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Statistics of Counting

5.1 INTRODUCTION

In this chapter, T will examine the statistical nature of
radioactivity counting. Statistics is unavoidably mathe-
matical in nature and many equations will emerge from
the discussion. However, only as much general statis-
tical mathematics will be introduced as is necessary to
understand the relevant matters. I will go on to discuss
the statistical aspects of peak area measurement, back-
ground subtraction, choosing optimum counting parame-
ters and the often superficially understood critical limits
and minimum detectable activity. I end with an examina-
tion of some special coonting situations.

At its simplest, radioactivity counting involves a source,
a suitable detector for the radiation emitted by the source,
a means of counting those decay events that are detected
and a timer. If we measure the rate of detection of events,
we can directly relate this to the number of radicactive
atoms present in the source. The basic premise is that the
decay rate of the source (R) is proportional to the number
of atoms of radioactive nuclide present (N), the propor-
tionality constant being the decay constant, A. Thus:

N

=— =N
dt

(5.1)

R is, of course, what would normally be referred to as
the activity of the sample. In principle, therefore, if we
count the number of events, C, detected by the detector
in a fixed period of time, Atf, we can estimate the decay
rate as follows:

C

R—=— 5.
At (5:2)

where €, in Equation (5.2}, is the effective efficiency of
counting, taking into account the source—detector geom-
etry, the intrinsic detection efficiency for the particular

radiation and the probability of emission of the detected
radiation.

While it is true to say that all scientific measurements
are eslimates of some unattainable true measurement, this
is particularly true of radioactivity measurements because
of the statistical nature of radicactive decay. Consider a
collection of unstable atoms. We can be certain that all
will eventually decay. We can expect that at any point in
time the rate of decay will be that given by Equation (5.1).
However, if we take any particular atom we can never
know exactly when it will decay. Tt follows that we can
never know exactly how many atoms will decay within
our measurement period. Our measurement can, therefore,
only be an estimate of the expected decay rate. If we were
to make further measurements, these would provide more,
slightly different, estimates, This fundamental uncertainty
in the quantity we wish to measure, the decay rate, under-
lies all radioactivity measurements and is in addition to
the usual uncertainties (random and systematic) imposed
by the measurement process itself,

5.1.1 Statistical statements

At this point, it is appropriate to introduce a number
of statistical relationships with which T can describe the
distribution of a number of measurements. This section
must necessarily be somewhat mathematical. However,
texthooks on statistics will cover the theoretical basis of
these parameters in much detail, and here 1 will content
myself with a number of simple definitive statements.
Later, these will become relevant to an understanding of
counting statistics.

Let us assume we have m measurements, x,, x;, X3,

. x,., ¢ach of which is an estimate of some parameter.
The nature of the parameter is not important: it might be a
voltage, a length or, more relevantly, a nomber of events
within a particnlar count period. The actual form, that is
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shape of the distribution of the measurements, need not
concem us at the mement. The distribution will have a
value, E(x), which we can expect cur measurements to
have. Thus:

Expected value = E{x) (3.3
The difference between any particular value, x;, and the
expected value gives some idea of how good an esti-
mate that particular measurement was. Taking the differ-
ences for all of the measurements into account would give
an idea of the overall uncertainty of the measurements.
However, some measurements will be below the expected
value and others above; taking a simple sum of the differ-
ences is lkely to give a result of precisely zero. To get
around this, the sum of the square of the differences is
used. The resulting factor is called the variance, so that:

var(x} = expecied value of [x — E(x)F

~ E{[x — E(x)]’} (54
Note that the variance is not a function of x but a param-
eter of the distribution of x. A more convenient factor,
which indicates the spread of the values about the E(x),
is the standard deviation, o,. This is simply the square
root of the variance:

O, = A/ var(x) (5.5)
Standard deviation is more meaningful in the sense that it
has an obvious relationship to the expected value and the
spread of the distribution. Variance will play a large part in
this discussion., Variance is additive, standard deviations
are not. Calculating the standard deviation relative to the
expected valoe gives the relative standard deviation, r,,
sometimes referred to as the coefficient of variation, and
often expressed as a percentage:

r. = 1000,/ E(x) (5.6)
If we have the results of two measuremenis that we wish
to combine, say x and y, then it is a straightforward matter
to show that the following relationships hold:

E(x+y) = E(x) + E(y)
E(xy) = E(x}E(y) +cov(x. y)

(5.7)
(5.8)

The term cov(x, y) is the covariance of x and v and is
analogous to the variance:

covix, y) = E{[x— E(x))[y - E()]} (59

Covariance is a measure of the iaterrelation, or corre-
lation, between x and y. When there is no correlation,
as 1s likely to be in all the cases discussed here, then
covix, ¥) =0.

var{x+ y} = var(x} + var(y) (5.10)

var{x —y) = var(x) +var(y} {5.11)
var(xy) ~ E(y)™var(s) + E(x)’var(5)

+2E(x)E(y}cov(x, y) (5.12)

It can alse be shown that, by making the covariance term
negative, this relationship also holds for var(x/y). More
usefully, if as we expect cov{x, yv) =0, and using relative
standard deviations, we can rearrange Equation (5.12) to:

ryt=ryt=rntn? (5.13)
Finally, if & is a constant then:
var{k) =0 and cov(k, x) =0 {5.14)
E(kx) = kE(x) and var(kx) = k’var(x) (5.15)
E(k+x)=k+ E(x) and var(k +x) =var(x) {5.16)

These relationships are valid whatever the distribution of
our measured values. When we make a radioactive count,
our ultimate intention is to ¢stimate the sample activity
and a degree of confidence in that estimate of activity.
Statistically we can achieve the former aim by identifying
the measured count, C, as the expected nuber of decays,
E{n), and relating the confidence limit to the variance
var{n}. Thus, in principle:

C = n= E{n) = var(n)

Both the expected value and the variance depend upon
the form of the relevant statistical distdbution and we
can now move on to consider the particular case of the
distribution of radioactive counts.

5.2 COUNTING DISTRIBUTIONS
3.2.1 The binomial distribation

In principle, the statistics of radioactive decay are bino-
mial in nature. If we were to toss a handful of coins onto
a table and then examine the arrangement, we would find
coins in one of two dispositions — heads up or tails up.
Similarly, if we could prepare a radioactive source and,
during a particular period of time, monitor each individual



Statistics of counting 103

atom we would see that each has only one of two possible
fates — to decay or not decay.

Let us suppose that we could determine exactly which
of the atoms, and how many, decayed during the count
period. If we were able to repeat the experiment, we
would find that different atoms and a different number of
atoms decayed in the same period of time. We can regard
each such measurement, each count, as a sample in the
statistical sense, an attempt to estimate the true decay rate.
We would expect the distribution of these counts to fit
a binomial distcibution (sometimes called a Bernoulli
distribution). This distribution applies because:

o There are two possible states for each atom.

* The probability of an atom decaying during the count
period is independent of how often we look.

® The decay of one particular atom does not affect the
probability of other atoms decaying.

If we consider each atom in our source there is a certain
probability, p, that the atom will decay during the period
we choose to make our measurement. This probability
is related to the decay constant of the atom and it is
straightforward to demonstrate that:

p=(-e™) (5.17)

where At is the count period and A the decay constant.
Since there are only two possible outcomes for each atom
the probability that the atom will not decay must be I — p.
The binomial distribution predicts that, in any particular
sample of N atoms the probability of x atoms decaying
in a given time, P(n), is:

Py = o

r(l—p " (5.18)

So if we have, say, 20 atoms and the probability of
decay during the count is 0.1, Equation (5.18) predicts
that on 9 occasions out of 100 we would find that 4 atoms
decayed. This means that if our detection system were
100 % efficient in detecting decays then we would collect
4 counts on 9 out of 100 occasions. Figure 5.1 shows this
probability distribution when the probability, p, is 0.1,
0.5 and 0.9. Unless the probability is close to 0.5, the
probability distribution is skewed.

Regardless of the shape of the distribution, the most
likely number of decays is given by Equation (5.19):

E(r)=pN (5.19)
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Figure 5.1 Binomial probability distributions for p = 0.1 (left),
0.5 {centre} and 0.9 (right}

In the specific cases plotted in Figure 5.1 the most likely
counts would be 2, 10 and 18 for the three chosen prob-
abilities. The variance of the distribution is:

var{n) = (1-p)E(n) = (1 - p)pN (53.20)
Taking the square root of the variance, we can calcolate
the standard deviation and, for the three specific cases, this
would be 1.34, 2.24 and 1.34 decays {or counts, assuming
100% efficiency). Equation (5.19) is interesting in that
it predicts that as the probability becomes very small ot
very near to 1, the width of the distribution or, we might
say, the uncertainty on the number of decays, tends to
zero. This is not nnreasonable. If p =1, we can expect
all atoms to decay and if p =0 none to decay. In either
case there is ne uvncertainty about the number of decays
which would be observed.

To relate this to practice, suppose we have counted
a sample on a detector with known efficiency, &, and
measured C counts in time Afs. If the decay constant of
the nuclide is known to be A, then using Equation (5.17}, p
can be calculated. The overall probability of detection, as
opposed to decay, is pe and the expected count could be:

E(C)=peN {5.21)
If we take the measured count C as an estimate of the

expected count then Equation (5.1} allows us to calculate
the rate of decay, R, as:

AC

R=AN=——-—
{(1—e-Mng

(5.22)
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In meost practical situations, the nureber of radioactive
atoms present is exceedingly high and the probability
of detection very small. This means that the number of
decays detected (n decays or C counts) is very much
smaller than the number of radioactive atoms present (V).
(Exceptions to this general situation, when the efficiency
of detection and probability of particle emission are very
high and when the count period is comparable to the half-
life of the nuclide, are discussed in Section 5.7.} In fact, if
we assume the detection efficiency to be subsumed into p,
it makes no difference to the statistics whether we consider
number of decays or number of counts detected and from
now on we can take # and C as equivalent. Under these
circumstances, various mathematical approximations can
be made to Equation (5.18) which lead to a new form for
the probability distribution.

5.2.2 The Poisson and Gaussian distribofions

The Poisson distribution is used in statistics whenever
the total number of possible events, in our sitvation N, is
unknown. The distribution is described by the equation:

Py = O oo

(5.23)

As before, P(n) is the probability that a count of » will be
observed given that the expected count is E(x). This distri-
bution has, as might be expected, some similar properties
to the binomial distribution. For example, Equation (5.19}
is still valid; however, because p << 1, Equation (5.20}
approximates to:

var(n) = E(n) (5.24}

Curiously, a strict consideration of the mathematics
produces the conclusion that if we observe this count »
then the expected value, E(n) is:

E(n)=n+1 (5.23)
This, at first, surprising statistical fact reminds us that if
we were to detect no counts at all, the expected count
need not be zero. In most situations, either » is large or is
to be corrected for background and it is commeon practice
to ignore this particular statistical fact and take n as a
direct estimate of E(n).

