1. Which of the following reactions are possible without non-standard model physics? For invalid reactions, indicate what the issue is.
a. ${ }^{69} \mathrm{Kr} \rightarrow{ }^{69} \mathrm{Br}+\mathrm{e}^{+}+\bar{v}_{\mathrm{e}}$
b. ${ }^{44} \mathrm{Ti}(\alpha, \mathrm{p}){ }^{48} \mathrm{Cr}$
c. $\mathrm{e}^{-}+{ }^{55} \mathrm{Sc} \rightarrow{ }^{55} \mathrm{Ca}+v_{e}$
d. ${ }^{15} \mathrm{O}(\alpha, \gamma){ }^{19} \mathrm{Ne}$
2. Suppose I were to start with pure ${ }^{226} \mathrm{Th}$, what nuclide would I mostly wind up with? Write the dominant decay sequence.
Roughly how long would it take for half of the material to undergo this conversion? (Hint: This does not require complex math ...or even addition!)
3. There is a stable isotope of each element within $Z=1-82$, except Tc and what other element?
4. The plot below depicts experimentally measured binding energies per nucleon. The peak is located at ${ }^{58} \mathrm{Fe}$, meaning this is the lowest energy state for nuclear matter. Why isn't everything around you (including yourself) made of ${ }^{58} \mathrm{Fe}$?

From B. Alex Brown, Lecture Notes on Nuclear Structure Physics, 2005
5. Calculate the Q -values for the reactions ${ }^{12} \mathrm{C}(\alpha, \gamma),{ }^{12} \mathrm{C}(\alpha, \mathrm{p})$, and ${ }^{12} \mathrm{C}(\alpha, \mathrm{n})$. Show your work.
6. A table of experimental binding energy per nucleon as compiled in the 2012 Atomic Mass Evaluation has been provided.
Fit these data using the 5-parameter liquid drop model and report fit-parameter values. (Don't forget to report the fit-function to give the parameters context!)
Attach to this homework a plot of the fit residuals as a function of neutron number and, separately, as a function of proton number, as well as a copy of the code used to perform the fit (e.g. ROOT, gnuplot, ... script).
7. An optical potential describing the interaction of a projectile and target nucleus typically has the form $\mathrm{V}(\mathrm{r})+\mathrm{iW}(\mathrm{r})$. Since this potential generally describes the interaction between a tiny projectile and a distribution of nucleons in a nucleus, what is a plausible functional form for the radial dependence of V and R? I.e. if $V(r)=-V_{o} f(r)$, what is $f(r)$?
8. What impact would deformation have on the terms in the semi-empirical mass formula?

