟𝑟𝑟𝑟 + 𝐾𝐾𝐾𝐾𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟 − 𝐾𝐾𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

• So, for a reaction to be energetically possible, 𝑄𝑄 + 𝐾𝐾𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 > 0
• Conservation of momentum in 𝑥𝑥 and 𝑦𝑦 dictates:

• 𝑥𝑥: 𝑚𝑚𝑝𝑝𝑣𝑣𝑝𝑝 = 𝑚𝑚𝑟𝑟𝑣𝑣𝑟𝑟 cos 𝜃𝜃 + 𝑚𝑚𝑝𝑝𝑣𝑣𝑝𝑝cos(ϕ)
• 𝑦𝑦: 0 = −𝑚𝑚𝑟𝑟𝑣𝑣𝑟𝑟 sin 𝜃𝜃 + 𝑚𝑚𝑝𝑝𝑣𝑣𝑝𝑝sin(ϕ)

• Noting 𝑝𝑝 = 2𝑚𝑚𝐾𝐾𝐾𝐾 and doing some algebra,

𝑚𝑚𝑝𝑝𝐾𝐾𝐾𝐾𝑝𝑝 − 2 𝑚𝑚𝑝𝑝𝐾𝐾𝐾𝐾𝑝𝑝𝑚𝑚𝑟𝑟𝐾𝐾𝐾𝐾𝑟𝑟 cos 𝜃𝜃 + 𝑚𝑚𝑟𝑟𝐾𝐾𝐾𝐾𝑟𝑟 = 𝑚𝑚𝑝𝑝𝐾𝐾𝐾𝐾𝑝𝑝

• Noting that 𝑄𝑄 = 𝐾𝐾𝐾𝐾𝑝𝑝 + 𝐾𝐾𝐾𝐾𝑟𝑟 − 𝐾𝐾𝐾𝐾𝑝𝑝, we get the “Q equation”
𝑄𝑄 = 𝐾𝐾𝐾𝐾𝑟𝑟 1 + 𝑚𝑚𝑒𝑒

𝑚𝑚𝑟𝑟
− 𝐾𝐾𝐾𝐾𝑝𝑝 1 − 𝑚𝑚𝑝𝑝

𝑚𝑚𝑟𝑟
− 2

𝑚𝑚𝑟𝑟
𝑚𝑚𝑝𝑝𝑚𝑚𝑟𝑟𝐾𝐾𝐾𝐾𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟cos(𝜃𝜃) which tells us Q can be 

determined by measuring the angle and energy of the ejectile alone 4

Loveland, Morrissey, & Seaborg, 
Modern Nuclear Chemistry (2006)



Energy in the center of mass (CM) frame

5

Weidner & Sells, Elementary 
Modern Physics (1973)

•For mathematical convenience (and to keep the outsiders out!) 
often the center-of-mass (CM) frame is employed

•For the energetic conversion between the two, consider the kinetic
energy in the CM frame: 𝐾𝐾𝐾𝐾𝑟𝑟𝑚𝑚 = 𝐾𝐾𝐾𝐾𝑙𝑙𝑡𝑡𝑙𝑙

𝐴𝐴𝑡𝑡
𝐴𝐴𝑝𝑝+𝐴𝐴𝑡𝑡

•So, the center of mass energy is always lower
than the laboratory energy, but how much
lower depends on which reactant is the beam
and which is the target

•As an aside, consider an alternative way to specify the laboratory beam energy: MeV/u
•Let’s look at an example reaction and use Energy/nucleon for the forward & inverse kinematics:

• 96Zr(α,n) at 𝐾𝐾𝑟𝑟𝑚𝑚 = 7.68𝑀𝑀𝑀𝑀𝑀𝑀
• For an α beam on a 96Zr target, 𝐾𝐾𝛼𝛼,𝑙𝑙𝑡𝑡𝑙𝑙 = 96+4

