
Lecture 13: Ohio University PHYS7501, Fall 2017, Z. Meisel (meisel@ohio.edu)

Lecture 13: The Actual Shell Model
•Recalling schematic SM
•Single-particle wavefunctions
•Basis states
•Truncation
•Sketch view of a calculation



Recall the magic numbers: 2, 8, 20, 28, 50, 82, 126
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Shell structure is a problem of quantum mechanics
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• The behavior of a quantum-mechanical system is described by the wave function ψ
• For a particle in some potential, we can solve for ψ using the Schrödinger equation,

• 𝐻𝐻ψ = 𝐸𝐸ψ a.k.a. 𝑇𝑇ψ + 𝑉𝑉ψ = 𝐸𝐸ψ a.k.a. − ћ2

2𝑚𝑚
𝛻𝛻2ψ + 𝑉𝑉ψ = 𝐸𝐸ψ (in cartesian coordinates, 𝛻𝛻2 = 𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2

𝜕𝜕𝑦𝑦2
+ 𝜕𝜕2

𝜕𝜕𝑧𝑧2
)

• The solutions ψ are the eigenfunctions and their eigenvalues are the corresponding energy 𝐸𝐸
• As a bonus, when ψ can be expressed in terms of spherical harmonics,

we also get the angular momentum for that particular eigenfunction,
and parity, since the function is either odd or even

• Mathematical challenges aside, to get any traction we obviously need to assume a potential 𝑉𝑉
• For a single nucleon in the field of a nucleus,

• 𝑉𝑉 should approximate the mean-field generated by all other nucleons
•The solutions will be single-particle levels,
i.e. discrete states the nucleon can occupy

• Since nucleons are indistinguishable, we only need to solve for the single-particle levels for a 
nucleon and then we can fill those levels (working in terms of increasing 𝐸𝐸) to generate a 
model to calculate the properties of our nucleus

ψ=R(r)Yl
m(θ,φ)



Magic numbers (a.k.a. shells) appear from single particle levels 
calculated with a nuclear potential 
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• Considering the nucleus as nucleons interacting in a mean-field 
potential, generated by the spatial distribution of all other 
nucleons, and each nucleon having a strong interaction 
between its orbital & spin angular momentum,
properly predicts the magic numbers.

• When adding neutrons or protons to a nucleus,
the lowest energy state will (generally) consist of filling each 
orbital as you go upward.

• The regions between the large gaps in nucleon energy are 
referred to as “shells”.
• E.g. Between 8 and 20 neutrons (or protons) is the “sd-shell”, 

between 28 and 40 neutrons (or protons) is the “fp-shell”.
• More exotic neutron-rich nuclides exist,

so typically people are talking about the neutron shell
• Nucleons can get excited into higher-lying states,

so states above the ground-state are relevant in calculations
Loveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006)



Filling single particle levels results in a nuclear state
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• To construct a nucleus from the schematic shell model:
• A nucleon will go in the lowest-energy level which 

isn’t already filled, i.e. 
• the largest angular momentum, 𝑗𝑗
• for the largest orbital angular momentum, 𝑙𝑙
• for the lowest oscillator shell, n

• 2𝑗𝑗 + 1 protons or neutrons are allowed per level
• Each level is referred to by its 𝑛𝑛𝑛𝑛𝑛𝑛

• 𝑛𝑛 by the # for the oscillator shell
(convention either starts with 0 or 1)

• 𝑙𝑙 by spectroscopic notation (s=0,p=1,d=2,f=3,…)
• 𝑗𝑗 by the half-integer corresponding to the spin

• For example: 7Li  (Z=3, N=4)

Loveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006)



Wait a second! How is this actually done?
1. Solve the Schrödinger equation for some potential to get the eigenstates.

These single-particle states will be combined to construct a many-body wavefunction
2. The many-body wavefunction is constructed by “creating” or “annihilating” nucleons to fill (or 

be removed from) single-particle states
[and moved from or into other states, since the total number of particles is conserved]

3. The ground state is found by creating particles to fill single-particle levels up to the Fermi level. 
Excited states are found by perturbing the ground-state wavefunction by creating and/or 
annihilating some number of particles.

