Chapter 3

Propagation. of Uncertainties

" Most physical quantities usnally cannat be measured in a single direct measurement
but, are instead found in two distinct steps. First, we measure one or more quaniitics
that ¢an be measured directly and from which the quantity of interest can be calcu-
Jated. Second, we use the measured values of these quantities to calculate the guan-
tity of interest itself. For example, to find the area of a rectangle, you actually

. measnré its length [ and height /2 and then calculate its arca A as A = k. Similarly,

' th_e most obvious way to find the velocity v of an object is to measure the distance

' travéled" d, and the time taken, ¢, and then to calculate v as v = d/t. Any reader

* “with expérience in an introductory laboratory can easily think of more examples, In

" fact, a litile thought will show that almost all interesting measurements involve these

- two distinet steps of direct measurement followed by calculation.

S "Whel_i a measurement involves these two steps, the estimation of uncertainties

“also .iﬁvoivés two steps. We must first estimate the uncertainties in the quantities

Iﬁéasurcd directly and then determine how these uncertainties “propagate” through

_the ‘calculiations to produce an uncertainty in the final answer.! This propagation of

rrors is the main subject of this chapter.

n fact, examples of propagation of errors were presented in Chapter 2. In Sec-

ion 2.5, I discussed what happens when two numbers x and y are measured and the

_Lllfs'"'are used to calculate the difference g = x — y. We found that the uncertainty
1 18 just the sum Sg = 8x + 8y of the uncertainties in x and y. Section 2.9 dis-

ussed the. product g = xy, and Problem 2.13 discussed the sum g = x + . I review

cases in Section 3.3; the rest of this chapter is devoted to more general cases
propagation of uncertainties and includes several examples.

Before I address error propagation in Section 3.3, T will briefty discuss the

flma_t._i(_.)n of uncertainties in quantities measured directly in Sections 3.1 and 3.2.

Th methods presented in Chapter 1 are reviewed, and further examples are given

erior estimatioti in direct measurements.

. dlarting in Section 3.3, I will take up the propagation of errors. You will leamn

bat almost a1] problems in error propagation can be solved using three simple rules.

.-égzlzfsfc";nfggis@'ss another way in which the final uncertainty can sometimes be estimated. If alt

N s Tepedled Several times, and if all uncertainties are known to be random in character,

e it B Al X . . _ .
e wortainty i the quantity of interest can be sstimated by examining the spread in answess. Even

n_[?ém‘)d' is possible, it is usually best used as a check on the two-step pracedure discussed in this
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A single, more complicated, rule will also be presenied that covers all cases and ; 1
from which the three simpler rules can be derived. '_ at the
This chapter is long, but its length simply reflects its great importance. Error : mate
propagation is a technique you will use repeatedly in the laboratory, and you need to ov
to become familiar with the methods described here. The only exception is that the ten by
material of Section 3.11 is not used again until Section 5.6; thus, if the ideas of this : EXpe;
chapter are all new o you, consider skipping Section 3.11 on your first reading. : meast
' not b
and &
3.1 Uncertainties in Direct Measurements S
. analog
Almost all direct measurements involve reading a scale (on a ruler, clock, or voltme- figures
ter, for example) or a digital display (on 2 digital clock or voltmeter, for example). - digital
Some problems in scale reading were discussed in Section 1.5. Sometimes the main i cussed
sources of uncertainty are the reading of the scale and the need to interpolate be- Thiss
tween the scale markings. In such situations, a reasonable estimate of the uncertainty unce;g;
is casily made. For example, if you have to measure a clearly defined length [ with you i
a ruler graduaied in millimeters, you might reasonably decide that the length could in the 1
be tead to the nearest millimeter but no better. Here, the uncertainty & would be Th
51 = 0.5 mm. If the scale markings are farther apart (as with tenths of an inch), you pressios
might reasonably decide you could read to one-fifth of a division, for example. In fill of ;
any case, the uncertainties associated with the reading of a scale can obviously be secoride

estimated quite easily and realistically.

Unfortunately, other sources of uncertainty are fre
than difficulties in scale reading. In measuring the distance between two points,
main problem may be to decide where those two points really are. For example, ift
an optics experiment, you may wish to measure the distance g from the center of @
lens to a focused image, as in Figure 3.1. In practice, the lens is usually seve i
ts center is hard; if the lens comes in a bulky mouf

millimeters thick, so locating 1
he center is even harder. Furthermore, the image may.

ing, as it often does, locating t
appear to be well-focused throughout a range of many millimeters. Even though tii
apparatus is mounted on an optical bench that is clearly graduated in miilime_;ér
the uncertainty in the distance from lens to image could easily be a centimet r o
so. Since this uncertainty arises because the two points concerned are not clea

defined, this kind of problem is called a problem of definition.
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Section 3.1  Uncertainties in Direct Measurements

This example illustrates a serious danger in error estimation. If you look only
at the scales and forget about other sources of uncertainty, you can badly underesti-
mate the total uncertainty. In fact, the beginning student’s most common nyistake is
to overlook some sources of uncertainty and hence underestimate uncertainties, of-
ten by a factor of 10 or more. Of course, you must also avoid overestimating errors.
Experimenters who decide to play safe and to quote generous uncertainties on all
measurements may avoid embarrassing inconsistencies, but their measurements may
not be of much use. Clearly, the ideal is to find all possible causes of uncertainty
and estimate their effects accurately, which is offen not quite as bard as it sounds.

Superficially, at least, reading a digital meter is much easier than a conventional
analog meter. Unless a digital meter is defective, it should display only significant
figures. Thus, it is usually safe to say that the number of significant figures in a
digital reading is precisely the number of figures displayed. Unfortunately, as dis-
cussed in Section 2.8, the exact meaning of significant figures is not always clear.
Thus, a digital voltmeter that tells us that V' = 81 microvolts could mean that the
uncertainty is anything from 6V = (.5 to 6V = 1 or more. Without a manual to tell
you the uncertainty in a digital meter, a reasonable assumption is that the uncertainty
in the final digit is =1 (so that the voltage just mentioned is V = 81 = 1.

The digital meter, even more than the analog scale, can give a misleading im-
pression of accuracy. For example, a student might use a digital timer to time the
fall of a weight in an Atwood machine or similar device. If the timer displays 8.01
seconds, the time of fall is apparently

t = 8.01 = 0.01 s. - (3.1

However, the careful student who repeats the experiment under nearly identical
conditions might find a second measurement of 8.41 s; that is,

t = 841 = 001 s.

One likely explanation of this large discrepancy is that uncertainties in the starting
procedure vary the initial conditions and hence the time of fall; that is, the measured
times really are different. In any case, the accuracy claimed in Equation (3.1) clearly
15 ridiculously too good. Based on the two measurements made, a more realistic
answer would be

t = 82 +02s.

In particular, the uncertainty is some 20 times larger than suggested in Equation
(3.1) based on the original single reading.