96
7.68𝑀𝑀𝑀𝑀𝑀𝑀 = 8𝑀𝑀𝑀𝑀𝑀𝑀 = 8

4
= 2𝑀𝑀𝑀𝑀𝑀𝑀/𝑢𝑢

• For a 96Zr beam on an α target, 𝐾𝐾96𝑍𝑍𝑝𝑝,𝑙𝑙𝑡𝑡𝑙𝑙 = 96+4
4

7.68𝑀𝑀𝑀𝑀𝑀𝑀 = 192𝑀𝑀𝑀𝑀𝑀𝑀 = 192
96

= 2𝑀𝑀𝑀𝑀𝑀𝑀/𝑢𝑢
• Hence, MeV/u is often a more useful way to speak about reaction energies

What does this imply 
about the choice of 
forward vs inverse 
kinematics measurements?

For an accelerator with a limited minimum voltage 
(i.e. all of them), inverse kinematics will reach a 
lower center-of-mass energy.



Reaction threshold
• If you want to initiate a particular reaction in the lab by impinging a beam on a target

and the reaction is endothermic, what should your beam energy be?

• You need to pay the extra energy that is carried away
by the center-of-mass of the system

• Recalling our energy conversion, 𝐾𝐾𝐾𝐾𝑟𝑟𝑚𝑚 = 𝐾𝐾𝐾𝐾𝑙𝑙𝑡𝑡𝑙𝑙
𝐴𝐴𝑡𝑡

𝐴𝐴𝑝𝑝+𝐴𝐴𝑡𝑡
,

the lab energy must be 𝐾𝐾𝐾𝐾𝑝𝑝 ≥ (−𝑄𝑄) 𝐴𝐴𝑡𝑡+𝐴𝐴𝑝𝑝
𝐴𝐴𝑡𝑡

6

No!The Q-value?



Kinematics
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K.S. Krane, Introductory Nuclear Physics (1987)

• Using the Q-equation, 𝑄𝑄 = 𝐾𝐾𝐾𝐾𝑟𝑟 1 + 𝑚𝑚𝑒𝑒
𝑚𝑚𝑟𝑟

− 𝐾𝐾𝐾𝐾𝑝𝑝 1 − 𝑚𝑚𝑝𝑝

𝑚𝑚𝑟𝑟
− 2

𝑚𝑚𝑟𝑟
𝑚𝑚𝑝𝑝𝑚𝑚𝑟𝑟𝐾𝐾𝐾𝐾𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟cos(𝜃𝜃),

and conservation of momentum, we can determine the relationship between our reaction 
products outgoing energy and angle

• Calling the projectile “a”, target “X”, light product “b”, and heavy product “Y”,
some gymnastics results in
𝐾𝐾𝐾𝐾𝑙𝑙 = 𝑚𝑚𝑎𝑎𝑚𝑚𝑏𝑏𝐾𝐾𝐾𝐾𝑎𝑎 cos 𝜃𝜃 ± 𝑚𝑚𝑎𝑎𝑚𝑚𝑏𝑏𝐾𝐾𝐾𝐾𝑎𝑎cos2 𝜃𝜃 + 𝑚𝑚𝑌𝑌+𝑚𝑚𝑏𝑏 [𝑚𝑚𝑌𝑌𝑄𝑄+(𝑚𝑚𝑌𝑌−𝑚𝑚𝑎𝑎)𝐾𝐾𝐾𝐾𝑎𝑎]

𝑚𝑚𝑌𝑌+𝑚𝑚𝑏𝑏

• That looks pretty awful … and it is!
• Luckily, some noble souls have already worked-out the math

for us and developed calculators used to figure out the laboratory and center-of-mass 
kinematics for two-body reactions of interest:
•A common option is Catkin, from W. N. Catford: kinematics with an Excel spreadsheet
•Another is the LISE++ kinematics calculator, from O. Tarasov & D. Bazin: kinematics with a 
Windows/Apple app

•My recent favorite is SkiSickness, from S.K.L. Sjue: kinematics with an online tool

http://personal.ph.surrey.ac.uk/%7Ephs1wc/kinematics/
http://lise.nscl.msu.edu/lise.html
http://skisickness.com/2010/04/relativistic-kinematics-calculator/


