Lecture 10: Fission

*Conceptual process
*Fissionability
*Decay rate

*Decay branching

* Mass distribution
*Kinetic energy
*Neutrons
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Steps of fission

1. A nucleus becomes deformed either due to an external
perturbation that brings in energy or an internal cluster rattling
around within the potential well

The energy is absorbed as a collective excitation that manifests
itself as a drastic shape change, elongating the nucleus into a
peanut shape

. The separation of the two lobes of the peanut becomes great
enough that the two repel each other, splitting apart at the
scission point

The coulomb repulsion accelerates the two fragments apart

5. The two fragments are each highly excited and de-excite initially

via neutron emission, followed by y emission
(meaning prompt neutrons will be emitted along the direction of the fragments)

The neutron-rich fragments will then B decay back to stability,
possibly emitting delayed neutrons via B-delayed neutron
emission

Why do you figure there is
neutron emission at first and

finally only v emission? nucleus, while the y doesn’t.
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Lifetima dapends cn
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A massive particle is better suited to remove the large angular
momentum present in high-lying excited states.
At lower excitation energies, a particle has to tunnel out of the
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Energetics of shape change: Liquid drop picture

Recall the contributions to the bindi 0(%9. 558‘ S
ecall the contributions to the binding energy a0 Q.0.0
from the semi-empirical mass formula 0000 @000 @NO
*\What happens if we deform the nucleus? C?,C.)m. OSQ. %%b Asymmetry

*\/olume will be conserved, A-Z stays the same,

paired nucleons stays the same... v -
*But, the surface will be enlarged and 0
the charges within the nucleus will spread apart |

!
*In this picture, deformation will increase the binding energy penalty from the surface term,
but decrease the binding energy penalty from the coulomb term

*So to understand what happens to the overall binding energy when the nucleus is deformed,
we need to understand how these two terms evolve under deformation

*The change in binding energy will be AE = BE¢inq; — BEinitia1 = (E¢ + Es") — (E. + E),
where the primed terms include the modification to coulomb and surface terms under
deformation, i.e. transforming from a sphere to an ellipsoid



Energetics of shape change: Liquid drop p/cture

 For the deformed shape, which is an ellipsoid in this picture,
the nuclear radius can be parameterized as an expansion

in terms of Legendre polynomials —
[which for axial symmetry will only keep the | = 2 term] __
Y R(Q) — Ro[l _I_ azpz (COSQ)] B.R. Martin, Nuclear and Particle Physics (2009)
* @, is the quadrupole distortion parameter, which is related to the quadrupole deformation b

a; = |2mpP,, and the ellipsoid axes by: a = Ry(1 + a3) , b = Ry Ji+a;

e |t turns out, expanding the Coulomb and surface energy terms as a power series in a, yields
~ 2 ~ 2/3 2
°E£~ac VEVE (1— 2) and E! = a.A% (1+§a2)

, _ 2 z* |
e Meaning the energy cost for deformation is AE = % 2a.A%/3|—|a, —7 )

: : A R
* So, when the/non-deformed Coulomb energy'is twice the'non-deformed surface energy'or
greater, there is zero energetic cost (or even an energetic gain) to deform (and ultimately fission!)

. . oy E ZZ Z2
* The fissionability parameter x = —= = e = /a

2
2Es 2as A (Z /A)critical

is @ measure of fission favorability



Energetics of shape change: Liquid drop picture

 What is the Z,A combination prone to fission? i.e. what is (ZZ/A) L.
” e critical
e For the liquid drop, we just defined it as a—s ...which, from our fit to masses is = 48
C

[that’s Z>116,A>270]
e Taking Loveland, Morrissey, & Seaborg’s word for it “a more sophisticated treatment”

yields (7%/,) = 50.8333 [1 — 1.7826 (%)2]

* Note larger fissionability (i.e. closer to (ZZ/A)

critical

) means a nucleus is more prone to fission

= L—"r""

critical

Z, number of protons

Known Mass in AME2012 z=38 ]