This example brings us to another point mentioned in Chapter 1: Whenever a
measurement can be repeated, it should usually be made several times. The resulting
Spread of values often provides a good indication of the uncertainties, and the aver-
age of the values is almost certainly more trustworthy than any one measurement.
Chapters 4 and 5 discuss the statistical treatment of multiple measurements. Here, I
¢mphasize only that if a measurement is repeatable, it should be repeated, both to
obtain a more reliable answer (by averaging) and, more important, to get an estimate
of the uncertainties. Unfortunately, as also mentioned in Chapter 1, repeating a2 mea-
Surement does not always reveal uncertainties. If the measurement is subject to a
Systematic error, which pushes all results in the same direction (such as a clock that
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48 Chapter 3: Propagation of Uncertainties
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32 The Square—Roo’t Rule for a Counting Experiment

d of direct measurement has an unceriainty that can be esti-
to count gvents that occut at random

Another, different kin
mated easily. Some experiments require you
e rate. For example, the babies born in a hospitat arrive

but have a definite averag

in a fairly random Way but in the long ot births in any one hospital probably oecur

at a definite average rate. Tmagine that a demographber who wants o know this rate

counts 14 births in a certain cwo-week period at 2 jocal hospital. Based on this
ted number of

cesult, he would natarally say that his best estimate for the expec
pirths in two weeks is 14. Unless he has made a mistake, 14 is exactly the number
o observe. Because of the random way

of births in the two-week period he chose 1
births occur, DOWEVEL 14 obviously may not equal the actual average number of
births in all wo-week periods. Perhaps this qumber is 13, 15, of even a fractional

gumber such as 13.5 or 14.7.
Evidently, the uncertainty in this kind

pumber counted (14 in our example). Insted
jmates the trae average

of experiment is not in the observed
4, the ancertainty is in oW well this
sumber. The problem is to estimate

observed number approx

how large this uncertainty is. Although 1 discuss the theory of these counting experi-

ments in Chapter 11, the answer is remarkably simple and i8 easily stated bere: The
stimate of the true

ancertainty in any connted number of random events, as 2l e
are root of the counted number. In our example, the

average number, is the squ
demographer counted 14 births in a certain two-week period. Therefore, his uncer-
tainty is d his foal conclusion would be

‘\]T.li == 4, arn
(average births in a two-week period) = 14 = 4.

To make this statement more general, SUppose we count the 0cCurrences of any
event (such as the births of babies in a nospital) that occurs randomly but at a
 definite average rate. Suppose wWe count for a chosen time interval T (such as WO
weeks), and We denote the number of observed events by the Greck letter v (Bro-
nounced “nu,” this symbol is the Greek form of the letter n and stands for number.)
te for the average aumber of events in

Based on this experiment, OUf best estima’
ber v, and the uncertainty in this gstimate 18

vime T is, of course, the observed num
\];. Therefore, OUr answer for the average

the square 100t of the number, that is,

awmber of events in time T is
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Section 3.3 Sums and Differences; Products and Quotients

decays in some convenient time interval T. the expected number of decays in time
T, with its uncertainty, is then given by the square-root rule, (3.2).

Quick Check 3.1. (a) To check the activity of a radioactive sample, an inspec-
tor places the sample in a liquid scintillation counter to count the number of
decays in a two-minute interval and obtains 33 counts. What should he report
as the number of decays produced by the sample in two minutes? (b) Suppose,
instead, he had monitored the same sample for 50 minuies and obtained 907
counts. What would be his answer for the number of decays in 50 minutes? (¢)
Find the percent uncertainties in these two measurements, and comment on the
usefulness of counting for a longer period as in part (b).

3.3 Sums and Differences; Products and Quotients

For the remainder of this chapter, I will suppose that we have measured one or
more quantities x, y, ..., with corresponding uncertainties ox, &y, ..., and that we
now wish to use the measured values of x, y, .. ., to calculate the quantity of real
interest, g. The calculation of g is usually straightforward; the problem is how the
uncertainties, éx, dy, ..., propagate through the calculation and lead to an uncer-
tainty &g in the final value of 4.

SUMS AND DIFFERENCES

Chapter 2 discussed what happens when you measure two quantities x and y
and calculate their sum, x + v, or their difference, x — y.-To estimate the uncertainty
in the sum or difference, we had only to decide on their highest and lowest probable
values. The highest and lowest probable values of x are X, = dx, and those of y
are Y. = Oy. Hence, the highest probable value of x + y is

Xpest T Voest + (8 + 8y),
and the lowest probable value is
Xpest + Yoot — (8% + ).
Thus, the best estimate forg = x + y is
Qrest = Xpest T Yoests
and its uncertainty is
8g = dx + Ay (3.3)

A similar argument (be sure you can reconstruct i) shows that the uncertainty in
the difference x — y is given by the same formula (3.3). That is, the uncertainty in
cither the sum x -+ y or the difference x — y is the sum 8x + 8y of the uncertainties
nxand y.

49



Chapter 3: Propagation of Uncertainties

f we have several numbers X, . .., W to be added or subtracted, then repeated

application of (3.3) gives the following provisional rule.

-

Uncertainty in Sums and Differences
(Provisional Rule)

& measured with yncertain-

If several quantities X, ..., W @l
ed values used to compuie

ties 8x, ..., OW, and the measur
= x+'--+z"(u+'-'+w),

q =
then the uncertainty in the computed valve of g is the sum,

g = 5x+---+8z+3u+---+8w,

(3.4)

of all the original uncertainfies.
ct any number of quantities, the uncertainties

re, I use the sign = 10 emphasize that this

In other words, when you add or subtra
in those quantities always add. As befo

rule is only provisional.

Example: Adding and Subtracting Masses

le of rule (3.4), suppose an €
having first measured their

As a simple examp xperimenter mixes together the’
liquids in two flasks, separate mMasses when full and
empty, as follows:

M, = mass of first flask and contents =

mass of first flask empty

540 x 10 grams
72 1 grams

i+

M, = mass of second flask and contents = 940 + 20 grams
m, = INass of second flask empty = 97 x 1 grams
He now calculates the total mass of liquid as

M=M1_m1+M2fm2
(540 — 72 + 940 — 97) grams

According to rule (3.4), the uncertainty in this answer is the sum of al

tainties,

= 1,311 grams.

1 four uncer

= (10+1+20+1)grams

SM =~ oM, + dmy + M, T bm,
32 grams.

Thus, his final answer (properly rounded) is

total mass of liquid = 1,310 & 30 grams.

L



Section 3.3 Sums and Differences; Products and Quotients Bl

-d, then repeated % Notice how the much smaller uncertainties in the masses of the empty fasks
made a negligible contribution to the final uncertainty. This effect is important, and
we will discuss it later on. With experience, you can learn to identify in advance

— those uncertaintics that are negligible and can be ignored from the ouiset. Often,

this can greatly simplify the calculation of uncertainties.

o PRODUCTS AND QUOTIENTS
in-
wpute : Section 2.9 discussed the uncertainty in the product ¢ = xy of two measured
quantities. We saw that, provided the fractional uncertainties concerned are small,
the fractional uncertainty in g = xy is the sum of the fractional uncertainties in x
sum, 5 and y. Rather than review the derivation of this tesult, I discuss here the similar
case of the quotient ¢ = x/y. As you will see, the uncertainty in a quotient is given
by the same rule as for a product; that is, the fractional uncertainty in g = x/y is
equal to the sum of the fractional uncertainties in x and y.

Because uncertainties in products and quotients are best expressed in terms of
fractional uncertainties, a shorthand notation for the latter will be helpful. Recall
that if we measure some quantity x as '

(3.4)

%, the uncertainties ;
:IﬁphaSiZC that this (measum:d value of x) e .+ 5

in the usual way, then the fractional uncertainty in x is defined to be

(fractional uncertainty in x) = & .
becstl
_ (The absolute value in the demominator ensures that the fractional uncertainty is
mixes together the always positive, even when X, is negative.) Because the symbol dx/ [peqq] 15 clumsy
%§SGS when full and ! to write and read, from now on [ will abbreviate it by omitting the subscript “best”
:' ~ and writing

&x
(fractional uncertainty in x) = —.