Figure 5.2 compares the binomial distribution and the
Poisson distribution when both have E(#) == 10. The bino-
mial case repeats the data in Figure 5.1 and represents 20
atoms and a probability of decay of 0.5. In the Poisson
case, the number of atoms is unknown but large and p is
very small. At such a low expected value, there are clear
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Figure 5.2 Cemparison of the binomial, Poisson and Gaussian
distributions for E(n) = 10

differences. The third distribution shown in Figure 5.2
is the Gaussian or Normal distribution for the specific
case where the variance is equal to the expected value,
again 10 counts. This is the distribution one would expect
if the differences between the observed and expected
counts were solely due to chance. The similarity between
the Peoisson and Normal distributions is not surprising.
When the expected number of counts is greater than 100,
then further mathematical approximations can be made to
Equation {5.23) which yield the formula for a Gaussian
distribution:

(5.26)

—[n— E@n)P }

Pln) = E(n)

1
' 2wE(n) P {

To summarize, counting statistics are fundamentally
binomial in nature. Under most counting circumstances,
we can assume a Poisson distribution of counts. The
exceptions to this general rule are:

® when the counting period is long compared to the half-
life and the detection efficiency is high;

e when the total number of counts is very small.

will be discussed in

These special sitnations

Section 5.7.

5.3 SAMPLING STATISTICS

If we take a large number of measurements of the
same parameter, we would find differences in the actual
measured value from measurement to measurement. In
effect, each measurement is a sample from the infinite
number of possible measurements we could make. These
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measurements wifl have a distribution and, of course, an
expected value and a variance. I the difference between
each measured value and the expected value is due purely
to chance, then there is considerable evidence to suggest
that the distribution will be Gaussian, often referred to
as a Normal distribution in this coniext. In this case, the
equation will have a form similar to the special case in
Equation (5.27):

Pi{n) =

—x _E)z] (5.27)

1

om [ 207
that is, the probability of measuring a value x given a
particular expected value, X, and a distribution with a
standard deviation of o (see Figure 5.3 below). Suppose,
as I suggested earlier, we have m measurements, x,, x,
X3.. .. X, We can define the expected value, or mean,
%, of these measurements as:

rx

mn

3‘(‘:

(5.28)

where the summation is understood to inchude all of the
measurements x; to x,. The mean is also referred to as
the average. We can show that as m becomes larger, then
X becomes a more precise estimate of the expected value.
If the tre, but unknown, value of the parameter is X,
then:

in the limit as m increases: ¥ E{x) = X

It is worth emphasizing this point. The mean, X, js not
the true value of the parameter, only a better, more reliable
estimate. The width of the distribution of measured values
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Figure 53 A Gaussian distribution with unit standard
deviation

gives an idea of the overall uncertainty of the measure-
ments. The factor quantifying the width of a distribution
is the variance, which is calculated as:

var(x) = ;—gi—_—f)z =457 (5.29)

where s is an estimated standard deviation, not to be
confused with the true standard deviation of the distri-
bution, ¢, from which we have taken our sample. The
denominator of Equation (5.29), m— 1, is referred to as
the number of degrees of freedom,

As with the mean, the more items taken together, the
more precise the estimate of the standard deviation:

5% 02, as m increases

{5.30)
It is becoming common to refer to standard uncertainty,
that being the uncertainty on a value at the level of one
standard deviation. This may seem an unnecessary addi-
tion to the vocabulary but the term does have the advan-
tage of emphasizing that we are dealing with uncettain
measurements. It is, perhaps, worth noting that in statis-
tical texts it is more usual to discuss ‘standard error’ rather
than ‘standard uncertainty’. I shall keep to the latter usage
as being descriptive of the actual situation, reserving the
term ‘error’ for mistakes and the use of incorrect values
(see also Section 5.8.1 relating to use of the terms ‘accu-
racy” and ‘precision’}.

5.3.1 Confidence limits

‘When we quote the result of an experimental measure-
ment, whatever the technique used, it is essential that it is
accompanied by a realistic estimate of the uncertainty of
the measurement. If we refer again to the Normal distri-
bution of all possible results of a particular measurement,
then the uncertainty of the measurement must be related
to the width of the distribution. Suppose then that we
were to quote our result as, say, a-t s, where s represents
one standard uncertainty (4 not uncommon procedure).
This statement says that the tree result (which we can
never know} is most likely to be close to a and is less
likely to lie below a — 5 or above a4 5. We can see from
Figure 5.3, where the Normal distribution is plotted with
the abscissa scaled in units of one standard deviation, that
there is a great deal of scope for the true value to lie
outside of these limits and still be *within” the distribution
of results.

To be more certain that our quoted limits encompassed
the true value, perhaps we should quote two or three times
the standard uncertainty. Whatever limits we choose, we
still need to quantity the likelihood of the true value being
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outside them. Or, to put it the other way about, we must
quote our limits in such a way that we have a stated
degree of confidence that the true value lies somewhere
within them -- hence the term ‘confidence limits’. This
degree of confidence is related to the area of the Normal
distribution lying within the limits and can be calculated
precisely from the parameters of the Normal distribution.
The number of times the standard uncertainty we decide
to quote to achieve our desired degree of confidence is
called the coverage factor. Table 5.1 lists the degree of
confidence associated with various coverage factors. So,
for eéxample, if we wish to be 90 % confident that the trie
result lies between the quoted limits we might quote the
result as follows, with a coverage factor of 1.645:

at1.6455 (90 % confidence)

Table 5.1 Coverage factors and the
associated degree of confidence®

Coverage Area within
factor confidence limits
%)

1.0 68.3

1.645 90.0

1.96 95.0

2.0 5.5

2.326 98.0

2.576 99.0

30 99.9

2 Confidence limit = coverage factor x s.

The confidence limit quoted in this manner may be
referred to as the expanded uncertainty. This particular
result has confidence limits that are symetrical about
the mean because we have assumed that the distribution
of the measurements is Normal. If the distribution were
skewed in any way, or perhaps if we were aware that
the measurement was possibly, for some reason, biased
high {or low), then the lower and upper confidence limits
would not be identical.

It is a common practice to quote confidence limits as a
percentage of the value rather than as standard deviation.
For example, Table 5.2 demonsirates a calculation of
weighted mean (which will be explained in due course}.
If we take the first weighted mean result, we might quote
it as:

10.33 (8.03 %, lo)

The advantage is that, expressed in this manner, the
uncertainty of the result is immediately obvious whereas

Table 52 Nlusiration of weighted mean®

Ser A
Count Time {s) cps %RSD
102 10 16.2 990
53 5 10.6 13.74

Simple mean: 10.40 £ 0.28(2.72%)
‘Weighted mean: 10.33 +0.83(8.03 %) pooled
or = 0.19(1.81 %) weighted

Set B

Count Time (s) cps FHRSD

1020 100 10.2 313
560 50 11.2 423

Simple mean: 10.70£0.71(6.61 %)
Weighted mean: 10.51 £ 0.26(2.52 %) pooled
or +0.46(4.41 %) weighted

“Figures are to be regarded as intermediate,
un-rounded, values.

the alternative, 10.33 +=0.83, needs a degree of mental
arithmetic to appreciate whether the result is of good or
poor quality.

While discussing the quoting of results it is, perhaps,
appropriate to comment on the oft-abused malter of
rounding. We might well have quoted the result above as
10.333 4-0.829. Taken at face value, that implies that we
are able to determine the confidence limit to one part in
829. That is, not 0.828 nor 0.83(, but 0.829. In fact, we
were not able to determine the actual value to better than
829 in 10 333 (about one part in 12). In the light of this,
is it reasonable to suggest such a high degree of precision
for the estimate of the confidence limit? This is a prime
example of spurious accuracy.

A ‘mie-of-thumb’ suggested in a code of practice
published by the National Physical Laboratory (1973) is
as follows:

& Take the confidence limit and round it always upwards
50 as to leave only one significant figure, e.g. 0.829
becomes (.9.

& Round the result itself up or down according to the
normal rule to the same degree of precision as the
confidence limit, e.g. 10.333 becomes 10.3.

The result above rounded according to these rules
would become 10.340.9, a more honest staternent of what
was achieved by the measurement. The recommendation
by UKAS, the United Kingdom Accreditation Service
{1997), which is consistent with the broader advice in the
NPL code, is to quote a 93 % confidence limit (coverage
factor 1.96 — often rounded to 2} and to round to two
significant fipures. Thus, the result above would become
103417
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5.3.2 Combining the results from different
measurements

Suppose that we have made two measurements of the
same parameter and have calculated the uncertainty asso-
ciated with them. For example, we might have taken
measurements on two separate sub-samples of the same
radioactive sample and calculated the activity, ¢, and 4,,
in Becquerels per gram with confidence limits of 5, and s,
which for simplicity we will take as the 68.3 % confi-
dence limit (one standard uncertainty). We will assurme
that these confidence limits include alt sources of uncer-
tainty, not only those due to counting uncertainty:

eg atsand a, s,

Unless the variances of the two results are equal, it is
not statistically valid to take a simple mean. This is not
unreasonable. A simple mean accords equal importance to
each result. A result with a larger variance is less precise
and should not be taken as much notice of, The correct
procedure is to calculate a weighted mean, @:

2 aw;

2w

where w; are weighting factors for each individual result
and are simply the reciprocal of the variance of each
result. {As usual, the summation is taken to mean the sum
over all items.) For example, in the case suggested above:
w, = 1/5,% and w, = 1/5,%. The standard imcertainty of
the combined result is calculated from the pooled vari-
ance:

= (5.31)

1
2w

Because this calculation takes into account only the
individual sample uncertainties, implicitly assuming that
the distribution about the mean is satisfactory, this is also
known as the internal variance. Table 5.2 gives a couple
of numerical examples to illustrate the difference between
simple and weighted means. In Set A, the simple and
weighted means are similar but the simple standard uncer-
tainly does not reflect the fact that both measurements are
of poor precision, The weighted mean and pooled stan-
dard uncertainty give a much more realistic assessment of
the dala.

What, however, if the quoted uncertainties do not take
into account all sources of uncertainty? In Set B, count
times are taken ten times longer. The data is such that the
precision of each result is better but the actual results are
further apart. In this case, the pooled precision, 2.52 %, is
consistent with the precision of the individual results (as

(5.32)

var(a)inmma] -

it must be!) but does appear to be optimistic taking into
account that the difference between the results is nearly
10 %.