Kinematics, common features
• For a given projectile energy, usually only one ejectile

energy corresponds to a given angle
• Ejectiles are emitted at 0° for projectiles at the

threshold energy
• For 𝑄𝑄 < 0 reactions, there is a double-valued

behavior for projectile energies near the threshold
• The double-valued ejectile-angle relationship exists
between the threshold energy and an upper limit:
(−𝑄𝑄)𝑚𝑚𝑋𝑋+𝑚𝑚𝑎𝑎

𝑚𝑚𝑋𝑋
≤ 𝑇𝑇𝑡𝑡 ≤ (−𝑄𝑄) 𝑚𝑚𝑌𝑌

𝑚𝑚𝑌𝑌−𝑚𝑚𝑎𝑎

• If 𝐴𝐴𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑖𝑖𝑙𝑙 ≫ 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑙𝑙𝑟𝑟, the double-value region is obviously inconsequential
• The angular range which can have the double-valued behavior is limited

• At the upper limit, the double-valued behavior happens between θ ≤ 90°
• Near the threshold, the double-valued behavior can only happen near 𝜃𝜃 ≈ 0°
• In general, the maximum angle for double-valued behavior 𝜃𝜃𝑚𝑚𝑡𝑡𝑚𝑚 is

cos2 𝜃𝜃𝑚𝑚 = − 𝑚𝑚𝑌𝑌+𝑚𝑚𝑏𝑏 [𝑚𝑚𝑌𝑌𝑄𝑄+(𝑚𝑚𝑌𝑌−𝑚𝑚𝑎𝑎)𝑇𝑇𝑎𝑎]
𝑚𝑚𝑎𝑎𝑚𝑚𝑏𝑏𝐾𝐾𝐾𝐾𝑎𝑎 8

t(p,n)  [Lab]    Q = -0.77MeV

K.S. Krane, Introductory Nuclear Physics (1987)

Projectile
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Center of Mass Ejectile Properties

• If low-mass particle b is observed at an angle θ with energy 𝐾𝐾𝑙𝑙,𝐿𝐿

• The center-of-mass energy of b is
𝐾𝐾𝑙𝑙,𝐶𝐶𝐶𝐶 = (𝐾𝐾𝑡𝑡,𝐿𝐿 + 𝑄𝑄) 𝑚𝑚𝑋𝑋𝑚𝑚𝑌𝑌

(𝑚𝑚𝑎𝑎+𝑚𝑚𝑋𝑋)(𝑚𝑚𝑏𝑏+𝑚𝑚𝑌𝑌)
1 + 𝑚𝑚𝑎𝑎𝑄𝑄

𝑚𝑚𝑋𝑋(𝐾𝐾𝑎𝑎,𝐿𝐿+𝑄𝑄)

• The center-of-mass angle of b is

α = sin−1 𝐾𝐾𝑏𝑏,𝐿𝐿

(𝐾𝐾𝑎𝑎,𝐿𝐿+𝑄𝑄) 𝑚𝑚𝑋𝑋𝑚𝑚𝑌𝑌
(𝑚𝑚𝑎𝑎+𝑚𝑚𝑋𝑋)(𝑚𝑚𝑏𝑏+𝑚𝑚𝑌𝑌) 1+ 𝑚𝑚𝑎𝑎𝑄𝑄

𝑚𝑚𝑋𝑋(𝐸𝐸𝑎𝑎,𝐿𝐿+𝑄𝑄)

sin(θ)

• The moral of the story is: use a kinematics calculator!

9

Xa

b

Y

θ
ξ

Lab frame

Xa

b

Y

α

CM frame

180°- α

Use a kinematics calculator



Reaction likelihood: The cross section 𝜎𝜎
• To quantify the probability of a nuclear interaction occurring, we use the cross section
• The number of reactions that occur 𝑁𝑁 when we impinge an ion beam of intensity 𝐼𝐼 (in units of 

particles/second) for some time 𝑡𝑡 on a target with areal density 𝑛𝑛𝑇𝑇 (in units of atoms/cm2) is scaled by a 
sort of reaction probability 𝜎𝜎: (for very thin targets:) 𝑁𝑁 = 𝐼𝐼𝑡𝑡𝑛𝑛𝑇𝑇𝜎𝜎