[l
The result of measuring any quantity x can be expressed in terms of its frac-
tional error &x/x| as

(value of X) = Xyl * B/x).
Therefore, the value of ¢ = xfy can be written as

iCES_t 1=x 3x,r’|x|

(value of g) = .
Yoest 1 = 8/ly]

" Qur problem now is to find the extreme probable values of the second factor on the
{ight. This factor is largest, for example, if the numerator has its largest value,
1+ 8x/x|, and the denominator has its smallest value, 1 — 8y/ly|. Thus, the fargest
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probable value for g = x/y is

Xpest 1+ SX/LX\ .
(Jargest value of ) = — T aid (3.5)
D= Y 1 - oyl

The last factor in gxpression (3.5) has the form (1 + a)/(1 — b), where the
numbers a and b are pormally small (that is, much less than 1). It can be simplified
by two approximations. First, because b is small, the binomial theorem? implies
that

1

(1_:_[;) = 1 + b. (36)

Therefore,

1+ a

z(1+a)(1+b):1+a+b+ab
~ 1+athb

where, in the second line, we have neglected the product ab of two small quantities.
Returning t© (3.5) and using these approximations, we find for the largest probable
value of g = x/y '

)
(largest value of q) = _)ﬁbﬁs—‘ (1 + o _}_)).
Yoest \Xl \yl

A similar calculation shows that the smallest probable value is given by 2 similar
expression with two minus signs. Combining these two, W& find that

(value of ) = Toest {1 + PeriSX] .
Yoest ‘Xl |yl

Comparing this equation with the standard form,
(value of q) = Goest (1 + %),
: q

we see that the best value for g 18 Guest = Xpest/Yoestr 85 WE would expect, and that
the fractional uncertainty is

b & O
o & ¥
| g Kb
We conclude that when We divide or multiply two measured quantities X and ¥,
the fractional ancertainty in the answer is the sum of the fractional uncertainties i®

x and y, as in (3.7). I we now multiply or divide 2 series of numbers, repeated
application of this result leads to the following provisional rule.

3.7)

e

2The binomial theorem ¢¥presses 1/(1 - b) as the infimite series 1 + b+ bt + - - M b is much Tess thaz
1, then 141 —b = 1+ b as in (3.6). If you are unfamiliar with the binomial theorem, you can find o7
details in Problem 3.8
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Uncertainty in Products and Quetients
(Provisional Rule)

If several quantities x, ..., w are measured with small un-
certainties &x, ..., ow, and the measured values are used
to compute
xX---Xz
q = — 5
X - Xw

then the fractional uncertainty in the computed value of g

is the sum,
bg _ &, L 0 b ow s
lg ol [ed [w

of the fractional uncertainties in x, ..., w.

Briefly, when quantities are multiplied or divided the fractional uncertainties add.

Example: A Problem in Surveying

In surveying, sometimes a value can be found for an inaccessible length / (such as
the height of a tall tree) by measuring three other lengths [}, &, I in terms of which

Ll
Ly’
Suppose we perform such an experiment and obtain the following resulis (in feet):
L= 20022, L = 55+01, L = 100 %04
Our best estimate for [ is

bhost = MZOﬂlg 05"5 = 110 ft.

According to (3.8), the fractional uncertainty in this answer is the sum of the frac-
tional uncertainties in I;, L, and I, which are 1%, 2%, and 4%, respectively. Thus
8 & 1 '

= (1+2+ 4%
! L L L ( )%

= 7%,

- and our final answer is

110 = 8 ft.
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Quick Check 3.2. Suppose you measure the three quantities x, y, and z as

follows:
x = 8002, y = 50=% 0.1, z = 40 = 0.1

Express the given uncertainties as percentages, and then calculate g = xy/z with

its uncertainty 8g [as given by the provisional rule (3.8)].

3.4 Two Important Special Cases

deserve mention. One concems the

Two important special cases of the rule (3.8)
the other involves a

product of two numbers, one of which has #no uncertainty;
“power (such as %) of a measured pumber.

MEASURED QUANTITY TIMES EXACT NUMBER

Suppose”we measure a quantity x and then nse the measured valag to calculate

the product g = Bx, where the number B has no uncertainty. For example, we might
measure the diameter of a circle and then calculate its circumference, ¢ = n X d;
or we might measure the thickness T of 200 identical sheets of paper and then
calculate the thickness of a single sheet as & = (1/200) X T. According to the rule
(3.8), the fractional uncertainty in g = Bx is the sum of the fractional uncertainties

in B and x. Because 88 = 0, this implies that

5 _ X

gl W G :
That is, the fractional uncertainty in g = BX (with B known exactly) is the same as Co
that in x. We can express this result differently if we multiply through by gl = |Bx|

to give 8g = |Blax, and we have the following useful mule:’

e
3This ruie (3.9) was derived from the rule (3.8), which is provisional and will be teplaced by the MmO
complete Tules (3.18) and {3.19). Fortunately, the same conclusion (3.9) follows from these improved riles-

Thus (3.9) is already it its final form.
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Section 3.4 Two Important Special Cases

This rule is especially useful in measuring something inconveniently small but
available many times over, such as the thickness of a sheet of paper or the time for
a revolution of a rapidly spinning wheel. For example, if we measure the thickness
T of 200 sheets of paper and get the answer

(thickness of 200 sheets) = T = 1.3 £ 0.1 inches,

it immediately follows that the thickness ¢ of a single sheet is

1
thickness of heety = t = - - X T
(thickness of one sheet) =~ 200

= {.0065 + 0.0005 inches.

Notice how this technique (measuring the thickness of several identical sheets and
dividing by their number) makes easily possible a measurement that would other-
wise require quite sophisticated equipment and that this technique gives a remark-
ably small uncertainty. Of course, the sheets must be known to be equally thick.

 Quick Check 3.3. Suppose you measure the diameter of a circle as
d = 50x01cm

and use this value to calculate the circumference ¢ = ®d. What is your answer,
with its uncertainty?

POWERS

The second special case of the rule (3.8) concerns the evaluation of a power of
some measured quantity. For example, we might measure the speed v of some object
and then, to find its kinetic energy imo?, calculate the square v Because v is just
v X, it follows from (3.8) that the fractional uncertainty in v? is twice the fractional

' uncertainty in v. More generally, from (3.8) the general rule for any power is clearly

as follows.

Uncertainty in a Power

If the quaniity x is measured with uncertainty &x and the
measured value is used to compute the power

g = X\,
then the fractional uncertainty in ¢ is # times that in x,
ox
& - n—. (3.10)
lal b
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The derivation of this rule required that n be a positive infeger. In fac{, however,
the tule generalizes to include gny exponent 7, as We will see later in Equation
(3.26). '

Quick Check 3.4. To find the volume of a certain cube, you measure ifs side
as 2.00 + 0.02 cm. Convert this upcertainty to a percent and then find the
volume with its uncertainty.

Example: Measurement of g

Suppose a student measUICs &, the acceleration of gravity, Dy measuring the time ¢
for a stone to fall from a height h above the ground. After making several timings,
she concludes that

t = 1.6 +01s,
and she measures the height 2 as
h o= 462 = 031t
Because h is given by the well-known formula A = g, she now calculates g as

2h
§ 7 72
2 X 462 ft
(1.6 5)*

= 36.1 fi/s™

What is the uncertainty in her apswer? :

The uncertainty in her answer can be found by using the rules just developed..
To this end, we need to know the fractional uncertainties in each of the factors in
the expression g = 2/ used to calculate g. The factor 2 has no uncertainty. The
fractional uncertainties in k and f are

Sh 0.3
= 262 0.7%
and
s 0.1
: 1.6 6.3%.

According to the rule (3.10), the fractional uncertainty of £ is twice that of £. There-
fore, applying the rule (3.8) for products and quotients to the formula g = 2hif, we
find the fractional uncertainty

bg _ B
g h t

h

07% + 2 X (6.3%) = 13.3%, (3.11)
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Section 3.5 Independent Uncertainties in a Sum

and hence the uncertainty

13.3
g = . 2y X = = 4.8 2,
g = (36.1 ft/s7) X 10 0 ft/s

Thus, our student’s final answer (properly rounded) is
g = 36 =5 fi/s.

This example illustrates how silﬁple the estimation of uncertainties can often
be. It also illustrates how error analysis iells you not only the size of uncertainties
but also how to reduce them. In this example, (3.11) shows that the largest contribu-
tion comes from the measurement of the time. If we want a more precise value of
g, then the measurement of ¢ must be improved; any attempt to improve the mea-
surement of 4 will be wasted effort.

Finally, the accepted value of g is 32 ft/s®, which lies within our student’s
margins of error. Thus, she can conclude that her measurement, although not espe-
cially accurate, is perfectly consistent with the known valie of g.