Of course, such a large difference could happen by
chance, by the statistical roll of the dice, but it is more
likely that there are other sources of uncertainty in addi-
tion to that due to counting and not accounted for in the
uncertainty quoted. We could, of course, simply ignore
the uncertainties on the individual values and calcu-
late a simple mean. That, however, would not take into
account the relative degrees of reliability of the individual
values. In such cases, a standard deviation derived from
the weighted variance might be quoted, calculated as
follows:

o > (ay '"E)Zwi

Var(a)cxhemﬂl - Z wi(m _ ])

Because this takes into account the spread of the results
about the mean, it is also known as the external variance.
This is quoted in Table 5.2 as the weighted uncertainty.
For Set B, the weighted uncertainty of 4.41 % is a more
satisfactory estimate of the actual uncertainty than the
pooled estimate. In practice, particularly if the work is
domne by compuier, it would make sense to calculate both
estimates and quote as the best result the weighted mean
together with the larger of the two uncertainty estimates.
There is no merit in underestimating uncertaintics.

Calculating both has in any case diagnostic value. If
experience of a particular measurement scheme shows
that the pooled variance is always a significant underesti-
mate of the actnal variance, then the measurement process
should be looked at in detdil to track down the hidden
sources of that extra uncertainty.

It should not be lost on us that a single radioactive
count has an inherent uncertainty and this should be borne
in mind when combining simple count data. A weighted
mean should always be used. In fact, because the variance
of a count is numerically equal to the count itself, simply
combining the count data together will do just that as
long as there are no significant sources of uncertainty
other than counting uncertainty. As an example, take Set
A data from Table 5.2. Simply adding together the counts
(102 + 53 = 155) and dividing by the sum of the count
times {1045 = 15) provides the weighted mean result
of 10.33 cps with an uncertainty (1o} of 0.83cps (l.e.
155/15), precisely the result shown in the table. Note,
though, that applying the same procedure to the data in
Set B would give an unsatisfactory result because of the
extra, unknown uncertainties.

When calculating weighted means, it is important that
the variances used only include those items of uncertainty
that are different from measurement to measurement.

(5.33)
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Common uncertainties should not be inciluded; otherwise,
correlations within the data are introduced.

" 5.3.3 Propagation of uncertainty

The previous section discussed combining the results of
different measurements to obtain a better overall result.
We noted that data Set B in Tabie 5.2 must have undis-
closed sources of uncertainty. Let us suppose that it
becomes apparent that the preparation of the sources had
introduced an extra uncertainty of 6.5 % in the case of the
first source and 5.3 % for the second. How can we include
the information? The calculation of the uncertainty for
each data item, using the example of Set B, is as follows:

o for the count of 1020: ./(3.13+6.57) =7.21 %;
» for the count of 560: ,/(4.23% +5.3%) = 6.78 %.

This would provide us with a weighted mean of 10.68 with
a pooled uncertainty of 4.94 %, consistent with the actual
spread of the data suggested by an external uncertainty
of 4.68 %. This is an example of propagation of uncer-
tainty. Because the source preparation factor is muiti-
plicative, Equation (5.13} from Section 5.1.1 can be used
to combine the uncertainties. The uncertainties are said to
have been combined in quadratare. (We will meet this
again later when discussing the factors that combine to
creale the width of gamma-ray peaks.}

In our example here, if the source preparation uncer-
tainty were a fixed amount for the method it would be
an ilem common to both sources. It should not, there-
fore, be included when the uncertainties on the individual
results are calculated. It should be taken inte account
by adding in guadrature to the weighted mean result. If,
in our example, the sample preparation uncertainty were
6.5% for both samples, then the overall uncertainty of
the weighted mean for Set B would be /(4412 +6.5%) =
7.85 %. The weighted mean value would be unchanged.

In a radioactivity measurement, we may have several
sources of uncertainty, all of which must be taken into
account in our final uncertainty. For example, we might
have:

=y Attt

where the various factors are the relative standard devia-
tions of, in order, the total, peak area measurement, source
preparation, standard calibration and the efficiency esti-
mate (which would, in turn, include uncertainties due to
gamma-ray emission probability and half-life).

Equation (5.13) can only be used in this way when
the various factors are multiplied together. If the factors

(5.34)

contributing to the overall result are additive, then Equa-
tions (5.10) and (5.11} are relevant. For example, assume
the resuit is calculated by an equation which includes
additive and muliiplicative factors, for example:

R=(C—B)xY/E

The process of combining uncertainties will have to be
done in separate stages. In this example, the overall uncer-
tainty of (C — B) must be calculated by using Equa-
tion (5.11). This uncertainty, expressed in relative terms,
can then be combined in quadrature with the relative
uncertainties of ¥ and E. Combination of uncertainties
will be discussed further in Section 5.8, where uncertainty
budgets are discussed.

5.4 PEAK AREA MEASUREMENT

In Chapter 3, 1 explained that a gamma-ray spectrum
consists of a large number of ‘channels’ in each of which
are accumulated all of those counts which fall within a
small energy range. We might have, for example, a 4096
channel spectrum covering an energy range of 2048keV,
the content of each channel representing the number of
counts received within a 0.5 keV energy window. Succes-
sive channels represent increasing energy. Within such a
spectrum, a gamma-ray appears as a distribution of counts,
approximately Gaussian, about a central point which we
can take to represent the gamma-ray energy (Figure 5.4).
In principle, the actual distribution of counts in a peak is
irrelevant; measurement of the peak area should require
no more than a simple summation of the number of counts
in each of those channels that we consider to be part of the
peak and subtraction of an allowance for the background
beneath the peak.

The background beneath gamma-ray spectrum peaks
can arise from many sources. In most cases, the back-
ground will represent the Compton continuum from other
gamma-ray interactions within the detector, within the
sample itself and from general background radiation
interaction with the shielding and the detector. Both
background radionuclides and other radionuclides in the
sample will contribute to this peak background. Unlike
simple counting where total counts are accumulated, the
measurement of natural background is of little use in
estimating the continuum background beneath a peak. In
some cases, those where the radionuclide we wish to
measure can be detected in the natural background (*°Co,
for example), allowance will have to be made for this addi-
tional peaked-background over and above the continuum
background. This will be considered later, and for the time
being we will make the assumption that the continuum
beneath the peak is linear.
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Figure 54 Portions of the spectrum of ®*Co gamma-rays measured on (a} Nal(TI) scintillation, and {b} Ge semiconductor detectors
(the dotied lines represent the underlying Gaussian distribution of counts})

Over the years, a number of simple algorithms for peak
area calculation have been used. The Covell method was
vsed in the early days of digital gamma-ray spectrom-
etry for measuring peak arcas in sodium iodide scintil-
lation spectra. The procedure was to locate the highest
channe! in the peak and then to mark the peak limits an
equal number of channels away from the centroid channel.
When using low-resolution scintillation detectors, peak
interference was frequent and it was often necessary to
restrict the portion of the peak measured to minimize the
effect of neighbouring, possibly overlapping, peaks (see
Figure 5.4). The fact that not all of the peak area was
taken into account was compensated for by ensuring that
the same fraction of the total peak (i.e. the same measure-
ment width) was used for all samples and standards.

With the advent of high-resolution detectors, peak
interference became the exception rather than the mle
and the peak limits were extended down the sides of
the peak to the background continuum level. This, the
total peak area method, is now the standard method for
peak area estimation for single un-interfered peaks. Other
methods for estimating peak background, such as the
Wasson and Quittner methods, found limited favour but,
except for a few special situations, these offered no overall
advantages. As an example, the Quittner method, which
involved fitting a polynomial function to the background
channels either side of the peak, is more accurate when
the peak sits on an obvious nenlinear background, such
as the top of a Compton edge.

5.4.1 Simple peak integration

In both the Covell and total peak area methods, the back-
ground level is estimated by using the channel contents at
the upper and lower edges of the peak region (Figure 5.5).

Count in channel

Channel number

Figure 5.5 Calculation of peak area using the Covell method

If we take the first channel on each side of the peak beyond
what we consider as being the peak region as representa-
tive of the background, then the gross (or integral) area

of the peak is:

(5.35}

where C, are the counts in the ith channel (see Figure 5.5).
The background beneath the peak is estimated as:

B=un(C __;+Cy.1)/2 (5.36)
where # is the number of channels within the peak tegion
and ¢ _y and Cy;, ; are the counts in the channels imme-
diately beyond the lower and upper edge channels L and
U. This background is, mathematically, the area of the

background trapezium beneath the peak. It is more useful
to think of this as the mean background count per channel
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beneath the peak, muitiplied by the number of channels
within the peak region.
The net peak area, A, is then:

U
A=G-B=3 C—n(Cp_+Cy,)/2

i=L

(5.37)

It is important to appreciate that while we can calculate
precisely the number of counts within the peak region
{(G), we can only ever estimate the number of background
counis beneath the peak. We can never know which counts
within the peak region are due to background and which
are the peak counts. In most spectra, the peak background
continuum derives from the sample itself. Unlike simple
total activity counting, such as Geiger—Miiller counting,
we cannot take away the sample to determine a precise
background count. In certain circumstances, in particular,
when small peaks lie on large backgrounds, the uncer-
tainty on the background estimate can dominate the total
uncertainty of the peak area measurement.

Background estimates can be made more precise (i.e.
less umcertain) by using more channels to estimate the
mean count per channel under the peak. Figure 5.6 shows
the general principle. Instead of a single channel, # chan-
nels beyond each side of the peak region are used to
estimate the background beneath the peak.
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Figure 5.6 Calculation of peak area using extended back-
ground regions

Extending Equations (5.35) to (5.37) we find:

U L—-1 U+m
A=Y C-nl 3 C+ Y C,-) /2m (5.38)
fary =T —m =l

Again, the background term is the mean background
count per channel, but now estimated using upper and
lower background regions, m channels wide, multiplied
by the number of channels within the peak region. There
is little point in estimating a peak area uniess the statistical
uncertainty of that peak area is also calculated. If, as
we have stated above, A = G — B, then, according to
Bquation (5.11), the variance of the net peak area is given
by the sum of the variances of these two terms, giving:

var(A) = var{G) 4 var(B) (5.39)
Substituting for the individeal variances and using Eqgua-
tion (5.15):

U L-1 Udnr
var(A):ZC,-+n2( Y G+ Y c!.) 4 (5.40)
f=l i=.—m =041

From this, we can calculate the standard deviation, o,.

This simple method described here assumes that the
background is linear from the bottom to the top edge of the
peak. In fact, examination of well-defined peaks shows
that the background appears to have a ‘step’ beneath the
peak (see Figare 8.6). Nevertheless, for most everyday
purposes the method provides satisfactory results. The
simple method cannot, of course, provide satisfactory
results in cases where peaks are overlapped.

