Homework 4

Due: Start of class, October 5th

- 1. Suppose the 5.305MeV state of ⁴⁴Ti is populated by ⁴⁰Ca(α,γ). This 5⁻ state has been observed to primarily decay to the 2⁺₁ state at 1.083MeV.
 - a. Through what decay types *El*, *Ml* could this occur?

b. For the lowest multipoles of each transition type, estimate $t_{\frac{1}{2}}$. Compare to the NNDC.

c. Calculate the internal conversion coefficient α assuming a K-orbital electron ejection for these two cases

d. Calculate $t_{\frac{1}{2}}$ for the hypothetical transition between the 5.305MeV 5⁻ state and the 5.250MeV 5⁻ state.

Suppose ⁴⁰Ca(α,γ) instead populates the 6.606MeV 2⁺ excited state, it then decays by an *E*2 transition to the 2⁺ excited state at 2.530MeV, which then decays to the 0⁺ ground state. What would the angular distribution look like for the 2nd γ-ray when using the 1st γ-ray as the reference axis? Plot it.

3. Since $dE_f/dx \approx 10 MeV$, a standard estimate for the barrier curvature is $\hbar\omega=0.5$ MeV, and the spontaneous fission half-life for ²³⁵U is $3.5 \times 10^{17} yrs$, what is the spontaneous fission half-life for ²⁴⁰Pu? Compare to the experimental value of $1.2 \times 10^{11} yrs$.

4. In class, we found fission was the decay branch 25% of the time for a 42MeV α on ²³⁸U. What would the fission decay branch be for a 42MeV neutron on ²³⁸U? (Use $E_f(^{239}U) = 5.8MeV$)