Group Activity 6

Due: In class, September 14 ${ }^{\text {th }}$

1. A year ago, you started keeping a lucky radioactive coin in your pocket, because that's what cool people do. When you go it, you noticed you had almost a mole ($\approx 6 \times 10^{23}$) of some type of nucleus in it. Today, you've noticed a third of your lucky nuclei have decayed to something else. What is the half-life (in years) of the nuclide that makes up your lucky coin?
2. You're desperate to get your hands on as much of nucleus 2 as you can, but you have a deadline. You decide to make 2 , which has a decay constant λ_{2}, using the reaction $1 \rightarrow 2$ with the rate R_{12}. How many half-lives will it take to make 50% of the maximum possible amount of nucleus 2? What about 75% ? 90% ? 99% ?
3. You were talked into partaking in a heist of a priceless piece of artwork. To get top dollar, you need to prove the painting is an original by showing it has the right age. You have determined the ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ ratio is 1.1×10^{-12} for a 1 mg sample. Since you know the pre-nuclear era specific activity of ${ }^{14} \mathrm{C}$ is $2.27 \times 10^{-4} \mathrm{~Bq} / \mathrm{mg}$, how old is your sample? In other words, did you get talked into violating Section 668 of Title 18 of the US Code for nothing!?