• For the units to work: # = (s-1)*(s)*(atoms/cm2), [𝜎𝜎] = cm2, so we call this area the cross section.
• You can think of it as the overlap between the wave-like projectile and target,

though it can be very different from the classical value from a physical overlap

• Practically, a reaction product detection efficiency 𝜀𝜀 needs to be included: 𝜎𝜎 = 𝑁𝑁𝑑𝑑𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑𝑡𝑡𝑒𝑒𝑑𝑑
𝐼𝐼𝑡𝑡𝑛𝑛𝑇𝑇𝜀𝜀

• And the cross section and detection efficiency need not be uniformly distributed,
so we should consider the cross section for particles detected at some angle 𝜃𝜃 by a detector 
with some solid-angle Ω = 𝐷𝐷𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑝𝑝𝑝𝑝 𝐴𝐴𝑝𝑝𝑟𝑟𝑡𝑡

(𝑇𝑇𝑡𝑡𝑝𝑝𝑡𝑡𝑟𝑟𝑡𝑡−𝐷𝐷𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑝𝑝𝑝𝑝 𝐷𝐷𝑖𝑖𝐷𝐷𝑡𝑡𝑡𝑡𝑛𝑛𝑟𝑟𝑟𝑟)2
:

𝜎𝜎 𝜃𝜃 = 𝑁𝑁𝑑𝑑
𝐼𝐼𝑏𝑏𝑡𝑡𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑛𝑛𝑇𝑇𝜀𝜀𝑑𝑑𝑒𝑒𝑡𝑡(𝜃𝜃)Ω𝑑𝑑𝑒𝑒𝑡𝑡(𝜃𝜃)
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Fun fact:  Beam intensities are usually measured by the 
current those ions create on a beam-stopping device. To 
convert to Ipps, you need to use the fact that 1 unit of 
electric charge is 1.602x10-19C and 1A=1C/s.



Cross section units
• To estimate the scale of cross sections we’re going to deal with, consider the area an incoming 

projectile would see for a typical nucleus
• Take 𝐴𝐴 = 100, since it’s near the middle of the nuclear chart

• 𝑅𝑅 = 1.2𝐴𝐴1/3𝑓𝑓𝑚𝑚 ≈ 5.5𝑓𝑓𝑚𝑚
• 𝜋𝜋𝑅𝑅2 ≈ 100𝑓𝑓𝑚𝑚2

• Boy, that’s huge! As big as a barn even.  So let’s call it a barn: 1𝑏𝑏 ≡ 100𝑓𝑓𝑚𝑚2 = 10−24𝑐𝑐𝑚𝑚2

• For convenience, to save you from unit conversions,
the most commonly encountered magnitudes in
low energy nuclear physics are:
•1𝑏𝑏 = 10−24𝑐𝑐𝑚𝑚2

•1𝑚𝑚𝑏𝑏 = 10−27𝑐𝑐𝑚𝑚2

•1𝜇𝜇𝑏𝑏 = 10−30𝑐𝑐𝑚𝑚2

•1𝑛𝑛𝑏𝑏 = 10−33𝑐𝑐𝑚𝑚2
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• Some of the largest cross sections we see are for 
neutron capture, e.g. nthermal+125Xe ~ 106b 

• σ ~ 100mb can be measured with ~104pps on a 
target of ~1019atoms/cm2, like with re-
accelerated radioactive on beams (like at the NSCL)

• σ ~ 1 nb is usually the limit for stable ion beam 
facilities for measuring something within a 
reasonable time (like at the EAL)

• Element discovery nowadays involves production 
cross sections on the σ ~ 1 pb scale



Cross sections from a semi-classical view
• Consider a grazing collision between a projectile with

radius 𝑟𝑟𝑟 and a target with radius 𝑅𝑅, where the distance
between them is the impact parameter 𝑏𝑏 = 𝑅𝑅 + 𝑟𝑟𝑟