3.5 Independent Uncertainties in a Sum

The rules presented thus far can be summarized quickty: When measured quantities
are added or subtracted, the uncertainties add;, when measured quantities are
multiplied or divided, the fractional uncertainties add. In this and the next section,
I discuss how, under certain conditions, the uncertainties calculated by using these
rules may be unnecessarily large. Specifically, you will see that if the original uncer-
tainties are independent and random, a more tealistic (and smaller) estimate of the
final uncertainty is given by similar rules in which the uncertainties {or fractional
uncertainties) are added in quadrature (a procedure defined shortly).

Let us first consider computing the sum, g = x + y, of two numbers x and y
that have been measured in the standard form

(measured value of x) = Xp & &,

with a similar expression for y. The argument used in the last section was as follows:
First, the best estimate for g =x + y is ObVIOUSLY Gyt = Xoest  Yoest- S€CORd, Since
the highest probable values for x and y are X,y + 6x and y,. + Oy, the highest
probable value for g is

Ypest T Yoo T OX + 8. (3.12)
Similarly, the lowest probable value of g is
Xpest T Yoest 8 — 3_)7

Therefore, we concluded, the value of g probably lies between these two numbers,
and the uncertainty in g is

bg =~ é&x + oy
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To see why this formula is likely to overestimate &g, let us consider how the
actual value of g could equal the highest extreme (3.12). Obviously, this occurs if
we have underestimated x by the full amount 8x and underestimated ¥ by the full
8y, obviously, a fairly untikely event. If x and y are measured independently and our
errors are random in nature, we have a 50% chance that an underestimate of x is
accompanied by an overestimate of y, or vice versa. Clearly, then, the probability
we will underestimate both x and y by the full amounts & and 8y is fairly smail.
Therefore, the value 8q = &x + 8y overstates our probable error.

What constitutes a better estimate of 8¢? The answer depends on precisely what
we mean by uncertainties (that is, what we mean by the statement that g is “proba-
bly” somewhere between gy, — g and gy, + 8¢). It also depends on the statistical
laws governing our errors in measurement. Chapter 5 discusses the normal, or
Gauss, distribution, which describes measurements subject to random uncertainties.
1t shows that if the measurements of x and y are made independently and are both
govemned by the normal distribution, then the uncertainty in ¢ = x + y is given by

8q = (&P + (P (3.13)

When we combine two numbers by squaring them, adding the squares, and
taking the square root, as in (3.13), the numbers are said to be added in quadrature.
Thus, the rule embodied in (3.13) can be stated as follows: If the measurements of
x and y are independent and subject only to random uncertainties, then the uncer-
tainty 8q in the calculated value of g = x + y is the swm in quadrature or quadratic
sum of the uncertainties x and &y.

Compare the new expression (3.13) for the uncertainty in ¢ = x + y with our

old expression,

8g =~ fx + &y. 3.14)
First, the new expression (3.13) is always smaller than the old (3.14), as we can see
from a simple geometrical argument: For any two positive numbers @ and b, the

oumbers a, b, and Va® + b? are the three sides of a right-angled triangle (Figure
3.2). Because the length of any side of a triangle is always less than the sum of the

N

a

Figure 3.2. Because any side of a triangle is less than the sum of the other
two sides, the inequality va® + B2 < a + b is always lrue.

other two sides, it follows that Va* + b < g + b and hence that (3.13) is always

less than (3.14).
Because expression (3.13) for the uncertainty in g = x + y is always smaller
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Section 3.5 Independent Uncerminties in a Sum

than (3.14), you should always use (3.13) when it is applicable. It is, however, not
always applicable. Expression (3.13) reflects the possibility that an overestimate of
x can be offset by an underestimate of y or vice versa, but there are measurements
for which this cancellation is not possible.

Suppose, for example, that g = x + y is the sum of two lengths x and y mea-
sured with the same steel tape. Suppose further that the main source of uncertainty
is our fear that the tape was designed for use at a temperature different from the
present temperature. If we don’t know this temperature (and don’t have a reliable
tape for comparison), we have to recognize that our tape may be longer or shorter
than its calibrated length and hence may yield readings under or over the correct
length. This uncertainty can be casily allowed for.* The point, however, is that if
the tape is too long, then we underestimate both x and y; and if the tape is too short,
we overestimate both x and y. Thus, there is no possibility for the cancellations that
justified using the swmn in quadrature to compute the uncertainty in g = x + y.

I will prove later (in Chapter 9) that, whether or not our errors are independent
and random, the uncertainty in ¢ = x + y is certainly no larger than the simple sum
ox + &y

8g = &x + 6y (3.15)

That is, our old expression (3.14) for &g is actually an upper bound that holds in all
cases. If we have any reason fo suspect the errors in x and y are not independent
and random (as in the example of the steel tape measure), we are not justified in
using the quadratic sum (3.13} for 8g. On the other hand, the bound (3.15) guaran-
tees that 8¢ is certainly no worse than &x + 8y, and our safest course is to use the
old rule

8g =~ é&x + by

Often, whether uncertainties are added in quadrature or directly makes little
difference. For example, suppose that x and y are lengths both measured with uncer-
tainties 8¢ = 8y = 2 mm. If we are sure these uncertainties are independent and
random, we would estimate the emror in x + y to be the sum in quadrature,

V(@Y + (&Y = V4 +4mm = 28 mm = 3 mm,

but if we suspect that the uncertainties may not be independent, we would have to
use the ordinary sum,

&+ 6 = (2+ 2)mm = 4 mm.

In many experiments, the estimation of uncertainties i so crude that the difference
between these two answers (3 mm and 4 mm) is unimportant. On the other hand,
sometimes the sum in quadrature is significantly smaller than the ordinary sum.
Also, rather surprisingly, the sum in quadrature is sometimes easier to compute than
the ordinary sum. Examples of these effects are given in the next section.

4 Suppose, for example, that the tape has a coefficient of expansion @ = 1077 per degree and that we decide
that the difference between its calibraticn temperature and the present temperature is unlikely to be more than
10 degrees. The tape is thea unlikely to be more than 107% or 0.01%, away from its correct length, and our
uncertainty is therefore 0.01%.
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60 Chapter 3: Propagation of Uncertainties

Quick Check 3.5. Suppose you measure the volumes of water in two beakers

as
Vv, = 130 £ 6ml and Vo, = 65 + 4 ml
and then carefully pour the contents of the first info the second. What is your
+ V., with iis uncertainty, SV, assuming

prediction for the total volume V =V
¢ and random? What would you give

the original uncertainties are independen

for 8V if you suspected the original uncertainties Were not independent?

3.6 More About Independent Uncertainties

In the previous section, I discussed how independent random uncertainties in two
quantities x and y propagate to cause an uncertainty in the swm x -+ ). We saw that
for this type of uncertainty the two errors should be added in quadrature. We can
naturally consider the corresponding problem for differences, products, and quo-

tients. As we will see in Section 5.6, in all cases our previous rules (3.4) and (3.8)
r fractional errors) are replaced by

are modified only in that the sums of errots (0 _
quadratic sums. Further, the old expressions (3.4) and (3.8) will be proven to be d
certainties are independent and 2

4

always hold whether or not the un

upper bounds that
al versions of our two main rules are as follows:

random. Thus, the fin i
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Section 3.6 More About Independent Uncertainties

(3.18)

(3.19)

Notice that I have not yet justified the use of addition in quadrature for indepen-
dent random uncertainties. I have argued only that when the various uncertainties
arc independent and random, there is a good chance of partial cancellations of errors
and that the resulting uncertainty (or fractional uncertainty) should be smaller than
the simple sum of the original uncertainties (or fractional uncertainties); the sum in
quadrature does have this property. I give a proper justification of its use in Chapter
5. The bounds (3.17) and (3.19) are proved in Chapter 9.