4. The energy associated with a given “configuration” (a.k.a. wavefunction with a particular 
number of particles and/or holes created) is solved for the configuration’s wavefunction and 
the adopted Hamiltonian using a bit of fancy footwork.
[the spin & parity would be calculated just as we did for the schematic shell model]

5. Typically all of this has to be done for a limited set of single-particle states,
since the dimensionality blows-up rapidly
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Constructing the basis: Solving for single-particle states
• To calculate single-particle states, we need a Hamiltonian: 𝐻𝐻 = 𝑇𝑇 + 𝑉𝑉 = ∑𝑖𝑖𝐴𝐴 𝑡𝑡𝑖𝑖 + ∑𝑖𝑖𝐴𝐴 𝑣𝑣𝑖𝑖
• 𝑡𝑡𝑖𝑖 are just the kinetic energies, 𝑝⃗𝑝𝑖𝑖2/2𝑚𝑚𝑖𝑖, and for the potential terms, we will stick to two-body 

forces, ∑𝑖𝑖𝑗𝑗𝐴𝐴 𝑣𝑣(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)
• Writing down a potential with some strength depending on two separate positions is difficult 

and so instead a central potential is used. 
• I.e. rather than actually use the nucleon-nucleon interaction to calculate the self-binding of 

the nucleons (sort of the volume component of the liquid drop), we approximate self-binding with, 
e.g., a Woods-Saxon

• The disadvantage is that the sum of single-particle energies isn’t the binding energy,
so shell model won’t give us binding energies

• The advantage is that we can actually solve the problem and get useful results,
e.g. relative binding energies, excited state energies, wavefunctions for different nuclear 
states (and therefore wavefunction overlaps between states)
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Removal of center-of-mass motion

• Before we get carried away and solve the Schrödinger equation for single-particle energies 
with the adopted Hamiltonian, we need to correct for an important issue first

• The calculated energy includes some intrinsic component, which we care about, as well as a 
center-of-mass component, which absolutely does not matter

• Therefore, in the kinetic energy term, we need to replace total kinetic energy 𝑇𝑇 = ∑𝑖𝑖𝐴𝐴 𝑝⃗𝑝𝑖𝑖2/2𝑚𝑚𝑖𝑖

with the momentum variance to get the intrinsic KE, 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = 1
2𝑚𝑚

∑𝑖𝑖𝐴𝐴 𝑝⃗𝑝𝑖𝑖2 − ∑𝑖𝑖𝐴𝐴 𝑝⃗𝑝𝑖𝑖2
2

• So what we’re really solving is 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖Ψ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖Ψ𝑖𝑖𝑖𝑖𝑖𝑖
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Including spin-orbit
•We know from the schematic shell-model that we need to break the degeneracy in energy that 
states of a given n𝑙𝑙 have and, from Maria Goeppert Mayer, that spin-orbit is the way to do it

• 𝑉𝑉 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉0
1+exp((𝑟𝑟−𝑅𝑅)/𝑎𝑎)

+ 𝜑𝜑(𝑟𝑟)𝑙𝑙 � 𝑠𝑠

• Expanding the second term, 𝜑𝜑 𝑟𝑟 𝑙𝑙 � 𝑠𝑠 = 1
2𝜑𝜑(𝑟𝑟) 𝚥𝚥2 − 𝑙𝑙2 − 𝑠𝑠2

• When we finally solve for the energy of a single-particle level, we can compare the solution 
with and without spin orbit forces to get 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛

(0) + ∆𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛,
where an astute quantum mechanic would see ∆𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.