20 F LD fissionability, X=1 - z=20 N=50 g
LD fissionability, X=0.8 F Unknown
. LMS Eqn. 118 . _
0 50 100 150 200 = R — NNDC

N N=3



Fission barrier

* To quantify the probability of fission occurring, we can consider the
potential energy associated with a particular shape of the nucleus

 This potential energy is dominated by liquid drop energetics,

...but with a major correction for enhanced binding near closed shells

POTENTIAL ENERGY

...the magnitude of which is altered by the nuclear deformation

Hill & Wheeler, Phys. Rev. 1953 i

e So, the peaks and valleys
in potential energy space are
associated by the competition
between liquid-drop and
shell-model modified by
deformation

e The likelihood of transitioning from
one shape to another depends
on the energetic cost associated
with overcoming (or tunneling through)
the barrier between them
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Loveland, Morrissey, & Seaborg,
Modern Nuclear Chemistry (2006)
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Fission barrier height / Activation energy

e Quantitatively, the energy that must be paid
(or at least approached [tunneling]) IS an activation energy

* The more common parlance is to refer to the
fission barrier height (E; in the picture),
which is measured relative to the ground-state of the
original system, as quantified as a harmonic oscillator %ha)

)

e Rather than overcome the barrier, it is also possible to
tunnel through it, in which case the relevant quantity is the
barrier width

e This width will be related to the barrier curvature ho,
where a large curvature means a thin barrier (easier to tunnel

through) and a small curvature means a thick barrier (harder to
tunnel through)

i Overcoming the barrier (or overcoming part of it and tunneling through the top)
corresponds to induced fission, while tunneling through
the barrier corresponds to spontaneous fission

r_ B.R. Martin, Nuclear and Particle Physics (2009)
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Loveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006)



Fission barrier height

* |n a liquid drop estimate,
the fission barrier height is the difference

between the ground-state binding energy of

a system and the energy of two spherical
nuclei made by splitting that system

 Near the longest-lived isotopes of
Uranium and Thorium, E~5 — 7MeV

* Note this simple method yields one useful
prediction already:

e 235U has a much shorter fission barrier
height than 238U and so the
A = 235 isotope is more useful when a
lot of fission is what you’re looking for

o1

N. Bohr & J. Wheeler, Phys. Rev. 1939
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Calculating the fission barrier height ey har

* The rough estimate is B = Esgqq1e — Egs, Where E is the ground-state mass of the fissioning

nucleus and Esqqq;e is the energy of the system when it is at the saddle-point in the potential
energy landscape (i.e. the scission point)

...s0 we would need to calculate energy of the system versus deformation for lots of cases,
which is a pain.
Luckily Myers & Swiatecki (Phys.rev.c 1999) performed fits for nuclei with 30.0 < x < 48.5:

. Bf(N,Z) =S(N,Z)F(x) [MeV],
2

where S(N,Z) = (N + 2)2/3( — ) with k = 1.9 + (Z — 80)/75

is clearly inspired by the surface energy with some regard for asymmetry
_ —x)3 i <x<
and F(x) = 0.000199749(x, — x) if X S XS Xo
0.595553 — 0.124136(x —x;) if30<x <x;

is clearly from an act of desperation

E.g. B{(**U)=4.4 MeV, B/(*3°U)=4.5 MeV, B(?33Th)=6.2 MeV Shell corrections aren’t

4.9,5.0,5.5 included here and can be
~1MeV order corrections

with x; = 34.15, x, = 48.5428

From FRDM (Mvoller et al. PRL 2004, PRC 2009):
data quoted in FRDM papers: 5.5, 5.7, 6.2



Fission barrier heights are difficult to pin-down

Theoretical estimates are sensitive to
the adopted nuclear mass model
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oveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006)

Spontaneous fission rate

e Spontaneous fission is akin to a decay (or proton or cluster decay, for that matter), f
where a barrier is “assaulted” at some rate and there is probability N
for tunneling through the barrier ~ Y \

* Here, the difference is that the potential is not from the nucleus, but rather the potentiral
energy surface for the landscape of possible shapes.
The nucleus itself is tunneling through the barrier.