Example: Straight Addition vs Addition in Quadrature

As discussed, sometimes there is no significant difference between uncertainties
computed by addition in quadrature and those computed by straight addition. Often,
however, there is a significant difference, and—surprisingly enough—the sum in
quadrature is often much simpler to compute. To see how this situation can arise,
consider the following example.
Suppose we want to find the efficiency of a D.C. electric motor by using it to
lift a mass m through a height A. The work accomplished is mgh, and the electric
- energy delivered to the motor is VIt, where V is the applied voltage, I the current,
and ¢ the time for which the motor runs: The efficiency is then
work done by motor mgh

efficiency, e = - = .
¥ energy delivered to motor Vit

- Let us suppose that m, &, V, and I can all be measured with 1% accuracy,

(fractional uncertainty for m, A, V, and I) = 1%,
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62 Chapter 3: Propagation of Uncertainties

and that the time f has an uncertainty of 5%,

(fractional uncertainfy for £y = 5%.

uncertainty.) If we now compute the effi-

(Of course, g is known with negligible
“fractional errors add”), we have an uncer-

ciency e, then according to our old rule (

tainty
de sm Sk &V & &t
T

m h \% i t
:(1+1+1+1+5)%=9%.

On the other hand, if we are confident that the yarious uncertainties are independent

and random, then we can compute defe by the quadratic sum to give
de (Bm 2 Shy2 (BV 2 (8[)2 (St)z
€ _ JEY =) ) ) T
NG G GGG
NABE + (%) + (%) + (1% + (5%)

\29% = 5%.

leads to a significantly smaller estimate for 8e. Further-
h, V, and | make no contribu-
that is, to one significant

!

I

I

Clearly, the quadratic sum
more, to one significant figure, the uncertainties in m,
tion at all to the uncertainty in e computed in this way;

figure, we have found (in this example)

_53 St

4 t

erstood. When numbers are added in quad-
ummed. The process of squating greatl'}':
numbers. Thus, if one number is 5 times
quare is 25 times that of the others, and

This striking simplification is casily und
rature, they are squared first and then s
exaggerates the importance of the larger
any of the others (as in our example), ifs 8
we can usually neglect the others entirely.

This example illustrates how combining errors in guadrature is nsually better

and often easier than computing them by straight addition. The example also illiis-
dent and for which addi-

trates the type of problem in which the errors are indepen
tion in quadrature is justified. (For the moment I take for granted that the errors arc
random and will discuss this more difficult point in Chapter 4.) The five quarrtitics
measured (m, h, V, I, and #) are physically distinct quantities with different units-and
are measured by entirely different processes. For the sources of error in any quantity
to be correlated with those in any other is almost inconceivable. Therefore,. the
errors can reasonably be treated as independent and combined in quadrature.

Quick Check 3.6. Suppose you measure three numbers as follows:

X = 20042 y=50x2 z=20+1

where the three uncertainties are independent and random. What would yot
give for the values of g = x +y — 2 and r = xy/z with their uncertainties?
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Section 3.7 Arbitrary Functions of One Variable
3.7 Arbitrary Functions of One Variable

You have now seen how uncertainties, both independent and otherwise, propagate
through sums, differences, products, and quoticnts. However, many calculations re-
quire more complicated operations, such as computation of a sine, cosine, or square
root, and you will need to know how uncertainties propagate in these cases.

As an example, imagine finding the refractive index # of glass by measuring
the critical angle 6. We know from elementary optics that n = 1/sin 8. Therefore, if
we can measure the angle 8, we can easily calculate the refractive index n, but we
must then decide what uncertainty oz in n = 1/sin @ results from the uncertainty 66
in our measurement of 6. ‘

More generally, suppose we have measured a quantity x in the standard form
Xper £ 8¢ and wanpt to calculate some known function g(x), such as g(x) = 1/sinx
or gx) = \/)_c A simple way to think about this calculation is to draw a graph of
q(x) as in Figure 3.3. The best estimate for g(x) s, of course, gpes = G(Xpes)> a0d
the valIeS Xy aNd Gpese are shown connected by the heavy lines in Figure 3.3.

To decide on the uncertainty 8g, we employ the usual argument. The largest
probable value of x i X + Ox; using the graph, we can immediately find the
largest probable value of g, which is shown as ¢,,,,. Similarly, we can draw in the
smallest probable value, gy, as shown. If the uncestainty &x is small (as we always
suppose it is), then the section of graph involved in this construction is approxi-
mately straight, and-¢,,,,, and g, are easily séen to-be equally spaced on either
side of gy.q The uncertainty ég can then be taken from the graph as either of the
lengths shown, and we have found the value of ¢ in the standard form g, + dq.

Occasionally, uncertainties are calculated from a graph as just described. (See
Problems 3.26 and 3.30 for examples.) Usually, however, the function g(x) is known

1 9(x)
Goug o m— g —— e :
[ 8y I
Grest :
o |
Quip oo -t — o — :
! |
! |
i |
| |
— | |
| |

1 1 x

x T Fpese T OX

Hhest

Kpeat

f?gure 3.3. Graph of g(x) vs x. If x is measured as x,., + 8x, then the best estimate for géx)
15 o = g(x ). The largest and smallest probable, values of g(x) correspond to the values
Xoest £ 1 of x. .
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Figure 3.4. If the slope of g(x) is negative, the maximum probable value of g corresponds to
the minimum value of x, and vice versa.

explicitty—g{x} = sinx or g(x) = \/J_c, for example—and the uncertainty 8g can be
calculated analytically. From Figure 3.3, we see that
89 = qOSuest + 8%) ~ Ghesd)- (3.:20):

Now, a fundamental approximation of calculus asserts that, for any function q(x).'
and any sufficiently small increment u,

qx t ) - ) = My

Thus, provided the uncertainty &x is small (as we always assume it is), we can
rewrite the difference in (3.20) to give

dq
bg = T ax. (3.21)
Thus, to find the uncertainty &g, we just calculate the derivative dg/dx and multiply
by the uncertainty 8x. 4
The rule (3.21) is not quite in its final form. It was derived for a function, like
that of Figure 3.3, whose slope is positive. Figure 3.4 shows a function with nega-
tive slope. Here, the maximum probable value g,,,, obviously corresponds to the
minimum value of x, so that

6 = ——éx. (3.22)

Because dg/dx is negative, we can write —dg/dx as |dg/dx|, and we have the follow-
ing general rule.




Section 3.7  Arbitrary Functions of One Variable

(3.23)

This rule usually allows us to find 87 quickly and easily. Occasionally, if g(x)
) is very complicated, evaluating its derivative may be a nuisance, and going back to
' {3.20) is sometimes easier, as we discuss in Problem 3.32. Particularly if you have
programmed your calculator or computer to find g(x), then finding g(x,., + &x) and
—x g(xp.s) and their difference may be easier than differentiating g(x) explicitly.

Example: Uncertainty in a Cosine
»f g corresponds o

6 =203

and that we wish to find cosf. Our best estimate of cos@ is, of course,
cos 20° = 0.94, and according to (3.23), the uncertainty is

certainty 8q can be

Scos §) = dt;o; 6 Y
(3.20) = |sin@ | 86 (in rad). (3:24)

¢ any function ‘1(’5) We have indicated that 6# must be expressed in radians, because the derivative of

~cosf is —sinf only if @ is expressed in radians. Therefore, we rewrite 86 = 3° as
80 = 0.05 rad; then (3.24) gives

S(cos ) = (sin20°) X 0.05
0.34 X 0.05 = 0.02.

It

Bume it is), we can
Thus, our final answer is

(3.21) cos 6 = 0.94 = 0.02.

function, like
on with nega+

sponds to the Quick Check 3.7. Suppose you measure x as 3.0 + 0.1 and then calculate

q = e*, What is your answer, with its uncertainty? (Remember that the deriva-
tive of e* is *.)

As another example of the rule (3.23), we can rederive and generalize a result
found in Section 3.4. Suppose we measure the quantity x and then calculate the

As a simple application of the rale (3.23), suppose we have measured an angle 8 as
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power g(x) = x", where n is any known, fixed number, positive or negative. Ac-
cording to (3.23), the resulting uncertainty in g is

dqg = %{ &x = |mx™ Y 6.

