Homework 4

Due: Start of class, October 12th

- 1. Suppose the 6.917MeV state of ¹⁶O is populated by ¹²C(α , γ). This 2⁺ state primarily decays to the 0⁺ ground state, but also decays to the 6.049MeV 0⁺ first excited state and the 3⁻ state at 6.129MeV.
 - a. Through what decay types *El*, *Ml* could these decays occur? List each separately.

b. For the transition to the ground state, estimate $t_{\frac{1}{2}}$. Compare to the NNDC.

c. Calculate the internal conversion coefficient α assuming a K-orbital electron ejection for the transition from the 2⁺ state to the ground state.

d. Calculate $t_{\frac{1}{2}}$ for the transition between the first excited state and the ground state. Compare to the NNDC value. Why is your prediction so far off?

2. Suppose ${}^{12}C(\alpha,\gamma)$ instead populates the 8.872MeV 2⁻ excited state, it then decays by an *E*1 transition to the 2⁺ excited state at 6.917MeV, which then decays to the 0⁺ ground state. What would the angular distribution look like for the 2nd γ -ray when using the 1st γ -ray as the reference axis? Plot it.

Then plot the case where the 2^{-} state instead decays via *M*2 to the 2^{+} state, followed by a decay to the ground-state.

3. Which nucleus would generally have higher kinetic-energy fission fragments, ²⁵²Cf or ²³⁵U? What's the ratio of *TKE*? Keep in mind the shell effects on the fragment mass distributions.

4. Suppose I want to constrain the fission barrier height for a nucleus by measuring the neutron/fission decay branching ratio from a beam-induced reaction. Would I be better served by choosing a higher beam energy or lower beam energy? (Assume the lowest beam energy is still sufficient to induce fission and populates an excitation energy above the neutron binding energy)