Names:		

Group Activity 7

Due: In class, September 14th

1. Three nuclei have the state energies and J^{π} below. If nucleus A were able to α -decay to nucleus B, would you expect this to have a shorter or longer half-life than if nucleus A were instead able to α -decay to nucleus C? Why?

	Energy [keV]			
Nucleus	0+ g.s.	1st 2+	1st 4+	
Α	0	250	500	
В	0	500	1000	
C	0	250	830	

2. What's the kinetic energy of the α emitted from ^{146}Sm ?

3. Assuming a typical value for the α preformation factor and similar assault frequencies and tunneling probabilities, estimate the branching ratio of ¹⁴C decay to α decay for ²²²Ra. Compare this to the decay branching listed by the NNDC.