It is still possible to find incorrect expressions for the
calculation of peak area uncertainty in the literature. The
confusion arises becanse of a failure to appreciate that
unlike single background counts where the variance of
the count is numerically equal to the count itself, the
vatiance of a peak background depends upon the number
of background channels used. The offending expressions
are variation of the form:

a4 =./(A+2B), or 0, =./(G+B) (5.41}
These expressions are certainly correct for a single count
plus background count, for example, from a simple beta
counter. They are not valid for peak area calculations
where Equation (5.40) must be used, resulting in the
correct expression:

0, = 1A+ B(1+ nj2m)] (5.42)
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In the simple case of a single count plus background count,
var{B), according to Poisson statistics is indeed equal to
B and the expressions {3.39) and (5.40) are equivalent,
In the peak area case, while var(G) is numerically equal
to G, a sum of counts, the variance of the background
estimate, var(B), depends upon the number of channels
used to estimate (as opposed to measure!) the background
as we saw earlier. Equation (5.41) does not take this into
account and must, therefore, be generally incorrect. It is
only true for the single case when »n = 2m,

5.4.2 Peaked-background correction

So far, we have discussed only the situation when the
background to the peak is a continuum. Measurements
of radionuclides that are detectable in natural background
must take that additional background component into
account. In these cases, the backgrounds to the peaks will
be peaks themselves and will be unavoidably inciuded
within the overall calculated peak areas. A background
spectrum must be measured and the appropriate peak
areas determined and subtracted from the sample peak
areas. Peaked-background is most likely when dealing
with environmental samples where, one hopes, the sample
activity is near to background levels.

In some anpalysis programs, peaked-background
correction is made after peak areas and the backgrourid
contribution have been separately converted to nuclide
activities. Since the calculation of activity necessarily
introduces extra uncertainties, it makes sense to make the
background correction at the earliest possible stage of the
analysis process. Ideally, analysis programs should allow
the correction to be made in terms of peak count rate in
counts per second.

For example, if the peak area is A counts accomulated
over At seconds of live time, the net peak area will be:

Anpr = A~ Bppe x Az (5.43)
whete By is the background peak count rate in counts
per second and, 4s in any background correction, the vari-
ance {from which the standard uncertainty and %RSD can
be calculated) will be:

viar(Aygr) = var(A} + var{Bppe x A1)

var(Aypr) = A + {Bppe X fppe % A7) (5.44)
where rpge is the uncertainty on Bppo, expressed as
a relative standard uncertainty (nor as a percentage).
Although commercial spectrum analysis programs will
consider peaked-background correction, at least one,
GammaVision™, takes no account of the uncertainty on

the peaked-background. The effect of that is to increase
the number of false positive results when there is little or
no nuclide present over and above natural background.

Apart from natural background, peaked-backgrounds
can be experienced if the detector is used in an area where
there is an enhanced neutron flux. Gamma spectrometry
close to nuclear reactors and accelerators can be a problem
in this respect. Aithough the neutron fluxes may not be
significant from a safety aspect, activation of the mate-
rials of the detector system and prompt gamma-rays from
neutron capture can semetimes be a problem. Appendix C
lists the prompt gamma-ray from the activation of Cd
within a graded shield.

Leaving such special cases aside, it cannot be assumed
that background i$ constant. An obvious example is the
common background nuclide, ®Co, which decays with
a half-life of 5.27 years by about 1 % per month. Many
peaks within the natural background spectrum originate
in the uranium and thorium decay series. The degree of
ventilation in a counting room might alter the amount
of radon within the room and the amount of daughter
nuclides in equilibrium with it. Even the external cosmic-
ray background can change over a period of time. Back-
ground spectra should therefore be measured regularly.
Because of this variation, it is advisable to collate the
analysis of several backgrounds to establish a true uncer-
tainty over time, rather than depend upon the measurement
uncertainty of a single measurement.

There is further discussion of the sources of background
in Chapter 13,

5.5 OPTIMIZING COUNTING CONDITIONS
5.5.1 Optimum background width

Equation (5.40) implies that the uncertainty of the esti-
mate of the background must depend upon the number
of background channels used. Since the more channels
that are used the better the background estimate, it woulgd
appear that the more channels the better.

However, as one uses more chaonels there are
decreasing returns and one must not overlook the possi-
bility of neighbouring peaks causing a wide background
region to be nonlinear. What is the optimum number of
channels to use? This depends upon the circumstances.

Figure 5.7 summarizes the results of an assessment of
the measurement of a particular ill-defined peak taken
from an actual gamma-ray spectrum as a function of
the width of the background region. It is apparent that
the uncertainty on the peak area estimate (expressed
as percentage relative standard deviation in Figure 5.7}
decreases as the mumber of channels used to estimate the
background increases. It is obvious that two channels is a
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Figure 5.7 Variation of peak area uncertainty with background
region width {the inset figure shows the actual peak measured)

considerable improvement on one, and three rather better
than two are, but the reduction in uncertainty with each
exira channel used gets smaller and smaller. There would
be little extra value in using more than nine or ten channels
and, in practice, the presence of neighbouring peaks may
antomatically limit the width of the background region.

If the peak is well defined and has a large area, then
there may be little to be gained by using more than three
or four channels. In such cases, the background uncer-
tainty will have a much smaller effect on the uncertainty
of the net peak area estimate. Note that the number of
channels used for background estimate does not have any
statistically significant effect on the net area, only on the
uncertainty with which it is measured.

In an automatic spectrum analysis sysiem, a compro-
mise is usually made. Most commercial MCA and spec-
trum analysis programs use 3, 4 or 5 channels, depending
upon the manufacturer and the situation. Note that there
is no fundamental reason why the width of the back-
ground region should be the same above and below the
peak region. If there were a potentially interfering neigh-
bour above the peak, it would be sensible to use, say,
three channels above and, perhaps, ten below. In such a
case, the term 2m in Bquations (5.38) and (5.42) would
be replaced by (m; +my), where my and my are the
lower and upper background region widths. When its
‘Amtomatic’ peak background width option is selected,
GammaVision™ chooses 5, 3 or 1 chamnel widths on each
side of the peak independently, depending upon whether

the channels are deemed to represent a flat portion of the
background continoum.

5.5.2 Optimum spectrum size

How does the peak area uncertainty alter with the number
of channels in the spectrum? Conventional advice is often
to use as many channels as possible. If you have an
8192 channel MCA system, use 8192 channels, if 16384
use 16384, The argument is that as detector resolu-
tion increases with advances in detector manufacture, the
number of channels within each peak becomes smaller at a
constant energy range. From the point of view of the spec-
trum analysis program, it may be advantageous to have
more, rather than fewer, channels in each peak. However,
what is not always taken into account is that as the spec-
trum is spread over more channels, for a constant counting
time, the numbers of counts within the channels decrease.
In order to compensate we must increase the number of
channels in the peak region and ought to increase the
number of channels in the background regions. Unfortu-
nately, while the former will be done automatically by
the spectrum analysis software there may be no option
of altering the background region width. Figure 5.8(a)
demonstrates how the uncertainty of a peak area estima-
tion deteriorates as the number of channels in the spectrum
is increased without a corresponding increase in back-
ground width. :

The curves were calculated for a peak of energy
1332 keV, measured with a resolution of 1.8keV and for
peak areas of 500, 1000 and 10000 counts on a back-
ground of 1000 counts per keV with an overall range of
2048 keV. Figure 5.8(b) shows the appearance of the same
500 count peak in spectra ranging from 4096 to 32 768
channels. Although the overall peak area is unchanged, the
uncertainty (i.e. the scatter from channel to channel) of the
background is much greater because the counts are spread
over more channels. The consequence is poorer precision
for the area measurement. Even if the background region
width is adjusted to suit the change in spectrum size by
doubling the width for a doubling of spectrum size, there
is no advantage, from the point of view of peak area
precision, of using a larger spectrum size.

‘We should not forget though that peak width varies with
energy. (The effect this might have on conversion gain
was discussed in Chapter 4, Section 4.11.4.) If mainly low
energy, and narrower, peaks are to be measured, then more
channels per keV might be arranged either by increasing
amplifier gain or doubling the spectrum size. If only high
energy, and wider, peaks are of interest, then a smaller
amplifier gain or spectrum size might be preferable.
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Figure 58 (a} Deterioration of peak area precision with increase in spectrum size. (b} Broadening of peak and increase in

background ‘scatter’ with increase in spectrum size

Taking into account peak area measurement uncer-
tainty, and the need for a reasonable number of channels
within a peak (to facilitate peak searches and fitting), it
would seem that spectrum sizes of 4096 and 8192 chan-
nels would be optimum. With current detectors and spec-
frum analysis software, there seems little point in seeking
larger spectrum sizes.

5.5.3 Optimum counting time

In many laboratories, samples will not be submitted one
by one for individuval attention but in batches all to be
counted within as little time as possible. Efficient use
of counting equipment in terms of the time devoted to
counting each sample can pay dividends when time and
equipment are limited.

The first matter to be decided is the precision required
of the final result. Let us suppose that, as an example, the
reason for the count is to assess whether the ¥Cs in a
sample of lamb is above or below some action limit. It
might be that a poor precision result from a count of only
five or six hundred seconds might answer the question for
the majority of samples where the amount of ¥7Cs was
much lower, or indeed much greater, than the action limit.
This would leave much more time available to achieve
more precise results for those samples that are near to the
action limit.

For a single sample with unlimited counting time avail-
able, the optimum count period is that which will provide

sufficient counts in the spectrum to allow a peak area esti-
mate with the predetermined satisfactory precision or to
achieve a stated upper limit on activity. All multichannel
counting systems will allow count periods to be automati-
cally terminated after a preset time — usnally, live and real
time presets are options. Some systems will allow preset
maximuin coumnt of total count within a channel or spec-
trum region. While such options can be useful, their value
18 limited by the fact that the precision of small peak areas
may depend largely on the background continuum level.
If this varies greatly from sample to sample, then preset-
maximum count or gross region count are unlikely to be of
any real use. In this respect, the most useful systems are
those which monitor the actual peak uncertainty (as
%RSD)continuously during the countand allow acquisition
to be terminated when the desired precision is achieved.

More thought is needed when there are a number of
samples to be counted with differing activities. Unless the
facility for continucus monitoring of precision is avail-
able, there seems to be few options. Either one can select
a count period which is expected to be satisfactory for the
majority of samples and accept that some will be ‘over-
counted’ and some ‘under-counted’, or one might split the
samples into groups of roughly equal activity and count
each group under optimam conditions for that group.