If we divide both sides of this equation by |g| = "], we find that

B _ 2, (3.25)
lql bl
that is, the fractional uncertainty in g = x" 18 || times that in x. This result (3.25) is
just the rule (3.10) found earlier, except that the result here is more general, because
n can now be any number. For example, if n = 1/2, then g = \/;c, and

5 _ 1ox,

lal 2k’
that is, the fractional uncertainty in \f;c is half that in x itself. Similarly, the fractional
uncertainty in 1/x = x™" is the same as that in x itself. :
The result (3.25) is just a special case of the rule (3.23). 1t is sufficiently im-

portant, however, lo deserve scparate statement as the following general rule.

(3.26)

Quick Check 3.8. I you measure x as 100 == 6, what should vou teport for
\/J_c, with its uncertainty? '

3.8 Propagation Step by Step

We now have enough tools to handle almost any problem in the propagation of
errors. Any calculation can be broken down into a sequence of steps, each involving
just one of the following types of operation: (1) sums and differences; (2) products
and quotients; and (3) computation of a function of one variable, such as x°, sl

R R
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Section 3.8 Propagation Step by Step

e*, or In x. For example, we could calculate
q = x(y — z sinu) (3.27)

from the measured quantities x, y, z, and u in the following steps: Compute the
function sinu, then the product of z and sinw, next the difference of y and z sinu,
and finally the product of x and (y — z sinu).

We know how uncertainties propagate through each of these separate opera-
tions. Thus, provided the various quantities involved are independent, we can calcu-
late the uncertainty in the final answer by proceeding in steps from the uncertainties
in the original measurement. For example, if the quantities x, y, z, and u in (3.27)
have been measured with corresponding uncertainties &, . . ., 8u, we could calcu-
late the uncertainty in g as follows. First, find the uncertainty in the function sinu;
knowing this, find the uncertainty in the product z sin %, and then that in the differ-
ence y — z siny; finally, find the uncertainty in the complete product (3.27).

Quick Check 3.9. Suppose you measure three numbers as follows:
x=200+2 y =50+2 z=40+2

where the three uncertainties are independent and random. Use step-by-step
propagation to find the quantity ¢ = x/(y — z) with its uncertainty. [First find
the uncertainty in the difference y — z and then the quotient x/(y — z}.]

Before I discuss some examples of this step-by-step calculation of errors, let
me emphasize three general points. First, because uncertainties in sums or differ-
ences involve absolute uncertainties (such as &) whereas those in products or ‘quo-
tients involve fractional uncertainties (such as 8x/[x[), the calculations will require
some facility in passing from absolute to fractional uncertainties and vice versa, as
demonsirated below. .

Second, an important simplifying feature of all these calculations is that (as

* zepeatedly emphasized) uncertainties are seldom needed to more than one significant

figure. Hence, much of the calculation can be done rapidly in your head, and many
smaller uncertaintics can be completely neglected. In a typical experiment involving
$éveral trials, you may need to do a careful calculation on paper of all error propa-
gations for the first trial. After that, you will often find that all trials are sufficiently
similar that no further calculation is needed or, at worst, that for subsequent trals
the calculations of the first trial can be modified in your head.

Finally, you need to be aware that you will sometimes encounter functions g(x)
whose uncertainty cannot be found reliably by the stepwise method advocated here.
These functions always involve at Jeast one variable that appears more than once.

g = y — xsiny.
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Our best estimate for g is easily found from (3.28) as

472 X (92.95 cm)
= = 979 cm/s?.
Svest (1936 5)2 | cIn/s

To find our uncertainty in g using (3.29), we need the fractional uncertainties in /
and T. These are easily calculated (in the head) as
&l

. oT
7= 0.1% and T 0.2%.

Substituting into (3.29), we find

% = VO + 2 X 027 % = 04%;

from which
g = 0.004 X 979 cm/s? = 4 cm/s.
Thus, based on these measurements, our final answer is
g = 979 = 4 cm/s*.

Having found the measured value of g and its uncertainty, we would naturally com-
pare these values with the accepted value of g. If the latier has its usual value of
981 cm/s?, the present value is entirely satisfactory.

If this experiment is repeated (as most such experiments should be) with differ-
ent values of the parameters, the uncertainty calculations usually do not need to be
repeated in complete detail. We can often easily convince ourselves that all uncer-
tainfies (in the answers for g) are close enough that no further calculations are
needed; sometimes the uncertainty in a few representative values of g can be calcu-
Jated and the remainder estimated by inspection. In any case, the best procedure is
almost always to record the various values of [, T, and g and the corresponding
uncertainties in a single table. (See Problem 3.40.)

L

} Example: Refractive Index Using Snell's Law

If a ray of light passes from air into glass, the angles of incidence i and refraction
' rare defined as in Figure 3.5 and are related by Snell’s law, sini = 7 sinr, where
- 7 is the refractive index of the glass. Thus, if you measure the angles / and r, you

Alr

Glass

Feop]

Figure 3.5. The angles of incidence i and refraction r
when a ray of light passes from air into glass.

69




70

Chapter 3: Propagation of Uncertainties

can calculate the refractive index » as

sini (3.30)

~ sinr’
The uncertainty in this answer is easily calculated. Because 7 is the quotient of
sini and sinr, the fractional uncertainty in » is the quadratic sum of those in sini

and sinz:

—— Ssnre
@E _ (8 :'sm'z) v ( r?mr) _ (331)
n sini sinr :
To find the fractional uncertainty in the sine of any angle 6, we note that
' dsin 0
Ssinf = 40
sin 7L

|cos 6 80 (in rad).

i

Thus, the fractional uncertainty is

0518 _ 1ol 56 (in rad). (3.32)
Isin 6}

Suppose we now measure the angle r for a couple of values of i and get the
results shown in the first two columns of Table 3.1 (with all measarements judged
{o be uncertain by *1°, or 0.02 rad). The calculation of n = sini/sinr is easily
carried out as shown in the next three columns of Table 3.1. The uncertainty in #
can then be found as in the last three columns; the fractional uncertainties in sin J
and sinr are calculated using (3.32), and finally the fractional uncertainty in 7 ig

found using (3.31).

Table 3.1. Finding the refractive index.

dsini dsinr on

i (deg) r (deg)
all x1 all *x1 sini sinr n |sini] |sinz|

20 13 0342 0225 1.52 5% 8% 9%
40 235 0.643 0.399 1.61 2% 4% 5%

Before making a series of measurements like the two shown in Table 3.1, -yi)u
should think carefully how best to record the data and calculations. A tidy display
like that in Table 3.1 makes the recording of data easier and reduces the danger of
mistakes in calculation. It is also easier for the reader to follow and check.

If you repeat an experiment like this one several times, the error calculat
can become tedious if you do them for each repetition. If you have a programmabl
calculator, you may decide to write a program to do the repetitive calculations auto
matically. You should recognize, however, that you almost never need to do the ¢r10
calculations for all the repetitions; if you find the uncertainties in # corresponding 0
the smallest and largest values of i (and possibly a few intermediate values), thel

these uncertainties suffice for most purposes.

i0n
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Section 3.10 A More Complicated Example
3.10 A More Complicated Example

The two examples just given are typical of many experiments in the introductory
physics laboratory. A few experiments require more complicated calculations, how-
ever. As an example of such an experiment, I discuss here the measurement of the
acceleration of a cart rolling down a slope.®

Example: Acceleration of a Cart Down a Slope

photocell 1

photocell 2
©

Figure 3.6. A cart rolls down an incline of slope 8. Bach photocell is connected to a timer to
measure the time for the cart to pass it.