2
𝑗𝑗 𝑗𝑗 + 1 − 𝑙𝑙 𝑙𝑙 + 1 − 𝑠𝑠(𝑠𝑠 + 1)

• Since we have fermions, 𝑠𝑠 = 1
2 and 𝑗𝑗 = 𝑙𝑙 ± 1

2, so

• ∆𝜀𝜀𝑛𝑛𝑛𝑛(𝑗𝑗=𝑙𝑙−12)= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.
2

𝑙𝑙 ∆𝜀𝜀𝑛𝑛𝑛𝑛(𝑗𝑗=𝑙𝑙+12)= −𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.
2

(𝑙𝑙 + 1),
where calculating the constant is the radial integral of 𝜑𝜑(𝑟𝑟) and is essentially empirical
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Finally getting on with it & solving for 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛
• While 𝐻𝐻Ψ = 𝐸𝐸Ψ is cute, it’s shorthand for a generally painful differential equation
• The radial equation reads,

−
ћ2

2𝑚𝑚
1
𝑟𝑟2

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑟𝑟2

𝑑𝑑
𝑑𝑑𝑑𝑑

−
𝑙𝑙 𝑙𝑙 + 1
𝑟𝑟2

𝑅𝑅 𝑟𝑟 + 𝑉𝑉 𝑟𝑟 𝑅𝑅 𝑟𝑟 = 𝐸𝐸𝐸𝐸(𝑟𝑟)

• Actually solving this equation is a problem of mathematics,
which you can get into on your own time if you want!

• The Harmonic Oscillator problem can be solved analytically, and so you can find several 
presentations for that problem [E.g. in Lecture Notes (M. Jorth Jensen)]

• A fortran program to calculate single-particle energies for Woods-Saxon potential with 
parameters of your choosing is WSPOT.for, which can be obtained from Alex Brown (MSU),
or by Googling
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http://nuclearstructure.github.io/PHY981/doc/web/course.html


Creating a many-body wave function
• A many-body wavefunction (i.e. a wavefunction describing many nucleons at once [a.k.a. a nucleus]) is 

constructed by taking the product of many single-particle wave functions
Ψ 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,⋯ ,𝑑𝑑 = 𝜑𝜑𝑎𝑎(1)𝜑𝜑𝑏𝑏(2)𝜑𝜑𝑐𝑐(3)⋯

• But, any old product won’t work. The wavefunction for fermions must be antisymmetric,
meaning the wavefunction is mirrored if it is reflected on an axis

• The way to assure this is with a Slater determinant

Ψ 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,⋯ ,𝑑𝑑 =
1
𝐴𝐴!

det
𝜑𝜑𝑎𝑎(1) ⋯ 𝜑𝜑𝑎𝑎(𝐴𝐴)
⋮ ⋱ ⋮

𝜑𝜑𝑁𝑁(1) ⋯ 𝜑𝜑𝑁𝑁(𝐴𝐴)
where 𝑎𝑎, 𝑏𝑏, etc. are single particle states and 1,2, etc. are nucleons

• So for 2 particles, Ψ = 1
2
𝜑𝜑𝑎𝑎(1) 𝜑𝜑𝑎𝑎(2)
𝜑𝜑𝑏𝑏(1) 𝜑𝜑𝑏𝑏(2) = 1

2
𝜑𝜑𝑎𝑎 1 𝜑𝜑𝑏𝑏 2 − 𝜑𝜑𝑏𝑏(1)𝜑𝜑𝑎𝑎(2)

• Note that if any two rows or columns are the same, their contribution to the determinant 
vanishes

• I.e. two particles can’t occupy the same state (identical rows) or place (identical columns), 
enforcing the Pauli principle 11



Creating a many-body wave function
• The slater determinant we just constructed is the many-body wavefunction for a single 

combination of single particle states. In principle we could have had a different set of single-
particle states occupied (e.g. from an excitation) and therefore had a different wavefunction

• Each slater determinant is one state in a basis of states, which are all orthonormal
(basically, perpendicular in multiple dimensions and with unit length).
• For example, in a spherical basis, each state would correspond to one 𝑛𝑛, 𝑙𝑙,𝑚𝑚𝑙𝑙
• Bringing spin-orbit coupling in the picture, one state is specified by 𝑛𝑛, 𝑙𝑙, 𝑗𝑗,𝑚𝑚𝑗𝑗