A special case arises when a background spectrum
is necessary. An example might be the measurement of
low levels of ®Clo where a peaked-background correction
must be made. Let us assume that we have a batch of
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samples to count, plus backgroand, within a fixed overall
time period. Is there an optimum way to split the avail-
able counting time between samples and background to
achieve the best precision for the net count rates?

Taking simple single channel counts as an example, if
we measure C counts in time A#. and measure a back-
ground count B in At,, then the net count rate (R} is:

R=C/Ar-—BfAt, (5.45)
and the variance of this net count, V, is, according 1o
Equations (5.11) and (5.15):

V = C/At> + B/Atg? (5.46)
Now, if we have a fixed total count time, Afo 4 Atg,
then the optimum sharing of the time will be found when
the variance is at a minipwum, ie, when dV/dR = 0. If
the mathematics is followed through, we find that this
condition is obtained when:

Ate /Aty = /(C/B)

Now because C, the total count, can never be less than B,
then Azg, the time devoted to background counting, should
never be greater than Arg, or otherwise the precision of
sample measurement will suffer. For a sample of four
times background, we would achieve the best precision
if we counted the sample for two thirds of the available
time and the background for one third.

This is counter to the instinct to devote more counting
time to the background — cn the basis that because the
background correction is applied to all sample counts, it
should therefore be of high precisicn. If the sample count
is near to background, then both are equally important
in terms of precision. If the sample count rate is higher
than background, then the background is proportionately
less important and can be counted for a shorter time.
Ultimately, of course, as the sample activity becoies
very large the background becomes insignificant and we
might choose not to measure it at all. If there is more
than one sample, the conclusions are still valid. If the
activity of the samples is unknown, divide the counting
time 8o as to give the same counting fime for each sample
and background. If the samples are known to be greater
than background, then reduce the background time appro-
priately and share the saved time equally between the
samples.

(5.47)

5.6 COUNTING DECISION LIMITS

There is a great deal of confusion about the meaning of
such terms as ‘limit of detection’, ‘minimum detectable

activity” and ‘critical Hmit’. The terms are often treated
as if interchangeable and there appears to be a consid-
erable degree of freedom of choice in the manner in
which they are calculated. Of these, minimum detectable
activity (MDA) appeats to be the most variable and I shall
discuss this later. For now, T shall define a number of
statistically determined levels that answer the following
questions:

o Critical limit (L.) — a decision level: ‘Is the net count
significant?”

+ Upper limit (L) — ‘Given that this count is not statis-
tically significant, what is the maximum statistically
reasonable count?

o Detection &imit (L) — ‘What is the minimum number
of counts I can be confident of detecting?’

¢ Determination limit (L) — ‘How many counts would
T have to have fo achieve a particular statistical uncer-
tainty?’

¢ Minimum detectable activity (MDA) — ‘What is the
least amount of activity I can be confident of detecting?”

These are considered in some detail by Currie (1968)
and from a different perspective by Sumerling and Darby
(1981). Note that, with exception of the MDA, the limits
are calculated as a count rather than as an activity or other
derived quantity. Note also that critical limit and upper
limit relate to a measurement just made, whereas detection
limit {and the associated MDA} and determination limit
pose hypothetical “what if’ questions.

5.6.1 Critical limit (L)

‘Is the net count significant?” After a peak area has been
measured, it is important to establish its statistical signif-
icance, Since a peak becomes non-significant only by
being ‘lost® in the background, this cannot be done by
reference to the peak area alone but must take into account
the uncertainties of the background.

Let us suppose that a sample with no radioactivity at
all in it was measured a large number of times. A series
of counts — effectively background counts — would be
obtained for which the mean net count above background
was zero but distributed in a Gaussian fashion above and
below zero (Figure 5.9). The spread, or standard deviation,
of this distribution we will call ag.

How can we decide whether any particular measure-
ment near to zero is truly zero or represents a true positive
count? There must be some level, which we can call the
critical Hmit, above which we can be confident, to a
degree, that a net count is valid. We might decide that
if the count, A, were above a certain number of standard
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Figure 5.9 Definition of critical limit (the vertical axis repre-
sents the frequency of observing a particular count)

uncertainties of the distribution of counts we would be
confident that the count existed, namely:

e if A >k, x oy, the count is statistically significant;
e if A<k, x 0oy, the count is not significant.

The factor k, would be selected to provide a pre-
determined degree of confidence in the conclusion, For
example, we may consider that it would be acceptable that
if a count happened to be at the critical limit there would
only be a 1 in 20, or 5 %, chance that we would judge the
count to be present when in reality it was not. This is the
same as saying that at the critical limit we would be 95 %
certain that the count was not statistically significant. In
this case, in statistical probability terms « = 0.05 and,
from one-tailed probability tables (Table 5.3), we find that
k, would be 1.645. (We use the one-tailed tables because
we are only interested in the level being exceeded on one
side, the higher, of the distribution.)

Table 5.3 k&, factors for particular probability itervals and
the associated degrees of confidence

Probability 1-tailed 2-tailed ko factor
interval, o confidence confidence

0.1587 84.13 68,27 1.0
0.1 90.00 80.00 1.282
0.05 95.00 90.00 1.645
0.025 97.50 95.00 1.96
002275 ¥1.73 9545 2.00
0.01 99.00 98.00 2.326
0.00621 99.38 28.75 2.5
0.005 99.50 99.00 2.576
0.00135 99.87 99.73 3.0

Lo =16450, (95 % confidence limit) (5.48)
Operationally, this is applied as follows. If the net count
is above L., we can say that the activity has been detected
and can legitimately quote a value together with an asso-
ciated uncertainty (confidence limit). Otherwise, we must
judge the count not significant and ¢uote an upper limit
(see below). There is, of course, nothing sacrosanct about
the 95 % confidence level. A higher or lower level might
be chosen with an appropriate change to the value of k.
Whatever the value chosen, it should be a positive deci-
sion in the context of the overall measurcment system
rather than a selection by default.

In practice, we do not know o, the standard devia-
tion {or uncertainty) of the net background count distri-
bution. All we do have are the sample and background
estimates. Taking Equation {5.39) again and remembering
that var{count) = count, we can deduce that:

var{net count) = net count + background

+ var(background)} (5.49)
This is true whether we are dealing with single counts or
peak areas. [n the case where single counts are measured,
the total count is €, and the background the single count
B. If the net count C— Bis & then:

var(N} = N + B +var(B) {(5.50)
Now o is the variance of N when N = 0 and, for a single
count, var(B) = B. Therefore:

var(N = 0) = o = B+ var(B) =28 (5.51)
and it follows from Equation (5.48) that the critical limit,
for 95 % confidence, is given by:

Lo =1.645./(2B)=2.33./B {5.52)
For peak area calculations, the situation is complicated by
the fact that the uncertainty of the background estimate
depends upon the numbers of channels in peak and back-
ground regions, The principles leading to Equation (5.50)
are still valid but now B is not a single background count
but an estimate of a background that has an uncertainty
that is not numerically equal to B itself. If we return and
consider Equation (3.39) again, we remember that the
second term is in fact the variance of the background esti-
mate. Taking the second term of Bquation (5.38) as B
then:

var(B) = nB/2m (5.53)
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For a peak area, the expression equivalent to Equa-
tion (5.50) is therefore:
var(A)=A+B+nB/2m (5.54)

This is, in fact a restatement of Equation (5.42).
Taking the net peak area A as zero, and rearranging:

var(A = 0) = 0% = B(1+n/2m) (5.55)
and:
Le=1.645/[B{1+n/2m)] for a=0.05 (5.56)

Note that when the total number of channels used for the
background estimation equals the peak width (rn = 2m),
Equations (5.52) and (5.50) become identical. Equating
the peak background and its variance is a cormmon
misconception that appears in some current analysis
programs. The effect is to underestimate the critical limit.
For example, in the case of a peak 21 channels wide, when
background regions of three channels are used, the factor

used to calculate L should be 3.49 (Equation (5.56))
rather than 2.33 (Equation {5.52}) — an underestimate of
33 % which could lead to false positive identifications.

In most cases, the background to the peak will simply
be the Compton continuum. However, if there is a peaked-
background in addition, that must also be taken into
aceount.

5.6.2 Upper limit (L)

‘Given that this count is not statistically significant, what
is the maximum statistically reasonable count?’ The crit-
ical limit is used to assess the statistical validity of a
calculated net count, If the net count, NV, is below or equal
to L, then the activity must be declared ‘not detected’
and an upper limit or “less-than’ level quoted. So we wish
1o define a level which we can be confident (to an appro-
priate degree) exceeds the actual peak area, if any. We
can relate this to the notional disttibution of counts we
might obtain if we were to count the particular sample
a large number of times (distribution (b} in Figure 5.10)

k.59
—-»
B
Not
Background detected

<

MAY WILL
be be

Figare 5.10 Definition of detection limit (the vertical axis represents the frequency of observing a particular count)
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and define L, accordingly. In fact for any distribution of
counts, above or below the critical limit, we can say that:

Ly=N+k,oq (5.57)
where 0y is the uncertainty of the actual measured valoe;
k, is again the one-sided confidence interval and if we
take again as our confidence level 95 % (o = 0.05), then
we can be sure that there is only a 1 in 20 chance that
the true activity is greater than Ly;. If NV is less than zero
then, although statistically reasonable, it does not repre-
sent a true sitation and N should not be included in the
calculation of Ly;. There is little point in underestimating
the upper limit. For 95 % confidence then:

For a simple count:

Ly =N+1.645,/(N+2B) (5.38)
For a peak area:
Ly=A+1.645/[A+B(1+n/2m)] (5.59)

In both cases, the square root term is the standard devia-
tion of the count, or of the estimated peak area, calculated
in the normal manner, rather than of the background. You
may notice that if N happens to be precisely zero, then
Equations (5.58) and (5.59) reduce to the critical limit
expressions (Equations (5.52) and (5.56)). Quite so. If the
net count were zero, we would be 95 % certain that the
true count were less than L, — which is the definition of
the critical limit. In spite of this, the upper and critical
lirnits should not be used interchangeably.

5.6.3 Confidence limits

If a count, N, is found to be valid (i.e. greater than L.},
then the result may be quoted as a value with an appro-
priate confidence limit represented by & standard devia-
tions of N, as explained in Section 5.3.1:

Ntk oy

The intention here is to state that the count or peak area we
have measured lies, within a defined degree of confidence,
between the two limits, N — ko and N + &, 0. In this
case, the factor for the two-tailed probability distribution
should be used {see Table 5.3) and for 95 % confidence
we might chose to present the result as:

N+1960y

In the case of a single count, oy, is /(N 1+ 2B} and for a
peak area ./JA+ B(1+n/2m)}

5.6.4 Detection limit (Lp)

‘What is the ntinimum number of counts I can be confident
of detecting?’ It is important to appreciate that the critical
linit and upper limit are both a posteriori estimates based
upon actual measured counts. They are statements of whar
has been achieved in the measurement. The detection limit
answers the a priori question ‘If you were to measure a
sample, what would the count have to be for, say, 95%
certainty of detection?’ it is, therefore, a statement of
what might be achieved. Detection limit is often confused
with the critical limit. However, if the sample activity did
happen to be exactly L (distribution (b) in Figure 5.10),
statistically we would only be able to be sure (or 95%
sure!) of detection in 50 % of cases because the counts
would be distributed symmetrically about L. It is clear
that L, must be some way above L (see distribution (c)
in Figure 5.10).