Let us consider a cart rolling down an incline of slope # as in Figure 3.6. The
expected acceleration is gsin 0 and, if we measure 8, we can easily calculate the
expected acceleration and its uncertainty (Problem 3.42). We can measure the actual
acceleration @ by timing the cart past two photocells as shown, each connected to a
timer. If the cart has Iength [ and takes time £, to pass the first photocell, its speed
there is v, = I/t;. In the same way, v, = l/f,. (Strictly speaking, these speeds are
the cart’s average speeds while passing the two photocells. However, provided { is
small, the difference between the average and instantaneous speeds is unimportant.)
If the distance between the photocells is s, then the well-known formula
- 02 = v, + 2as implies that

= (%)(é - }"}i) (3.33)

: Using this formula and the measured values of I, s, #;, and £, we can easily find the

observed acceleration and its uncertainty.

61{ you wish, vou could omit this section without loss of continnity or retura to study it in connection with
Problern 3.42,
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s as follows (the

periment, including uncertainties, wa
jes, as you can

One set of data for this ex
e corresponding percentage uncertaint

[ = 5.00.< 0.05cm (1%)
s = 100.0 = 02cm (0.2%) (3.34)
0.054 + 0.001 s (2%) —
= 0.031 + 0.001 s (3%).

+

b
Iy
e can immediately calculate the firs
se the fractional ancertainties in [ and

t factor in (3.33) as

Pps = 0,125 cm. Becait s are 1% and 0.2%,

that in [%/2s is

(fractional uncertainty in Pp2s) =

= (@2 X 1%) + 0.2%) = 2%.

no appreciable contribution and could have

(Note how the uncertainty in s makes

been ignored.) Therefore,
Prs = 0125 cm = 2%. (3.35)
) and its uncertainty, we proceed in steps..

To calcitlate the second factor in (3.33
s 2%, that in 15 is 4%. Thus, since

Because the fractional uncertainty in fy 1

t, = 0.054 s,
12 = 343 = 14572

In the same way, the fractional uncertainty in 1/2,% is 6% and

1t = 1041 £ 62572

Subtracting these (and combining the errors in quadrature), we find

1 1 '
-5 =5 = 608 & 64 572 (or 9%)- (3.36)
Lt h

), the required acceleration is the product of (3.35)

Finally, according to (3.33
quations together (and combining the fractional on-

and (3.36). Multiplying these ¢
certainties in quadrature), we obtain

(0.125 cm + 2%) X (698 572 * 9%)
87.3 cm/s® = 9%

li

[#

or
= 87 = 8 cm/s”. (3.37)

This answer could now be compared with the expected acceleration gsin 6, if the

laiter had been calculated.

When the calculations leading to (3.37) are studied carefully, several interesting

factor [2/2s is completely swamped

features emerge. First, the 2% uncertainty in the

e

e e




vas as follows (the
iinties, as you can

(3.34)

actor in (3.33) as
are 1% and 0.2%,

P = 2%.

on and could have
(3.35)

re proceed in steps.
s 4%. Thus, since

ind

(3.36) .

e product of (3.35)
iz the fractional uii#

veral 1ntcres,mg

Section 3.11  General Formuia for Error Propagation

by the 9% uncertainty in (1/5,%) — (1/4%). If further calculations are needed for
subsequent trials, the uncertainties in / and s can therefore be ignored (so long as a
quick check shows they are still just as unimportant).

Another important feature of our calcnlation is the way in which the 2% and
3% uncertainties in ¢, and ¢, grow when we evaluate 1/5,% 1/t and the difference
(1/,%) — (1/,%), so that the final uncertainty is 9%. This growth results partly from
taking squares and partly from taking the difference of large numbers. We could
imagine extending the experiment to check the constancy of a by giving the cart an
initial push, so that the speeds v, and v, are both larger. If we did, the times ¢, and
t, would get smaller, and the effects just described would get worse (see Problem
3.42).

dlon: gsin 6, Iffhe

pletely swamped

3.11 General Formula for Error Propagation’

So far, we have established three main rules for the propagation of errors: that for
sums and differences, that for products and quotients, and that for arbitrary functions
of one variable. In the past three sections, we have seen how the computation of a
complicated function can often be broken into steps and the uncertainty in the func-
tion computed stepwise using our three simple rules.

In this final section, I give a single general formula from which all three of
these rules can be derived and with which any problem in error propagation can be
solved. Although this formula is often rather cumbersome to use, it is useful theoret-
ically. Furthermore, there are some problems in which, instead of calculating the
uncertainty in steps as in the past three sections, you will do betier to calculate it in
one step by means of the general formula. '

To illustrate the kind of problem for which the one-step calculation is prefera-

ble, suppose that we measure three quantitics x, y, and z and have to compute a
function such as

x+y
x+ z

g = (3.38)
in which a variable appears more than once (x in this case). If we were to calculate
the uncertainty Sg in steps, then we would first compute the uncertainties in the two
sums x + y and x + z, and then that in their quotient. Proceeding in this way, we
would completely miss the possibility that errors in the numerator due fo errors in
% may, to some exient, cancel errors in the denominator due to errors in x. To

~ Understand how this cancellation can happen, suppose that x, y, and z are all positive

numbers, and consider what happens if our measurement of x is subject to error. If

Wt overestimate x, we overestimate both x + y and x + z, and (to a large extent)

these overestimates cancel one another when we calculate (x + y)/i(x + z). Simi-

Iarly, an underestimate of x leads to underestimates of both x + y and x + z, which

again cance] when we form the quotient. In either case, an error in x is substantially

~"You, can postpone reading this section without a serious loss of continuity. The material covered here is
- Mot used again uatid Section 5.6.
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canceled out of the quotient (x + y)i(x + 2), and our stepwise calculation com-

pletely misses these cancellations.
Whenever a function involves the same quantity more than once, as in (3.38),

some errors may cancel themselves (an effect sometimes called compensating er-
rors). If this cancellation is possible, then a stepwise calculation of the uncertainty
may ovetestimate the final uncertainty. The only way {0 avoid this overestimation is
to calculate the uncertainty in one step by using the method I will now develop.®
Tet us suppose at first that we measure two quantities x and y and then calculate
some function g = g(x, y)- This function could be as simple as ¢ = X + y or some-
thing more complicated such as g = (¢ + y)sin (xy). For a function q(x) of a single

variable, we argued that if the best estimate for x is the QUMDbET Xpeq then the best
estimate for g(x) 15 G(Xpes)- Next, We argued that the extreme (that is, largest and
smallest) probable values of X aTe Xy = O¢ and that the corresponding exireme

values of g are therefore

q(xbest x ax) (339)
Finally, we used the approximation
dq
glx + ) = g(x) + E;u (3.40)
(for apy small incrament.u) to rewrite the extreme probable values (3.39) as
G06es) = | 70 | O (341

where the absolute value is {0 allow for the possibility that dg/dx may be negative.

The result (3.41) means that 3q = dq/dx|x. -
When g is a function of two variables, (%, y), the argument is similar. If Xpest
are the best estimates for x and y, we expect the best estimate for g to be

and Yoest
Thest = 'Q(xbest: ¥ best)

y in this result, we need to generalize

in the usual way. To estimate the uncertaint
ables. The required generalization

the approximation (3.40) for a function of two vari

15

dq aq ' 2
Q(x u’ y U) q(x’ y) ax u ay v ( ) ;

and dg/ox and dg/dy are the so
y. That js, dg/dx is the result of -
ce versa for 3g/ay.
(3.42), sec Prob

are any small increments in x and ,
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{For further discussion of partial derivatives and the approximation
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negative, we find, for the extreme values of g,

il dq
q(xbest: ybcsl) * {a_z‘ ar + Igl 3y .

* This means that the uncertainty in gix, y) is

- || P_qja |
dq ’ax ax + P y. (3.43)

Before I discuss various generalizations of this new rule, let us apply it to rederive
some familiar cases. Suppose, for instance, that

qx,y) = x+y; (3.44)

that is, g is just the sum of x and y. The partial derivatives are both one,

oq g

= == =1 3.4

ox ay ’ (343)
and so, according to (3.43),

8g = & + dy. ' (3.46)

This is just our original provisional rule that the uncertainty in x + v is the sum of
the uncertainties in x and y.