In(2)
fP
e f corresponds to the rate at which the nuclear shape is changing,
i.e. the frequency of surface oscillations, which is ~10%%s ™1 (uill & wheeler, phys. Rev. 1953)

°ti, = , Where f is the assault frequency and P is the tunneling probability

 This also gives us hw from AEAt = h, with hw = AE = h/t~hc/tc~0.5MeV

' " hw=0.5MeV ——
* For the simplest case of a one-humped barrier, Cep S = oey —— -

approximated as a inverted parabola, < wf
(due to the liquid-drop +single particle potential for deformation, See Lec. 4), s T
the tunnelinlg prObablllty IS (Hill & Wheeler, Phys. Rev. 1953) § ::
— Extremely sensitive to |
1+exp(2nEf/hw) predictions of E; and hw L
.50 practically speaking w0

“« ~ -21 ” . . ' : : : : :
*So, Ly, = 10 exp(ZnEf / ha)) this formula is useless ' l ¥ arier Hetght MeV) : )



Spontaneous fission rate

* The height of the fission barrier is related to the
fissionability parameter x (recall x~1, i.e. 72/A~48, means fission immediately)

* So without resorting to fancy calculations of Er and hw,
the half-life for spontaneous fission can be estimated empirically

Hill & Wheeler, Phys. Rev. 1953

e But this method is extremely rough o S
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Fission decay branching ratio

e Fission is a means of de-excitation and, as such,

o, and other
de

N. Bohr & J. Wheeler, Phys. Rev. 1939

FEE

rees of freedom

competes with other decay modes

e Recall, the lifetime of an excited state can instead
be specified in terms of a widthI' = h/Tt = hA

e The fraction of decays proceeding through fission is

_ i _ Ly
BR; = = )
Zmodes I'mode I‘f'|'Fn"‘Fy"‘ra"‘rother c.p.
where the I are related to the density of final states
available for that decay mode and the probability

for transitioning from the initial to final state
(e.g. tunneling probability for charged particles. See Lectures 5,7,9.)

Loveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006)

e When multi-neutron = e
emission channels :
open, the fission
Cross section -

actually goes up! I . " n |
[27, 39 ...chance fission] Eneray cfneutrons (MeV)
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Modern Nuclear Chemistry (2006)



Fission decay branching ratio

* Since neutrons have no Coulomb barrier to tunnel through and can
generally carry away more angular momentum than vy rays, the

10,000

neutron decay branch is the primary competition for fission 1000

* The probabilities for neutron emission and fission are roughly given by
a Boltzmann distribution, Pr « exp(—B;/T) and P, « exp(—B,/T),
so the ratio of neutron emission to fission is « exp(By — B, /T)

 Higher excitation energies E* = Ey; + Q corresponds to higher T.
At higher T, more of the phase space is sampled evening-out the
competition between n-emission and fission. E.g. if n-emission is  Tn/Tt
more likely, increasing E* makes fission more competitive

e Exact calculations involve detailed statistical model calculations,
so the figure on the right can be used for a rough estimate

e E.g. 238U bombarded by a 42MeV a

«E* = 42@ + (ME(U238) + ME(a) — ME (Pu242))c? = 36.3MeV

. Bn(Pu242) = (ME(Pu241) + ME(n) — ME(Pu242))c? = 6.3MeV
* Ef(Pu242) = 3.3MeV [From Myers & Swiatecki PRC 1999 fit]

*E* — B, =30MeV; Ef — B, = -3 —>F ~0.5
f
»... so fission occurs 2/3 of the time for this case

(actual answer [J. Wing et al. Phys Rev 1959] is ~80% of the time)