Imagine that we have a sample with an activity that will
provide a count precisely at our limit of detection. The
distribytion of counts, were we to measure the sample a
large number of times, would have a standard deviation
of op,. We wish to be certain, to a degree determined by
kg, that the chance of not detecting the activity when it is
really there is only (3, namely:

Ly = Lot kgap = k00 Hhy oy (5.60)
If o and B are both taken to be .05 (although there is no
reason, other than convenience, why they should be so),
then kg =k, = 1.6435.

Taking the single count sitnation where the net count is
equal to the detection limit (ie. N=C—Band N =Lp),
we could make the following statements:

o the variance of the distribution of counts = 0,2 =C+

B;

at the detection limit, C must be L+ B;

for a single count, o,> = 25;

combining these, o> = L+ 0%

hencle from Equation (5.60), Ly, = k04 +k, (L, +
Ntz

oyt) 2.

. o 8 2

Rearranging this equation produces the simple relation-
ship:
L=k +2k, 0, (5.61)

Putting k, = 1.645 and remembering from above that
7,2 = 2B gives:

Ly =271+4.65,/B (5.62)
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Although for the peak area case the expression for g,
is more complicated, the mathemnatics is identical except
that the final expression becomes:

Ly =2714+3.29./1B(1 +n/2m)] (5.63)

In practice, the calculation of L, would be made once
a background or spectrum, one which represented the
particular situation for which detection limit is needed,
had been measured. Again, althongh there are circum-
stances for which Ly, = L, it is important to distinguish
between these limits. Note that it is not essential to make
o =[. If they are not equal, the principle remains but
the final expressions, derived from Equation (5.60) rather
than Equation (5.61), will be more complicated.

From Figure 5.10, we can see that if the expected count
due to a sample was below the critical limit we would
almost certainly not detect the activity. If the expected
count was above the critical limit but below the detection
limit then we might detect the activity. If it was above
the detection limit, then it is more likely than not that
we would detect the activity. It is important to realize
that it is possible to detect a count below the Ly, — the
detection limit. At first, this seems perverse. Consider a
gamma specttum. Is it not reasonable to suppose that,
if a peak was detectable in 95 % of cascs, it would be
visible within the spectrum? Indeed, it is quite easy to
show, by mathematicaily creating a continuum plus peaks,
as in Figure 5.11, that if a peak confains a number of
counts equivalent to Ly, that it is indeed, in most cases,

Critical
limit

Detection
limit

Background
counts/channel

o< count >l

30 000+

10000

3000

Counts per channel

1000 14~

Channel

Figure 5.11 Peaks containing numbers of counts eguivalent to
L, Ly and midway between, on different levels of background
continuum

visible by eye — and, one would hope, by the spectrum
analysis software. Practical experience of visual exami-
nation of gamma-ray spectra over many years leads me
to suggest that if a peak cannot be identified visually it
is not there — regardless of what the spectrum analysis
software decides.

Figure 5.11 shows that even peaks below L, but above
L can be seen. It follows that if a peak is not visible,
and not detected, that the actual number of counts present,
if any, must be less than L. However, the detection
limit relates to a particular confidence of detection —
in the equations derived above, 95 % confidence. Below
Ly, detection will be less certain but will often still be
possible.

5.6.5 Determination limit (L)

‘How many counts would I have to have to achieve a
particular statistical uncertainty?’ This limit is similar in
concept to the detection limit and is also an a priori calcu-
lation but answers the question ‘How many counts must
there be to provide a result with, say, 10 % uncertainty?’
This implies that for a count, or peak area, equal to L,
the standard deviation oy would be 10 % of Lg or:
Lq = kg0 (5.64)
where kg is the inverse of the required relative standard
deviation. Following the logic of the mathematics summa-
rized above for calculating Ly, it can be shown that:

Lo =ko{Ly+0,%) (5.65)
and the solution of this quadratic equation gives:
1
Lo =k [1+ (1+40,%/ky”) £]/2 (5.66)

For example, if the required precision is 10%, then
kg =10 and:

Lo =50[1+(1+B/12.5)"] (5.67)

for the simple count case; appropriale adjustment for g,
in the peak area case gives:

Lo = 50{1++[1+ B(1 +n/2m)/25] 2} (5.68)

5.6.6 Other calculation options

Note that all these expressions are in terms of couats — the
basic unit of uncertainty in radioactivity measurement —
and assume equal count and background measurement
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times. If count times are nol equal, then adjustment is
needed to account for this by using count rates, bearing in
mind that, if the count rate is C/Ar¢ then the variance of the
single count rate is C/Ar?. The adjustment is easily made
by altering every occurrence of B in Eguations (5.52),
(5.58), (5.62} and (5.67) to BArZ/As, where . and &
are the sample and background count periods, respec-
tively. In the case of peak area calculation, the sample
and background are derived from the same spectrum and
the question does not arise.

In the mathematics above, k, and ky were set equal.
There is no reason, other than convenience, why this
should be so and, in general, these confidence levels can
be set independently.

5.6.7 Miniraum detectable activity (MDA)

‘What is the least amouni of activity I can be confident
of measuring ?” This is a term often used loosely without
qualification or rigorous definition and different interpre-
tations can be made. An acceptable general definition
would be that, given the circumstances of the particular
spectrum measirement, the MDA is the minimum amount
of radioactive nuclide that we can be confident that we
can detect. First, this limit is, then, an activity rather than
a count limit. It is often equated to the activity equivalent
of the detection limit, L. However, there is a problem.
As we defined it above, the detection limit is that count
which we can be 95 % certain of detecting in the partic-
ular spectrum. However, as we saw, the detection limit is
some way above the critical limit. We could, therefore,
have the situation where a peak area measurement gave
a net area which was significant {i.e. above the critical
limit} but below the detection limit. Our activity result
would then be below the minimum detectable activity. In
fact, the minimum detectable activity is not the minimum
activity detectable! In Figure 5.11, there is visihle proof
that we can detect peaks that would give an activity below
the MDA, How should we interpret that?

The problem stems from the fact that there is a general
misunderstanding of the meaning of the limit of detection
from which MDA is derived. Ly, is that number of counts
that we can expect to detect in 95 % of cases {asswming
o is 0.05). From this, we can calculate the MDA, which
then becomes the activity that we can expect to detect in
95 % of cases. It answers the a priori question ‘How good
is your method?’ This is what should be quoted on tenders
or in documentation describing methods. The MDA should
not be guoted as an estimate of upper limit when a peak is
not detected. It is unfortunate that not all of the commer-
cial spectrum analysis programs give the option of quoting
anything but MDA when a peak is not detected.

If a peak is not detected, the client, the recipient of
the information, will wish to koow an upper limit on
the activity in the particular sample, not what amount of
activity the analyst would be 95 % confident of measuring
in an arbitrary similar sample in future.

I recommend the following strategy for normal gamma
spectrometry, which I should say, is counter to common
practice:

¢ Examine the region in the spectrum where the peak
is expected to be. Calculate the net peak area, its
uncertainty and the uncertainty of the peak-background
correction.

¢ Calculate the critical limit, L., and compare with the
net peak area.

¢ If the peak area is greater than L., quote a result with
an appropriate confidence limit.

¢ If the peak area is not significant (A < L), then caleu-
late the upper count limit, Ly, and pass that value
through the calculation to produce an eventual upper
activity limmit.

Note that no account is taken of whether the peak has
been explicitly detecied or not. If the net peak area is
significant, we can imply that it would have been detected
if sought. This procedure has the advantage that exactly
the same calculation is performed, whether the peak is
present or not. If the peak is not present, one can have
some confidence that the upper limit is realistic.

if the question arises ‘What is the performance of your
method?’ — perhaps to satisfy the requirements of a tender
to provide gamma spectrometry services — the procedure
should be:

¢ Find a spectrum that adequately represents the analyses
to be performed. For example, if tendering for measure-
ments on s0il, find a typical soil specttum measured
under the conditions, sample size, count period, etc.,
which are intended {0 be used. (One could also make
a case for selecting &2 worst-case or a best-case sampie
spectrum. )

® Using data from the spectrum, calculate the Lp at
the appropriate region of the spectrum and convert to
activity. That is then is the MDA for 95 % confidence
of detection.

If all those making tenders are using the same procedure,
then comparing tenders will be realistic and fair. Unfor-
tunately, that may not be the case. A major problem is
that there is a variety of equations that are used, righily or
wrongly, to calculate the MDA, Those quoted in one tender
might not be comparable to those in another. Even worse
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is the fact that in some software, even when the correct prin-
cipleis applied, the equations properly relevant to the single
count case are used for peak area measurement. Any spec-
trum analysis algorithms that equate the standard deviation
of the background with the square root of the background
are in error and will, in most cases, underestimate the mit.
Further comments about the manner in which the MDA is
caleulated in spectrum analysis programs can be found in
Chapter 9, Section 9.13.3.

In 1999, the UK Gamma Spectrometry Users Forum
{now combined with the Alpha Spectrometry Users Forum
as the Nuoclear Spectrometry Users Forom) set itself the
task of considering which were the ‘correct’ equations
to use for MDA calculations. The intention was to make
recommendations to users and software manufacturers
alike. In the event, the scope was widened to encompass
the correct use of the MDA and L. Recommendations
were drawn up but, regrettably, have not to date been
published. The reasons, apparently, are concetned with
difficulties associated with recommendations about the
uncertainties in the parameters used to calculate the MDA,
To me, this seems to be an unnecessary delay, as I shall
explain below.

5.6.8 Uncertainty of the (L;;) and MDA

The upper limit, in counts, is converted into an activity
limit, Ay, by an equation of the form:

Ly

= (5.69)
mx LT x axP,‘,

Ay

where m is the sample mass, LT the count period, & the
detector efficiency and F, the gamma emission proba-
bility. In some circumstances, there may be other factors
involved.

L, is estimated from the uncertainty on the peak-
background continvam. If the sample were measured
several times, the value of L; would change statistically.
However, when determined from one particular spectrum,
it has no uncertainty — it is the number of counts below
which we are 95% confident that the true number of
counts lies in that specirum. On the other hand, all of
the terms of the denominator have some degree of uncer-
tainty, which could be propagated to an uncertainty on
the value of Ay.

