1. Which of the following reactions are possible without non-standard model physics? For invalid reactions, indicate what the issue is.
a. ${ }^{69} \mathrm{Kr} \rightarrow{ }^{69} \mathrm{Br}+\mathrm{e}^{+}+v_{\mathrm{e}}$
b. ${ }^{44} \mathrm{Ti}(\alpha, p){ }^{48} \mathrm{Cr}$
c. $\mathrm{e}^{-}+{ }^{55} \mathrm{~S} \mathrm{c} \rightarrow{ }^{55} \mathrm{Ca}+\bar{v}_{\mathrm{e}}$
d. ${ }^{15} \mathrm{O}(\alpha, \gamma){ }^{19} \mathrm{Ne}$
2. Smoke detectors work by monitoring the current generated from ${ }^{241} \mathrm{Am} \alpha$ decay.

When this material finally stops undergoing radioactive decay, what will it mostly become? Write the dominant decay sequence.
3. There is a stable isotope of each element within $Z=1-82$, except Pm and what other element?
4. ${ }^{11} \mathrm{Li}$ has an rms radius of 3.5 fm . What mass-number A would you predict from this radius given the empirical formula for matter radii? What rms radius would you predict for $\mathrm{A}=11$ ?
5. Calculate the Q -values for the reactions ${ }^{44} \mathrm{Ti}(\alpha, \gamma),{ }^{44} \mathrm{Ti}(\alpha, \mathrm{p})$, and ${ }^{44} \mathrm{Ti}(\alpha, \mathrm{n})$. Show your work.
6. A table of experimental binding energy per nucleon as compiled in the 2012 Atomic Mass Evaluation has been provided.
Fit these data using the 5-parameter liquid drop model and report fit-parameter values. (Don't forget to report the fit-function to give the parameters context!)
Attach to this homework a plot of the fit residuals as a function of neutron number and, separately, as a function of proton number, as well as a copy of the code used to perform the fit (e.g. ROOT, gnuplot, Mathematica).
7. An optical potential describing the interaction of a projectile and target nucleus typically has the form $\mathrm{V}(\mathrm{r})+i \mathrm{~W}(\mathrm{r})$. Since this potential generally describes the interaction between a tiny projectile and the distribution of nucleons in a nucleus, what is a plausible functional form for the radial dependence of V and W ? I.e. if $V(r)=-V_{o} f(r)$, what is $f(r)$ ?
8. Calculate the experimental binding energy difference between ${ }^{15} \mathrm{~N}$ and ${ }^{15} \mathrm{O}$.

Assuming this is due to the Coulomb term of the SEMF, what radius corresponds to $\mathrm{A}=15$ ?
Note that compared to a point-charge, a uniformly charged sphere has $\mathrm{U}_{\text {sphere }}=(3 / 5) \mathrm{U}_{\text {point. }}$.
Compare this to the usual approximation for the nuclear radius (using $r_{0}=1.2 \mathrm{fm}$ ).