• Writing each Slater determinant as ψ𝑖𝑖, a many-body wavefunction would be described by some 
combination of these, Ψ = ∑𝑖𝑖 𝑐𝑐𝑖𝑖ψ𝑖𝑖

• Occupying each single-particle state up to the Fermi level provides the ground-state ψ0,
where 𝑐𝑐0 ≡ 1

• Ψ and the associated 𝐸𝐸 are found by solving the matrix equation ∑𝑖𝑖𝑗𝑗 ψ𝑗𝑗|𝐻𝐻|ψ𝑖𝑖 𝑐𝑐𝑎𝑎 = 𝐸𝐸𝑐𝑐𝑏𝑏
• Solving such a matrix is a mathematical feat.

To do this, you want to diagonalize the matrix and apparently one such technique is the 
Hartree-Fock method. Feel free to read about it and teach the rest of us!
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Exponential growth & the need for truncation
• You may have realized a problem looming on the horizon of this method of solving the many-

body wavefunction. There is a lot of ways to arrange 𝑁𝑁 nucleons among 𝑛𝑛 single-particle states

• The number of Slater determinants which can be constructed is 𝑛𝑛!
𝑛𝑛−𝑁𝑁 !𝑁𝑁!

• Recall that the number of single particle states encompassing a harmonic oscillator shell 𝑛𝑛𝑟𝑟 is 
2(2𝑙𝑙 + 1) states (two spin-1/2 particles for 2𝑙𝑙 + 1 angular momentum projections) for 𝑙𝑙 = 𝑛𝑛𝑟𝑟 − 1,𝑛𝑛𝑟𝑟 −
3, … ≥ 0

• So, including states through the 𝑝𝑝𝑝𝑝 shell (i.e. through 𝑛𝑛𝑟𝑟 = 4, if we start counting at 1) is 40 states
• For this case, considering the 8 neutrons of 16O results in ~109 Slater determinants
• Multiplying this by the number of proton Slater determinants results in 1018

(For context, ~1017 seconds have elapsed since the Big Bang) 

• Tricks exist for solving eigenvalues for large matrices, but the best methods available at the 
moment are limited to dimensionalities of ~1010 (Lecture Notes (M. Jorth Jensen))

• As such, choices need to be made as to which single-particle levels can be left out without 
doing too much damage to the calculation results, which is known as truncation.
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http://nuclearstructure.github.io/PHY981/doc/web/course.html


Putting it all together
• To perform a shell model calculation, one must:

1. Calculate single-particle states by
a) Choose a nuclear potential…. typically a Woods-Saxon
b) Choose a basis …. typically states defined by quantum numbers 𝑛𝑛, 𝑙𝑙, 𝑗𝑗,𝑚𝑚𝑗𝑗

2. Construct a many-body basis
a) Choose the states to include (i.e. truncation) (a.k.a. valence space) …typically a core is 

“frozen” and a cut-off is chosen based on single-particle energies or the number of 
allowed particle-hole excitations

b) A matrix of all possible Slater determinant combinations (sandwiching the Hamiltonian) 
is constructed

3. Solve the matrix equation for the eigenfunctions and eigenvalues,
resulting in discrete state wavefunctions and energies

4. Take things a step further by then calculating wavefunction overlaps, which you’ll recall are 
essential ingredients in calculating transition rates (e.g. for β and γ decay)
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Further Reading
• Lecture Notes in Nuclear Structure Physics (B.A. Brown)
• Chapter 4: Nuclear Structure from a Simple Perspective (R. Casten)
• “How To Develop A Shell Model Code”, MSU PHY981 Lecture Notes (M. Jorth Jensen)

15

https://people.nscl.msu.edu/%7Ebrown/Jina-workshop/BAB-lecture-notes.pdf
http://nuclearstructure.github.io/PHY981/doc/web/course.html
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