The unresolved, almost philosophical, question is
whether the calculated Ay should be quoted ‘as-is’ or
increased to take into account the uncerfaintes on the
denominator. Suppose A were 100 Bg/g and the uncer-
tainties on the denominator amount to, say, 5 %. Should
we then quote 100+ 1.645 x (Ay x 5%) = 108 as the
activity upper limit?

Replacing L; in Equation (5.69) with Ly, would allow
calculation of the MDA and the same arguments apply.
Again, there is an uncertainty on the MDA. Bearing in
mind that the MDA is an a priori parameter, one could
suggest that it should be determined from a number of
measurements of an actual sample to estimate the troe
variability. In fact, the uncertainties on m and LT are
very smail and, for every measurement of a particular
gamma-ray, the values used for £ and P, would be
exactly the same; the variability of the MDA would be
entirely due to the counting uncertainty on the background
continuum. Experience shows, not surprisingly, that there
is a much greater variability in the MDA between different
samples than between different measurements on the same
counting sample. Deriving a justifiable MDA is much
more dependent on selecting an appropriate spectrum than
on the details of the calculation,

Considering the fact that the vncertainties on m and
LT are very small and, hopefally, those on & and P,
arc also small, for the present, it seems reasonable to
quote the MDA as calculated with no extra allowance
for uncertainty. If the basis of reporting the MDA is to
be altered, it is more important to achieve consistency
between spectrum analysis programs than to worry about
uncertainties on the MDA

5.6.9 An example by way of summary

Statistics do not make light reading and the whole matter
of decisions limits fs undoubtedly confusing until one
‘sees the light’. The following example might clarify
matters. Consider the portion of a spectrum shown in
Figure 5.12, The following have been calculated:

(Gross counts in the

peak region, G: 30 374  (n = 11 channels)
Sum of background

region counts, S: 12 040 (2m = 6 channels)
Background

correction,

B=nS8/2m: 30100 (Equation (5.38))
Net peak area

{counts),

A=G—H 274
Critical limit

{counts), L: 534 (Equation {5.56)}

Because A is less than L, we can conclude that the peak
was not detected. We must therefore calculate an upper
limit:

809

Upper limit {counts), Ly;: (Equation (5.59))
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Counts in channal

Channels 3152— 3180

Figure 5.12 The peak used for the example caleulations of
critical, npper and detection limits (see text for Turther details}

The interpretation of this upper limit is that we are 95 %
certain that the actual oumber of counts in the peak is less
than 809. (In fact, because this is a test peak, we know
that the actual number of counts in the peak is 250.) We
may wish to determine the detection limit:

904  (Equation (5.65))

This means that, given the general level of background
counts in this spectrum, if we were to measure another
spectrum we could be 95 % certain of detecting a peak
that had 904 counts in it. The difference between the
upper and detection limits arises because we are asking
different questions.

Detection limit {counts), Lp:

5.7 SPECIAL COUNTING SITUATIONS

In general, we assume that the statistics of counting can be
adequately described by the Poisson distribution. When
we calculated the various decision limits, we effectively
assumed, for simplicity, the Normal distribution for the
counts. We know, however, that Poisson statistics are only
applicable when the probability of detection of the decay
of any particular radioactive atom within the count period
is small and when the statistical sample size is large. There
are a number of circumstances when these conditions may
not be met and we should consider whether the statistical
treatment above is still valid.

5.7.1 Non-Poisson counting

If a sample is counted for a long time compared to the half
life, the probability of decay within the count period is
high. This condition is seldom met in most routine gamma
spectrometry situations where half-lives are long, but may

be met frequently when dealing with short-tived radionu-
clides. In activation analysis, for example, the measure-
ment of radionuclides with half-lives as short as a few
seconds is commonplace and a typical count period could
be a number of half-lives. Even in such circumstances,
the day is saved because the efficiency of detection of
gamma radiation is usvally very small, partly due to the
intrinsic detector efficiency and partly due to geometry
factors, reducing the probability of detection.

However, if the count period were long and the detec-
ton efficiency high (pethaps a low-energy gamma-ray
emitted with high probability. and measured close to the
detector or inside a well detector), then the assumptions
underpinning our use of the Poisson distribution are no
longer valid. It is then necessary to return to the binomial
distribution. There is no place here for the mathematics
involved but it can be shown that if we observe a count
of n, then the expected true count is:

En)=n+1-—ps= {(5.70
where p is the probability of decay, calculated using Equa-
tion (5.17), and = is the known effective detector effi-
ciency, taking into account the emission probability, the
intrinsic detector efficiency and geometry factors. Simi-
larly, the variance of x can be shown to be:

var(n) = (n+1)(1 — pg) (5.71)
 pe is very small, then these relationships approximate to
Equations (5.25) and (5.24) discussed above. If pe is large,
then var(n) tends towards zero. This is not unreasonable;
if we could detect every disintegration, then there would
be no uncertainty associated with the number of counts
detected.

Note, however, that even if the counts due to the
measured species cannot be assumed to be Poisson
distributed, it is most likely that the background count, be
it a single count or a peak, will be. If this is so, then the
gross count will also be Poisson distributed.

5.7.2 Low numbers of counts

If the number of counts accurnulated is small, then, even
though the count distribution will be Poisson, the approx-
imation to a Normal distribution will not be valid. This
means that the relationships to calculate the decision limits
given above will not be valid. For number of counts of
less than 25, we must resort to the Poisson distribution
itself.

For example, if we wish to calculate the critical limit,
L, we must consider the distribution of counts when the
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sample has zero activity — background count, in eftect.
Suppose that we have a background count B in time Af,
then the probability of accumulating # counts is given by
Equation (5.23), thus:

B

n!

P(n)= (5.72)
The probability that a blank sample could have a count
greater than L., for a particular degree of confidence
defined by «, is given by:

(5.73)

So, L is the minimum value of # for which this condi-
tion is satisfied. As an example, Table 5.4 lists factors
taken from published tables of the Poisson distribution.
If our background count were, say, 2 counts per counting
period, then the critical level for 95 % confidence would
be 6 counts. Any count below that would have to be inter-
preted as ‘not detected’. Similar considerations apply to
the calculation of the limit of detection, which, it turns
out, depends only on the critical limit as long the back-
ground is well known. Again, the appropriate limit can
be taken from tables. In the case above, where the crit-
ical limit was 6 counts, the detection limit would be 10.5
counts. If the background is not well known, as might be
the case for a gamma-ray peak with very small numbers
of counts, then it becomes more appropriate to consider
the problem as a binomial one.

Table 54 Decision limits in low count situ-
ations {for 95 % confidence in sach case)

Background Le Ly, {counts)
{counts)y* {counts}

0.1 2 3.0

02 2 3.0

04 3 6.3

1.0 4 7.8

2.0 6 10.5

4.0 9 145

10 i6 23.0

20 27 36.0

“The average background count within the sampling
fime.

For small numbers of counts, the Poisson distribution is
not symmetrical. This implies that confidence limits asso-
ciated with a small count will not be symmetrical either,
Again, appropriate limits can be tabulated and examples,

taken from Sumerling and Darby (1981}, are shown in
Table 5.5. Taking as an example a gross count of 10
counts, and using Table 5.5, we could only say that there
was a 95 % probability of the true count being somewhere
between 4.8 and 18.39 counis.

Table 5.5 935% confidence limits for
low numbers of gross counts

Gross count  Confidence Hmit {counts)
Lower Upper

0.0 0.0 0.025

1.0 0.025 5.57

2.0 0.242 722

4.0 109 10.24

10 4.80 18.39

20 12.22

30.89

A number of anthors have commented on the failure of
the Currie equations to cater adequately for the low count
situation and proposed alternative equations for crtical
and detection limits for the single count situation. Strom
and MacLellan (2001) compare eight equations for calcu-
lating the critical limit, looking at their tendency to allow
false positive identifications. None of the rules appears
to be completely satisfactory but the authors advocate the
use of & *Stapleton rule’ rather than the usual Currie equa-
tion in sitmations where background counts are very low
and «, as in Section 5.6.1, is 0.05 or less.

In gamma spectrometry, we can be comforted by the
fact that when the nurmber of background counts measured
beneath our peaks is 100 or more, the Currie equations
are valid. In practice, there will be few occasions when
this is not so.

5.7.3 Non-Poissen sfatistics dne to pile-up
rejection and loss-free counting

It is not generally recognized that the uncertainty of counts
in a spectrumn may not be adequately described by Poisson
statistics when there are non-random losses of counts,
especially when counting raies are high. A good summary
of the situation is given by Pomme er al. (2000).
Measurements under a fixed real count time may suffer
from an increased uncertainty when count losses exceed
20 %. The increase could be a significant extra contri-
bution to an uncertainty budget. When using a loss-free
counting system, artificial counts are added to the spec-
tram to compensate for Iost counts in a manner that is
not random. That distorts the statistics to a small extent.
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Finally, although Poisson statistics can be relied upon
for almost all normal counting with an extending live
time, when pile-up rejection is used at high count rate the
counting uncertainty will be underestimated. Under these
conditions, a significant proportion of the total counts
might be rejected and the counts lost during the rejection
dead time periods will not be truly random.

All spectrum analysis programs will make the assamp-
tion that count uncertainties are described by Poisson
statistics. If the actual count situation is one of those
described above, an extra uncertainty allowance would
have to be made externally from the program.

5.8 UNCERTAINTY BUDGETS
5.8.1 Introduction

When we present the results of our gamma spectrometry,
we have a duty to take care that the results are as accurate
as possible and that the uncertainty that we quote is real-
istic. It must take into account all of the known sources of
uncertainty within the measurement process. Identifying
and quantifying those uncertainties provides us with an
unicertainty budget. Laboratories that are seeking accred-
itation from bodies such as UKAS will have no choice
but to create a satisfactory uncertainty budget.

The most obvious source of uncertainty is, of course,
that due to the statistical nature of radioactivity counting.
In many cases, it will be the major component of the total
uneertainty and it is not uncommon for that alone to be the
basis of the quoted confidence limits. However, that alone
must underestimate the true uncertainty, especially when
the counting uncertainties themselves are small and other
sources of uncertainty become dominant. In setting up the
budget, the uncertainty of all parameters which contribute
to the final result must be assessed and quantified. Some
may be justifiably found to be negligible. That conclusion
in itself is part of the budget and should be documented.