• The relative orbital angular momentum is 𝑙𝑙 = 𝑙𝑙𝑙 = |𝑟𝑟 × �⃗�𝑝| = 𝑝𝑝𝑏𝑏

• Since our projectile is a wave after all, 𝑝𝑝 = ℎ
λ

= 2𝜋𝜋𝑙/λ …. and so 𝑙𝑙𝑙 = 2𝜋𝜋𝑏𝑏 𝑙
λ

…i.e. 𝑏𝑏 = 𝑙𝑙
2𝜋𝜋
λ

• Collisions at a given impact-parameter slice 𝑏𝑏 ± 𝑑𝑑𝑏𝑏 correspond to a given 𝑙𝑙
• The geometric cross section for one slice is:

• 𝜎𝜎𝑙𝑙 = 𝜎𝜎𝑙𝑙±𝑑𝑑𝑙𝑙 = 𝜎𝜎𝑙𝑙+𝑑𝑑𝑙𝑙 − 𝜎𝜎𝑙𝑙−𝑑𝑑𝑙𝑙 = 𝜋𝜋 𝑏𝑏 + 𝑑𝑑𝑏𝑏 2 − 𝜋𝜋 𝑏𝑏 − 𝑑𝑑𝑏𝑏 2

= 𝜋𝜋(𝑙𝑙 + 1)2 λ
2𝜋𝜋

2
− 𝜋𝜋𝑙𝑙2 λ

2𝜋𝜋

2
= 𝜋𝜋 λ

2𝜋𝜋

2
(2𝑙𝑙 + 1)

• So a total cross section is a sum over 𝑙𝑙: 𝜎𝜎𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑙𝑙 = ∑𝑙𝑙 𝜋𝜋
λ
2𝜋𝜋

2
(2𝑙𝑙 + 1)

• Including quantum mechanics, the probability of tunneling through
a barrier corresponding to 𝑙𝑙 is the transmission coefficient 𝑇𝑇𝑙𝑙,
so 𝜎𝜎𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑙𝑙 = 𝜋𝜋 λ

2𝜋𝜋

2
∑𝑙𝑙 (2𝑙𝑙 + 1) 𝑇𝑇𝑙𝑙 where 0 ≤ 𝑇𝑇𝑙𝑙 ≤ 1
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• 𝜎𝜎𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑙𝑙 = 𝜋𝜋 λ
2𝜋𝜋

2
∑𝑙𝑙 (2𝑙𝑙 + 1) 𝑇𝑇𝑙𝑙 where 0 ≤ 𝑇𝑇𝑙𝑙 ≤ 1

• High-energy limiting case for 𝑇𝑇𝑙𝑙: 
For  relatively high energy (e.g. a ~100MeV heavy-ion beam), 𝑇𝑇𝑙𝑙 = 1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑙𝑙 < 𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚

0 𝑓𝑓𝑓𝑓𝑟𝑟 𝑙𝑙 > 𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚

• 𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚 is estimated by assuming barely any beam-target overlap:  𝑏𝑏 = 𝑅𝑅 + 𝑟𝑟, so 𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚 = 2𝜋𝜋(𝑅𝑅+𝑝𝑝)
λ

,
…or can be estimated using fancy calculations ( e.g. Bonche, Grammaticos, & Koonin, PRC 1978)

• Example: 50MeV 16O on an 16O target  (Ecm = 50(16/(16+16)) = 25 MeV)

• 𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚 = 2𝜋𝜋 1.2 ((16)1/3+((16)1/3)𝑓𝑓𝑚𝑚
ℎ

2 16∗16
16+16

∗ 931.5𝐶𝐶𝑟𝑟𝑀𝑀
𝑟𝑟2

25𝑀𝑀𝑀𝑀𝑀𝑀 ≈ 19
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Cross sections from a semi-classical view: High-E collision

This is the
“sharp cutoff limit”