100

Vandenbosch & Huizenga, Nuclear Fission (1973)

Ei—B,=1




The fission decay branching ratio is of interest for r-process
nucleosynthesis and “fission recycling”
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Fission fragment mass distribution

e To first order, the fission fragments will be those that

maximize the total energy release
[which can be estimated from the liquid drop model]

* This would always result in a case of a symmetric

distribution of the matter

e However, often the observed
mass distributions are instead

guite asymmetric:

e The individual fragments

approximately maintain the
original A/Z (because neutrons

and protons separate in the same way),

but often high-A
and low-A4 peaks exist
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100;
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Fission fragment mass distribution

e The culprit for the asymmetric mass distribution
are the Z = 50, N = 82 shell closures,
which favors nuclei in this range for one of the
fission fragments.

* The other fragment has the remainder of most of _ ..-
the rest of the nucleons I,L.-f
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Fission fragment mass distribution, Examples

235U induced fission (thermal neutrons)

252Cf spontaneous fission

Z, numbker of protons

Z=SIIJ

=2 1

Z=2IIJ

N=g

N=20

“M=28

N=50

MN=126

probability
=1 ooe-1]J1 00E-2
[l 1.00E-3 1.00E-4
1.00E-5  1.00E-6
1.00E-7 = 1.00E-8
1.00E-9 [l1.00E-11
[l 1.00E-13]J=1.00E-15
unknown

-

N, number of neutrons

L

Z, numhker of protons

=28 |

I=8:‘!

Z=SIIJ

o N=82

Z=2l|3

N=126

probability
l=1.00e-1]J1.00E2
[l 1.00E-3 [1.00E4
1.00E-5  1.00E-6
100E-7 = 1.00E-8
1.00E-9 [J1.00E-11

[l 1.00E-13[J<1.00E-15
unknown

N, number of neutrons .
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Fission fragment mass distribution

*However, the signature of the closed shells is erased if the symmetric fragment distribution is
too far from the shell closure...

o...0r if the excitation energy of the fissile nucleus is high (e.q. from a high-E incoming neutron)
.
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Induced-fission fragment mass distribution is independent
of what did the inducing (“the Bohr Hypothesis”)

we'll revisit this in the Statistical Reactions lecture

10
E ’ .]. s ¢ i ;
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J. Silano et al. EPJWebConf 2020



Modern fission fragment calculations:

Random Wa/k in a Shape_based energy Space Five Essential Fission Shape Coordinates

258
Fm (skm*)

e
45 Q, ~ Elongation (fission direction)
@
1880 35 o, ~ (M1-M2)/(M1+M2) Mass asymmetry
= ®
15 g, ~ Left fragment deformation
®
-1850 15 &, ~ Right fragment deformation
@
-1900 J. Randrup 1D d - Neck —
= 5315 625 grid points - 306 300 unphysical points
i = 5009 325 physical grid points
1910
-1920
-1930
-1340
-1950

Schunk & Robledo, Rep.
Prog. Phys. (2016)

This walk is extremely sensitive to the nuclear
temperature, which factors into the probability of
taking a given step: P~exp(-AU/T)



http://dx.doi.org/10.1088/0034-4885/79/11/116301

Modern fission fragment calculations:
Random walk in a shape based energy space

Randrup I\/IoIIer &Slerk PRC 2011
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a0
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Fission fragment mass distribution, systematics

Calculated with FRLDM
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Why care about the fragment distribution?
r-process fission “recycling” & kilanova light curves

The kilanova light curve is powered by radioactive
126 heating. Amount of heating and heat deposition
- efficiency varies by type of heating:

Alpha-decay.