In much the same way, if g is the product ¢ = xy, you can check that (3.43)

implies the familiar rule that the fractional uncertainty in ¢ is the sum of the frac-
tional uncertainties in x and y (see Problem 3.45).

The rule (3.43) can be generalized in various ways. You will not be surprised
to learn that when the uncertainties éx and &y are independent and random, the sum
(3.43) can be replaced by a sum in quadrature. If the function g depends on more
than two variables, then we simply add an extra term for each extra variable. In this
way, we arrive at the following general rule (whose full justification will appear in
Chapters 5 and 9).

(3.47)

(3.48)
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Although the formutas (3.47) and (3.48) look fairly complicated, they are easy
to understand if you think about them one term at a time. For example, suppose for
a moment that among all the measured quantities, X, ¥ - .., % only x is subject to
any uncertainty, (That is, fy=...=0= 0.) Then (3.47) contains only one term
and we would find '

8q = l%%lax oy = - = & = 0) (3.49)
In other words, the term [3g/ox|8x by itself is the uncertainty, or partial uncertainty,
in g caused by the uncertainty in x alone. In the same way, |dg/dy|8y is the partial
uncertainty in g due to 8y alone, and so on. Referring back io (3.47), we sec that
the total uncertainty in g is the quadratic sum of the partial uncertainties due to each
of the separate uncertainties &, 8y, ..., 62 (provided the latter are independent).
This is a good way to think about the result (3.47), and it suggests the simplest way
to use (3.47) to calculate the total uncertainty in g: First, calculate the partial uncer-
tainties in g due o 8%, &%, .. - 8z separately, using (3.49) and its analogs fory, ...,
z; then simply combine these separate uncertainties in quadrature to give the total
uncertainty as in (3.47).

In the same way, whether or not the uncertainties &x, 8y, ..., 8z are indepen-
dent, the rule (3.48) says that the ‘total uncertainty in g never exceeds the simple
sum of the partial uncertainties due o each of &, 8y, . .., oz separately.

Example: Using the General Formula (3.47)
To determine the quantity
g = ¥y — %"
a scientist measures x and y as follows:
x = 3.0+x01 and y = 20+ 0L
What is his answer for g and its uncertairity, as given by (3.47)?

His best estimate for g is easily seen to be Gpey = 6.0. To find &g, we follow
the steps just outlined. The uncertainty in g due to 8 alone, which we denote by

8q,, is given by (3.49) as
8gq, = (error in g due to 8x alone)

9q
dx

2y — Yo = (12— 41 x 01 = 08

(3.50)

|

Similarly, the uncertainty in g due to dy is
dq, = (error in g due o 8y alone)
9q
ay

dy

W — 2ley = [9 - 12) X 01 = 03,
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Principal Definitions and Equations of Chapter 3

Finally, according to (3.47), the total uncertainty in g is the quadratif: sum of these
two partial uncertainties:

dq = \(3q.) + (53, (3.52)
= J(0.8)% + (037 = 09

Thus, the final answer for g is

g = 60 %= 09.

The use of (3.47) or (3.48) to calculate uncertainties is reasonably straightfor-
ward if you follow the procedure used in this example; that is, first calculate each
separate contribution to 8¢ and only then combine them to give the total uncertainty.
This procedure breaks the problem into calculations small enough that you have a
good chance of getting them right. It has the further advantage that it lets you see
which of the measurements x, ¥, . . . , z aré the main contributors to the final uncer-
tainty. (For instance, in the example above, the contribution dg, = 0.3 was so small
compared with 8¢, = 0.8 that the former could almost be ignored.)

Generally speaking, when the stepwise propagation described in Sections 3.8 to
3.10 is possible, it is usually simpler than the general rules (3.47) or (3.48) discussed
here: Nevertheless, you must recognize that if the function g(x, . . ., z) involves any
variable more than once, there may be compensating errors; if so, a stepwise calcu-
lation may overestimate the final uncertainty, and calculating g in one step using
(3.47) or (3.48) is better. k

Principal Definitions and Equations of Chapter 3

THE SQUARE-ROOT RULE FOR A COUNTING
EXPERIMENT

If we observe the occurrences of an event that happens at random but with a
definite average rate and we count » occurrences in a time 7, our estimate for the
true average number is

(average number of events in time T) = » + \/i_f [See (3.2)]

RULES FOR ERROR PROPAGATION

The rules of error propagation refer to a situation in which we have found
various quantities, x, . . ., w with uncertainties 8x, ..., 6w and then use these values
{0 calculate a quantity g. The uncertainties in x, ..., w “propagate” through the
calculation (o cause an uncertainty in g as follows:
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Sums and Differences: If

q = x+ - +z— (w4 T w),

then

8g = B + - + (82 + (Bu -+ (W)

(provided all errors are independent and random)

and

&g < Sx+ -+ &+ Su+ -+ w

(always). [See (3.16) & (3.17)]
Products and Quotients: If '
x X" Xz

qéuX---Xw’

then _
8q Sx\2 oz\2 AV Sw\2
@ BT (T ()
lql x z u w
(provided all errors are independent and random)
and
8 _de, L G b
lal S Iwl
(always). [See (3.18) & (3.19)]
‘Measured Quantity Times Exact Number: If B is known exactly and
| q = Bx,
then
5g = |B|& or, equivalently, . @ [See (3.9)]
gt
Uncertainty in a Power: If n is an exact gumber and
g=
then
89 _ bx
— = lnj=. See (3.20)]
d "R [See

Uncertainty in a Function of One Variable: If ¢ = g(x) is any function of x.
then

8q = % \ x. [See (3.23)]

Sometimes, if g(x) is complicated and if you have written a program fo calculate
q(x) then, instead of differentiating q(x), you may find it easier to use the equivalent

[ FeY
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[See (3.9)]

[See (3.26)]
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Problems for Chapter 3

formula,
8g = |qltpes + 8X) = G(Foes)l [See Problem 3.32]
General Formula for Error Prepagation: If ¢ = ¢(x, ..., z} is any function of
X ...,z then
: 0 2 og . \?
8q: (_qax) +...+(_q§z)
dx az
{(provided all errors are independent and random)
and
0 = |facs v |9
ax dz
(always). [See (3.47) & (3.48)]

Problems for Chapter 3

For Section 3.2: The Square-Root Rule for a Counting Experiment

3.1. % To measurc the activity of a radioactive sample, two students count the
alpha particles it emits. Student A watches for 3 minutes and counts 28 particles;
Student B watches for 30 minutes and counts 310 particles. (a) What should Student
A report for the average number emitted in 3 minutes, with his uncertainty? (b)
What should Student B report for the average number emitted in 30 minutes, with
her uncertainty? (¢) What are the fractional uncertainties in the two measurements?
Comment.

3.2. % A nuclear physicist studies the particles ejected by a beam of radioactive
nuclei, According to a proposed theory, the average rates at which particles are
ejected in the forward and backward directions should be equal. To test this theory,
he counts the total number ejected forward and backward in a certain 10-hour inter-
val and finds 998 forward and 1,037 backward. (a) What are the uncertainties asso-
ciated with these numbers? (b) Do these results cast any doubt on the theory that
the average rates should be equal? '

3.3. % Most of the ideas of error analysis have important applications in many
different fields. This applicability is especially true for the square-root rule (3.2)
for counting experiments, as the following example illustrates. The normal average
incidence of a certain kind of cancer has been established as 2 cases per 10,000
people per vear. The suspicion has been aired that a certain town (population
20,000) suffers a high incidence of this cancer because of a nearby chemical dump.
To test this claim, a reporter investigates the town’s records for the past 4 years and
finds 20 cases of the cancer. He calculaies that the expected number is 16 (check
this) and concludes that the observed rate is 25% more than expected. Is he justified
in claiming that this result proves that the town has a higher than normal rate for

- this cancer?




