Names:	
Names:	

Group Activity 18

Due: In class, November 18th

1. In the *s*-process, the neutron density is $\sim 10^7 {\rm cm}^{-3}$. Using a typical (n, γ) reaction rate $\langle \sigma v \rangle_{n,\gamma} \sim 10^{-16} \frac{{\rm cm}^3}{s}$, calculate the typical time for neutron-capture to occur. Then, calculate the neutron density required for an *r*-process to occur which reaches nuclides with $\tau_{\beta} \sim 1ms$.

2. In a type Ia supernova, at least one (mostly carbon) white dwarf burns (mostly) via $^{12}\text{C}+^{12}\text{C}$ fusion. How much energy is released? Compare this to a typical white dwarf binding energy $U = \frac{3}{5}G\frac{M^2}{R} \sim G\frac{M_{\odot}^2}{R_{\oplus}} \sim 10^{51}\text{erg}$, noting that $1\text{MeV} \sim 10^{-6}\text{erg}$.