Bonche, Grammaticos, & Koonin, PRC 1978



Bonche, Grammaticos, & Koonin, PRC 1978

• 𝜎𝜎𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑙𝑙 = 𝜋𝜋 λ
2𝜋𝜋

2
∑𝑙𝑙 (2𝑙𝑙 + 1) 𝑇𝑇𝑙𝑙 where 0 ≤ 𝑇𝑇𝑙𝑙 ≤ 1

• High-energy limiting case for 𝑇𝑇𝑙𝑙: 
For  relatively high energy (e.g. a ~100MeV heavy-ion beam), 𝑇𝑇𝑙𝑙 = 1 𝑓𝑓𝑓𝑓𝑟𝑟 𝑙𝑙 < 𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚

0 𝑓𝑓𝑓𝑓𝑟𝑟 𝑙𝑙 > 𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚
• Example: 150MeV 40Ca on a 40Ca target: 𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚 ≈ 70

• 𝜎𝜎𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑙𝑙 = 𝜋𝜋 λ
2𝜋𝜋

2
∑𝑙𝑙=070 (2𝑙𝑙 + 1) = 𝜋𝜋 𝑙𝑟𝑟

2 40∗931.5𝐶𝐶𝑟𝑟𝑀𝑀 150𝐶𝐶𝑟𝑟𝑀𝑀

2
5041 ≈ 55𝑓𝑓𝑚𝑚2 = 550𝑚𝑚𝑏𝑏
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Cross sections from a semi-classical view: High-E collision

This is the
“sharp cutoff limit”



• 𝜎𝜎𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑙𝑙 = 𝜋𝜋 λ
2𝜋𝜋

2
∑𝑙𝑙 (2𝑙𝑙 + 1) 𝑇𝑇𝑙𝑙 where 0 ≤ 𝑇𝑇𝑙𝑙 ≤ 1

• Low-energy limiting case for 𝑇𝑇𝑙𝑙: 

For  relatively low energy (e.g. a <keV beam), 𝑇𝑇𝑙𝑙 ∝
𝐾𝐾𝐾𝐾𝑝𝑝 𝑓𝑓𝑓𝑓𝑟𝑟 𝑙𝑙 = 0
0 𝑓𝑓𝑓𝑓𝑟𝑟 𝑙𝑙 > 0

• Consider a neutron at low energy,
𝜎𝜎𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑙𝑙 ∝ 𝜋𝜋 λ

2𝜋𝜋

2
𝐾𝐾𝐾𝐾𝑛𝑛 ∝ 𝜋𝜋 ℎ

2𝜋𝜋 2𝑚𝑚𝑛𝑛𝐾𝐾𝐾𝐾𝑛𝑛

2
𝐾𝐾𝐾𝐾𝑛𝑛 ∝ 𝜋𝜋 ℎ2

4𝜋𝜋2(𝑚𝑚𝑛𝑛
2𝑣𝑣𝑛𝑛2)

1
2𝑚𝑚𝑛𝑛𝑣𝑣𝑛𝑛 ∝

1
𝑣𝑣𝑛𝑛
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Cross sections from a semi-classical view: Low-E collision
The basic reasoning for 
T~SQRT√(KE)~v is that 
lower velocities mean the 
neutron will spend more 
time in proximity to the 
target.
For l>0, there isn’t enough 
energy to tunnel through 
the centrifugal barrier.

Atlas of Neutron Capture Cross Sections

https://www-nds.iaea.org/ngatlas2/


• Let’s take a step back and now include Coulomb effects
• For a charged projectile, there is a Coulomb barrier between

the projectile and the target:
𝑀𝑀𝐶𝐶 = 𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡𝑟𝑟2

𝑅𝑅
= 𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡

𝑝𝑝0 𝐴𝐴𝑝𝑝
1/3+𝐴𝐴𝑡𝑡

1/3
𝑟𝑟2

𝑙𝑟𝑟
𝑙𝑐𝑐 ≈ 1.44 𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡

𝑝𝑝0 𝐴𝐴𝑝𝑝
1/3+𝐴𝐴𝑡𝑡

1/3 𝑀𝑀𝑀𝑀𝑀𝑀

• At closest approach (𝑅𝑅 = 𝑅𝑅1 + 𝑅𝑅2), the initial center of mass energy 𝜀𝜀 is reduced by,

