Homework 3

1. A year ago, you started keeping a lucky radioactive coin in your pocket, because that's what cool people do. When you go it, you noticed you had almost a mole $\left(\approx 6 \times 10^{23}\right)$ of some type of nucleus in it. Today, you've noticed a third of your lucky nuclei have decayed to something else. What is the half-life (in years) of the nuclide that makes up your lucky coin?
2. An old-timey lantern mantle has $\sim 27 \mathrm{nCi}$ of activity from ${ }^{232} \mathrm{Th}$. What mass of ${ }^{232} \mathrm{Th}$ is this?
3. You want to use ${ }^{131} \mathrm{I}$ for targeted treatment of thyroid cancer, since these tumors are partial to absorbing iodine and the low-energy β s tend to stop in the cancerous tissue. To create it, you created a lot of ${ }^{131} \mathrm{Te}$ in a very short time by irradiating ${ }^{130} \mathrm{Te}$ in a high neutron-flux reactor. How many hours after you have created the ${ }^{131} \mathrm{Te}$ sample will you have the maximum amount of ${ }^{131} \mathrm{I}$?
4. Calculate the half-lives for α decay from ${ }^{235} \mathrm{U},{ }^{231} \mathrm{~Pa},{ }^{227} \mathrm{Ac},{ }^{223} \mathrm{Fr}$, and ${ }^{219} \mathrm{At}$, from the ${ }^{235} \mathrm{U}$ decay chain. Compare to the experimental values listed in NNDC.
Show your calculation for one case, but use a spreadsheet or program for the others.
5. Which of these nuclei ($\left.{ }^{144} \mathrm{Nd},{ }^{150} \mathrm{Nd},{ }^{190} \mathrm{Pt}\right)$ is unstable to α decay? Show this with calculations.
6. Derive and plot the valley of β stability $\left(Z_{\min } v s A\right)$ using the semi-empirical mass formula and your (or your friend's/enemy's) SEMF constants from Homework 1. Include known stable nuclei on the plot. Attach any code used.
7. Consider ${ }^{64} \mathrm{Cu} \beta$-decay. Plot the kinetic energy distribution of the electron using the β -Q-value and neglecting Coulomb distortion effects. Repeat this using the $\beta^{+} \mathrm{Q}$-value. Then determine how the most-probable kinetic energy changes for both cases after including (non-relativistic) Coulomb distortion effects. Attach any code used.
Note: You'll need to convert from $p^{2 *} d p$ to some function $f(K E)^{*} d K E$. For this, recall from relativity $E=\sqrt{p^{2} c^{2}+m_{0}^{2} c^{4}}=T+m_{0} c^{2}$. It will be helpful to determine $d T / d p$.
8. Estimate $\log (\mathrm{ft})$ for electron-capture onto ${ }^{23} \mathrm{Na}$ using the table from Singh et al. Nuclear Data Sheets 1998 and separately using the Moszkowski (Phys. Rev. 1951) nomograph.
Compare your answers with the experimental value of 5.09.
