**Group Activity 1** 

Due: In class, August 26th

- 1. Which of the following reactions are possible without non-standard model physics? For invalid reactions, indicate what the issue is.
  - a.  ${}^{137}Cs \rightarrow {}^{137m}Ba + e^{-1}$
  - b.  ${}^{12}C(\alpha,\gamma){}^{16}O$
  - c.  ${}^{144}Sm(\gamma, \alpha){}^{140}Nd$
  - d.  ${}^{126}\text{Te}(n,\gamma){}^{127}\text{I}$
- Suppose I were to start with pure <sup>226</sup>Th, what nuclide would I mostly wind up with? Write the dominant decay sequence using the NNDC primary decay mode as a guide. Roughly how long would it take for half of the material to undergo this conversion? (Hint: This does not require complex math ...or even addition!)

- 3. What is the element with the highest-mass stable nuclide with N=Z?
- 4. What is the element with the highest-mass stable nuclide with Z>N?
- 5. This depicts experimentally measured binding energies per nucleon. The peak is located at <sup>58</sup>Fe, meaning this is the lowest energy state for nuclear matter. Why isn't everything around you (including yourself) made of <sup>58</sup>Fe?



From B. Alex Brown, Lecture Notes on Nuclear Structure Physics, 2005