ε′ = 𝜀𝜀 − 𝑀𝑀𝐶𝐶, so the momentum is 𝑝𝑝 = 2𝜇𝜇 (𝜀𝜀 − 𝑀𝑀𝐶𝐶) = 2𝜇𝜇𝜀𝜀 1 − 𝑀𝑀𝐶𝐶
𝜀𝜀

• The orbital angular momentum is then 𝑙𝑙 = 𝑙𝑙𝑙 = |𝑟𝑟 × �⃗�𝑝| = 𝑅𝑅 2𝜇𝜇𝜀𝜀 1 − 𝑀𝑀𝐶𝐶
𝜀𝜀

,

• 𝜎𝜎𝑡𝑡𝑝𝑝𝑡𝑡 = 𝜋𝜋 λ
2𝜋𝜋

2
∑𝑙𝑙 (2𝑙𝑙 + 1) = 𝜋𝜋(𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚 + 1)2 λ

2𝜋𝜋

2

≈ 𝜋𝜋𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚
2 λ

2𝜋𝜋

2
= 𝜋𝜋𝑅𝑅2 2𝜇𝜇𝜀𝜀

𝑙2
1 − 𝑀𝑀𝐶𝐶

𝜀𝜀
λ
2𝜋𝜋

2
= 𝜋𝜋𝑅𝑅2 1 − 𝑀𝑀𝐶𝐶

𝜀𝜀
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P. Dyer et al. PRC 1981

• The orbital angular momentum is then 𝑙𝑙 = 𝑙𝑙𝑙 = |𝑟𝑟 × �⃗�𝑝| = 𝑅𝑅 2𝜇𝜇𝜀𝜀 1 − 𝑀𝑀𝐶𝐶
𝜀𝜀

,

𝜎𝜎𝑡𝑡𝑝𝑝𝑡𝑡 = 𝜋𝜋(𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚 + 1)2 λ
2𝜋𝜋

2
≈ 𝜋𝜋𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚

2 λ
2𝜋𝜋

2
= 𝜋𝜋𝑅𝑅2 2𝜇𝜇𝜀𝜀

𝑙2
1 − 𝑀𝑀𝐶𝐶

𝜀𝜀
λ
2𝜋𝜋

2
= 𝜋𝜋𝑅𝑅2 1 − 𝑀𝑀𝐶𝐶

𝜀𝜀
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Cross sections from a semi-classical view: with Coulomb
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Cross sections from a semi-classical view: Near Threshold

Ehmann & Vance, Radiochemistry and Nuclear Methods of Analysis (1991)



Cross Sections & Barriers
• For a more accurate prescription, just taking into account the Coulomb barrier won’t do
• The full barrier has,

nuclear, Coulomb, and centrifugal contributions 

• Coulomb: 𝑀𝑀𝐶𝐶 =

𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡𝑟𝑟2

𝑝𝑝
𝑟𝑟 > 𝑅𝑅

𝑍𝑍𝑝𝑝𝑍𝑍𝑡𝑡𝑟𝑟2

𝑅𝑅
3
2 −

1
2

𝑝𝑝2

𝑅𝑅2
𝑟𝑟 < 𝑅𝑅

• Nuclear: 𝑀𝑀𝑊𝑊𝑊𝑊 = 𝑀𝑀0
1+exp 𝑝𝑝−𝑅𝑅 /𝑡𝑡

• Centrifugal: 𝑙
2

2𝜇𝜇
𝑙𝑙(𝑙𝑙+1)
𝑝𝑝2

• Their sum is the “interaction barrier”
• You could find the distance of closest approach

for this barrier and then play the same game as
we did for the Coulomb barrier

19
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Terminology  …because we have to feel special somehow!

• The total interaction probability is described by the cross section
• The cross section as a function of projectile energy is called an excitation function

(though I refuse to use this)

• The probability of an interaction ejecting an outgoing particle at a given angle is referred 
to as the differential cross section.

