Names:				

Group Activity 16

Due: In class, November 7th

Suppose we're interested in the statistical properties of ⁹⁶Tc. We want to study these at the Edwards Accelerator Laboratory, where we'll choose to stick with *α*, *p*, and/or *d* beams. What reactions can we use to study ⁹⁶Tc level density? For any of these reaction probes, where should we place our detectors and why? Which reaction would be our best bet to determine the level-density and ⁹⁶Tc spin-cutoff parameter? Why?

94Tc 293 M	95Te 20.0 H	96Tc 4.28 D
s: 100.00%	s: 100.00%	s: 100.00%
93Mo 4.0E+3 Y 8: 100.00%	94Mo STABLE 9.15%	95Mo STABLE 15.84%
92Nb 3.47E+7 Υ ε: 100.00% β- < 0.05%	93Nb STABLE 10075	94Nb 2.03E44 Y β-: 100.00%

2. How does the required measurement precision change for high-A nuclides (relative to low-A) if we want to determine the spin-cutoff parameter from a measurement of $\frac{d\sigma}{d\alpha}(\theta)$ using an (α, n) reaction?