Stable nuclei

r-process
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Fission fragments: kinetic energy

* The total kinetic energy of fission products will roughly be the coulomb repulsion energy of the
two main fission fragments,

Z1Z>ah
e TKE = 11 /éa C1 73 ..where r,=1.8fm is used instead of 1.2 because of the strong deformation at scission
1.8(4;°+43"°)
e E.g. 240Pu
d A/Z ~ 2.55. |thigh = 50, Nhigh = 82, then ZlOW =94 — 50 = 44‘, NlOW = 240 — 132 — 44 = 64
e TKE = — 020 178Mev

1.8(1321/3+1081/3)

Schunk & Robledo, Rep. Prog. Phys. (2016)
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http://dx.doi.org/10.1088/0034-4885/79/11/116301

Fragment de-excitation & neutron emission

* The total excitation energy is obtained from energy

P. Jaffke et al. PRC 2018
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" ¢ Boldeman, 1971 Dyachenko, 1969

conservation, TXE = [Ecm + B, + Qf] — TKE, where " ¥ Gotk2017  --- Straede 1987 -
. i === Simon,
the Q-value plus any reaction energy can pay for the sF Baba, 1997

--- Zeynalov, 2006
Mboller, 2015
Sierk, 2017
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fragment kinetic energy and to unbind a neutron
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e Typically TXE is several, up to tens of, MeV
* A rough estimate is that ~10Mel/ of

bJ
T

[y
TTT

Average Total Neutron Multiplicity 7y (n/f

EXCitation energy iS remOVEd from Y Loveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006) 0 E._“U.L‘I(ln‘tk.“f)l N I I |. 4
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associated v emission, and o)
the rest is for neutrons

e |t takes ~5MeV to create 1 neutron,
so a few neutrons are emitted .
per fission

e Deviations from the linear trend with  z;
mass (b/c TXE is higher with A) Vd
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L. Snoj et al. Nucl. Eng. & Design (2012)

Fission neutrons kinetic energy

(a) — IRDF-2002
. % — Maxwell .
 Neutrons are emitted from the nearly fully accelerated fission 2oy 22Cf - Madenan
fragments and so are emitted along the direction of the fragments 5 os E’c
e The neutron kinetic energy (typically ~2MeV) is just described E DGJ 3
by a Maxwell-Boltzmann distribution, because the nucleus : il
is “evaporating” neutrons ; ) _i
P(KE,) = KE,exp(—E, /kgT) o2t B
* Transforming into the lab frame, the result is the Watt fission K ; t : __H 6
spectrum, N

%)

P(KE,) = exp(—KE, /kgT)sinh (\/4EnEf/(kBT)2>,Where E,
and Ef are the laboratory neutron and fission fragment energies in

,8E* .
MeV/uand T = s the nuclear temperature

Difference in Neutron spectrun (%

e Parameterized forms of the Watt fission spectrum, with the

_50—— Maxwell/lRDF2002 {._—Iﬂ_l‘

associated parameter values for a given fission fragment are — LANL-Madiand/RDF2002 ~ *— "1

—60——— Watt/| Il:IDFQODE |

available. E.g. in the appendix of the MCNP user manual 0 5 0 15 20
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Fission fragment angular distributions

* Induced fission is slow enough that the nucleus reaches
statistical equilibrium

e This results in an angular distribution of fission fragments
that is symmetric about 90° in the center of mass,
where 90° marks the plane perpendicular to the direction
of motion of the fissioning system.

e This is because forward and backward angles maximize the
amount of angular momentum the fragments carry away.
Prior to scission, the fissioning nucleus will be highly excited
relative to the absolute ground state, and higher excitations
correspond on average to larger angular momenta.

 The proper formula for the angular distribution is
complicated and related to the deformation of the

fissioning nucleus
[See Loveland, Morrissey, & Seaborg]

* From momentum conservation, we know that the
fragments themselves are emitted 180° apart (in the CM),
which is handy for gating on fission events in reaction-
induced fission studies

Relative {d“"fd“’lc.m,
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G. Gordon et al. Phys. Rev. 1960
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Further Reading

e Chapter 11: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)
e Chapters 2 & 9 : Nuclear & Particle Physics (B.R. Martin)
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