• Rather than use the logical 𝜎𝜎(𝜃𝜃 ± 𝛿𝛿𝜃𝜃), this is often instead written as 𝑑𝑑𝜎𝜎
𝑑𝑑Ω

or 𝑑𝑑𝜎𝜎
𝑑𝑑Ω

𝜃𝜃

• The probability of an interaction ejecting an outgoing particle at a given angle with a given 
energy is referred to as the double differential cross section 

• Rather than use the logical 𝜎𝜎(𝜃𝜃 ± 𝛿𝛿𝜃𝜃)|𝐾𝐾±𝛿𝛿𝐾𝐾, this is often instead written as 𝑑𝑑
2𝜎𝜎

𝑑𝑑Ω𝑑𝑑𝐾𝐾
• The probability of an interaction ejecting an outgoing particle at a given energy is just 

described by the particle spectrum, because the good guys have to win sometimes

20



• When you transform between the lab and center of mass systems,
you must also transform the solid angle

• Meaning, 𝑑𝑑𝜎𝜎
𝑑𝑑Ω

𝜃𝜃𝑟𝑟𝑚𝑚 is not calculated by just getting  𝑑𝑑𝜎𝜎
𝑑𝑑Ω

𝜃𝜃𝑙𝑙𝑡𝑡𝑙𝑙 and converting 
𝜃𝜃𝑙𝑙𝑡𝑡𝑙𝑙 to 𝜃𝜃𝑟𝑟𝑚𝑚

• Instead, one has to determine the Jacobian 𝐽𝐽 for the transformation, 
𝑑𝑑𝜎𝜎
𝑑𝑑Ω𝑟𝑟𝑚𝑚

= 𝐽𝐽 𝑑𝑑𝜎𝜎
𝑑𝑑Ω𝑙𝑙𝑡𝑡𝑙𝑙

• It turns out:
• 𝑑𝑑𝜎𝜎
𝑑𝑑Ω𝑙𝑙𝑡𝑡𝑙𝑙

= 𝑑𝑑𝜎𝜎
𝑑𝑑Ω𝑟𝑟𝑚𝑚

2𝑟𝑟cos(𝜃𝜃𝑙𝑙𝑡𝑡𝑙𝑙) ± 1−𝑝𝑝2sin2 𝜃𝜃𝑙𝑙𝑎𝑎𝑏𝑏 +𝑝𝑝2cos2(𝜃𝜃𝑙𝑙𝑎𝑎𝑏𝑏)
1−𝑝𝑝2sin2(𝜃𝜃𝑙𝑙𝑎𝑎𝑏𝑏)

, 
where 𝑟𝑟 = 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝑚𝑚𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 and you take only + for  𝑟𝑟 < 1 and both + and - for  𝑟𝑟 > 1

• For non-relativistic scattering of a light particle off of a heavy nucleus, life is 
much simpler:

• 𝑑𝑑𝜎𝜎
𝑑𝑑Ω𝑟𝑟𝑚𝑚

= 𝑑𝑑𝜎𝜎
𝑑𝑑Ω𝑙𝑙𝑡𝑡𝑙𝑙

𝐾𝐾𝐾𝐾𝑑𝑑𝑚𝑚
𝐾𝐾𝐾𝐾𝑙𝑙𝑎𝑎𝑏𝑏

cos(𝜃𝜃𝑙𝑙𝑡𝑡𝑙𝑙 − 𝜃𝜃𝑟𝑟𝑚𝑚)
21

Beware: Solid angles aren’t so solid

See Catchen, Husain, & Zare J. Chem. Phys 1978
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Beware: Solid angles aren’t so solid
• For example, beam of 12C on an 27Al target:

• Beam of 27Al on an 12C target:



Further Reading
• Chapter 10: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)
• Chapter 11: Introductory Nuclear Physics (K.S. Krane)
• Chapter 17: Introduction to Special Relativity, Quantum Mechanics, and Nuclear Physics for 

Nuclear Engineers (A. Bielajew)
• Chapters 1 & 2: Nuclear Reactions (H. Schieck)
• Chapters 3 & 4: Cauldrons in the Cosmos (Rolfs & Rodney)
• “Kinematics of High-Energy Particles”, K. Dedrick, Reviews of Modern Physics 34 (1962)
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http://www.umich.edu/%7Eners311/CourseLibrary/book.pdf
https://doi.org/10.1103/RevModPhys.34.429
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