Homework 3

Due: Start of class, September 28th

 It is estimated that Yucca Mountain will have volcanic activity roughly once every 100 Myr. 100 Myr from now, how much of the original ²³⁸U will be left? What about ²³⁵U? ²³³U?

2. A household ionization-type smoke detector has $\sim 1\mu$ Ci of ²⁴¹Am. What mass of ²⁴¹Am is this?

3. You want to use ¹³¹I for targeted treatment of thyroid cancer, since these tumors are partial to absorbing iodine and the low-energy βs tend to stop in the cancerous tissue. To create it, you created a lot of ¹³¹Te in a very short time by irradiating ¹³⁰Te in a high neutron-flux reactor. How many hours after you have created the ¹³¹Te sample will you have the maximum amount of ¹³¹I?

 Calculate the half-lives for α decay from ²³⁵U, ²³¹Pa, ²²⁷Ac, ²²³Fr, and ²¹⁹At, from the ²³⁵U decay chain. Rank the half-lives and compare to the experimental ranking. Show your calculation for one case, but use a spreadsheet or program for the others.

5. Three nuclei have the state energies and J^{π} below. If nucleus A were able to α -decay to nucleus B, would you expect this to have a shorter or longer half-life than if nucleus A were instead able to α -decay to nucleus C? Why?

Nucleus	Energy [keV]		
	0+ g.s.	1st 2+	1st 4+
Α	0	250	500
В	0	500	1000
С	0	250	830

6. Derive and plot the valley of β stability (Z_{min} vs A) using the semi-empirical mass formula (and your SEMF constants from Homework 1). Attach and code used.

 Consider ⁶⁴Cu β-decay. Plot the kinetic energy distribution of the electron using the β⁻ Q-value and neglecting Coulomb distortion effects. Repeat this using the β⁺ Q-value. Determine the new mean kinetic energies for both cases after including (non-relativistic) Coulomb distortion effects. Attach any code used.

8. Estimate log(ft) for electron-capture onto ²³Na. Compare to the experimental value of ~3.7.