Setting up an uncertainty budget is a valuable exer-
cise, irrespective of the primary need to quote realistic
uncertainties. While assessing in detail all of the relevant
sources of uncertainty, it may be possible to remove some
of them completely. For example, we might consider that
pasitioning the sample on the detector would not make a
significant difference to the result, even though there is
potential for placing the sample in slightly different posi-
tions. To fulfil the requirements of our budget, we ought
to check that out practically. However, if we provide
positive sample location, preventing variable positioning,
we remove that source of uncertainty completely. Simi-
larly, preparing reference sources by mass, rather than
by volume, will reduce the uncertainty on the result
considerably.

It can be pointed out that matters such as errors caused
by egquipment malfunction or operator error do not form
part of an uncertainty budget. Nevertheless, considera-
tion of ways in which such problems can be avoided
and, equally important, detected, should they happen, is
a useful exercise that can only improve the robustmess of
the overall analytical procedure.

A good point at which to start setting up an uncer-
tainty budget is to look at the way in which the result is
calculated. The equation converting net peak counts, C,
to aclivity per unit mass, A, might be:

~ (C—Bp)xe™xRx§

A
mx LT xgx P,

(5.74)

where the parameters have the same meaning as in
Equation (3.69), with the addition of e™, the decay
correction, B, the peaked-background correction, R, a
possible random summing correction and 8, a possible
self-absorption correction. Within those parameters, there
may be others hidden from view. For example, in addi-
tion to the nomal counting uncertainty there may be
other factors affecting the count rate, such as sample
positioning or differences in sample height. In the case
of the decay correction, we must take into account
the uncertainty on the correction due to the uncer-
tainty of the half-life. In principle, we ought to include
the uncertainty of the calculated decay period, z, but,
under normal circumstances, this would be known very
accurately.

When we consider the efficiency, &, we find we have
a separate uncertainty budget to consider taking into
account all of the factors involved in preparing the effi-
ciency calibration reference source and the measurement
of the calibration data. This would take into account the
uncertainty of the certified source from which the calibra-
tion source was prepared and the uncertainty of interpe-
lation of the calibration curve.

Combining all of these different sources of uncertainty
into a single value can be confusing. There is no other
advice to be offered other than to work carefully through
the factors one by one and quantify the uncertainty of
each before combining them. One may be asked by a
client or regulatory body for a single overall uncertainty
value summarizing the budget. Frankly, in radioactivity
measurements, this is not possible. The overall uncertainty
on a result depends critically on the counting uncertainty,
that, in turn, depending upon the magnitude of the back-
ground to the peak. Measurement of different samples
with the same activity of a particular nuclide might give
results with considerably different uncertaintes if they
have different amounts of other nuclides in them. It is
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possible, however, to give a reasonable uncertainty budget
with the counting uncertainty listed as a separate, vari-
able item.

5.8.2 Accuracy and precision

The performance of measurement systems has been tradi-
tionally defined in terms of accuracy and precision.
Accuracy can be defined as a measure of how close a
result is to the actual value and precision is thought of
as the uncertainty of the result, which we could iden-
tify with the standard uncertainty. Modern usage in the
context of quality of analytical results tends to aveid
these terms. This is because there has been a more funda-
mental appreciation of the actual measurement process.
For example, accuracy or, perhaps we shonld say, inaccu-
racy, involves bias within a measurement process as well
as statistically determined factors that cause the result to
be different from the true result. What, at one time, we
would have blithely termed precision is now discussed as
repeatability, the variability of a method when applied
to measurements on a single sample within a labora-
tory, and reproducibility, which applies to measure-
ments of that sample when applied by different labora-
tories using different instruments operated by different
operalors.

The TUPAC recommendations on this matter have been
published by Currie (1995). On a day-to-day basis, there
is little harm in applying the traditional usage, However,
when producing formal decumentation I would recom-
mend that the IUPAC usage should be adopted.

5.8.3 Types of uncertainty

It was, at one time, conventional to identify uncertain-
ties as ‘randomy’ or ‘systematic’. Experience showed that
it was not always possible to assign any particular uncer-
tainty to one category or the other. For example, there
may be sources of uncertainty with a Normal distribu-
tion — and therefore ought to be categorized as ‘random’ —
which would be more understandable as ‘systematic’ in
origin. Modern usage is to treat each source of uncertainty
separately and calculate the standard uncentainty, taking
into account the type of distribution involved, before
combining with other uncertainties.

However, a new distinction has arisen — Type A and
Type B uncertainties. Type A uncertainties are defined
as those that have been determined by repeated measure-
ments to assess the magnitude and distribution of the
parameter. Type B uncertainties are those whose magni-
tude has been derived in any other manner. For example,
the uncertainty on gamma-ray emission probability is

Type B because the data will have come from litera-
ture sources, as will the uncertainty on a certified source
activity that will have been taken from the calibration
certificate. .

Counting uncertainties are a special case. Unlike all
other measurements, the nature of radioactive decay, and
a considerable body of theory and practice, means that
we can establish the uncertainty of a count rate from a
single measurement. Because of that, we regard counting
uncertainty as Type A because we measure it, although
not by repeated measurement. The designation Type A or
Type B has no bearing at all on how the uncertainty is
meorporated into the budget.

5.8.4 Types of distribution

So far, we have taken it as read that the parameters we are
dealing with have a Normal distribution. In many cases,
this will be so, but there may be exceptions. For example,
suppose samples are placed manually on the cap of a
detector for counting. The variation in sample position is
likely to alter the sample count rate. What is the shape
of the distribution of count rates when a large number
are measured? One could argue that the most likely posi-
tion would be the centre of the detector cap and that
the count rates would, therefore, be distributed Normally.
On the other hand, one might make an equally attrac-
tive case for saying that, taking into account the fact that
different operators, with differing perceptions of where
the centre was, would be placing samples on the detector
with equal probability over a limited area of the detector
face. In that case, there might be a rectangular distribu-
tion of count rates. Other situations might generate trian-
gular or U-shaped distributions. How do we handle these
different distributions? Fortunately, the answer is simple.
It should be remembered that all of the statistical refa-
tionships and the equations for combining uncertainties
are valid, whatever the shape of the distribution, as long
as we are consistent in the use of standard uncertainty. It
is only necessary to work out the standard uncertainty of
the assumed distribution. This might be done by repeated
practical measurements. However, if the extreme limits
of the measurement are known, the appropriate factor in
Table 5.6 may be used to convert the range between those
extremes into a standard uncertainty.

5.8.5 Uncertainty on sample preparation

Ideally, samples presented for gamma spectrometry would
be homogeneocus. Unfortunately, in the real world samples
are often far from homogeneous, much less representative.
A 100 g sample of a decommissioning waste submitted
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Table 5.6 Caleulation of standard uncertainty® for
different distributions

Distribution ~ Parameter Bivisor
Normal 68 % Conifidence limit (1o7) 1
Normal 95 % Confidence limit (20) 2
Rectangular  Half-range 3
Triangular Half-range /6
U-shaped Half-range 2

 Standard uncertainty — parameter/divisor

for gamma spectrometry can hardly be said to be repre-
sentative of the tons of material to be disposed of, which
might be crushed brick, concrete, soil or even floor sweep-
ings. My personal feeling is that, because the gamma
spectrometry laboratory has no control over the sampling
procedure, the unrepresentative nature of the sample
cannot be included as part of the uncertainty budget.
Once the sample has been received, however, it is a
different matter. In principle, it is the duty of the analyst
to provide an analysis that is representative of the sample
provided. However, how far should the analyst go in
achieving that? If the sample is clearly not homogeneous,
steps need to be taken to make it so, especially if it must
be sub-sampled. That may involve crushing or grinding
to remove large lumps of material and perhaps segrega-
tion into clearly different portions of the sample. From
a gamma spectrometry point of view, it may only be
necessary to make the sample macroscopically, rather
than microscopically, homogenecus —i.¢. very small grain
size is not essential. Although such procedures can be
expecied to reduce the uncertainty on the composition of
the counting sample, whatever procedure is adopted, the
laboratory should bave some idea of the final uncertainty.
How that is achieved is another matter. Homogeneity can
only be properly assessed by a number of measurements
on sub-samples. That may be acceptable in a research
environment where any amount of time and effort can be
devoted to a final high-quality measurement. However in
a commercial environment the client is unlikely to wish to
pay for anything other than a notional atternpt at homog-
enization and a single measurement. One could, perhaps
suggest that representative samples of a ‘typical’ matrix
were homogenized and measured and several measure-
ments made to assess the uncertainty on the composition
of a sub-sample. However, practical experience suggests
that in a commercial laboratory with a wide range of
recetved samples there is little which can be described as
‘typical’. I can only suggest that in such cases, prior to any
work being done, an agreement should be reached with

the client on the procedure to be camied out on the sample
to achieve assumed homogeneity. Having done that, one
could reasonably exclnde homogeneity from the uncer-
tainty budget, unless one does indeed have a reasonable
idea of the magnitude:

Having achieved a (notionally) homogeneous mate-
rial, it must be weighed into a counting container. Two
sources of unceriainty remain; the mass and height (shape)
of the sample. The uncertainty on the mass is small
and can easily be quantified in relation to the signif-
icance of the least significant digits on the balance
display. Uncertainty of the count rate with height of the
sample must be assessed experimentally. When samples
are measured close to the detector, as is usually the case
with low-activity samples, this uncertainty can be signif-
icant. Ideally, variation in sample height should be elim-
inated by using a plunger to lightly compress the sample
to a standard height. Chapter 7, Section 7.6.6 describes
an empirical correction o count rate for sample height.
Determining the factors needed to make that correction
would in itself give an idea of the variability of count rate
with sample height.

5.8.6 Counting uncertainties

The very act of placing the sample in its counting position
1$ uncertain unless there is a positive sample location. 1
would recommend that sample locators are always used.

Statistical counting uncertaintics are always present,
of course, but are always taken into account within the
spectrum analysis program. Because these uncertainties
vary from sample to sample, from nuclide to nuclide
within the sample and even from peak to peak of each
nuclide, it makes no sense to include counting uncer-
tainty as part of the uncertainty budget, except to point
out that it is variable and taken into account, If peaked-
background corrections are involved, you should be aware
that the spectrum amalysis program may not take into
account the uncertainty of the background correction
itself.

In routine gamma spectrometry, uncertainty on the
timing of the count can be ignored. Only if the count
rate varies considerably during the count, for example, if
measuring very short-lived nuclides, is there likely to be
any live timing problem.

K counting losses due to random summing and/or self-
absorption are corrected for, then these corrections will
themselves have an uncertainty that must be accounted
for. If these corrections are made by the spectrum analysis
program, you should make sure, by reading the manual
and by validation measurements, that the uncertainties
assigned by the program are reasonable.
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5.8.7 Calibration uncertainties
Nuclear duta uncertainty

The value of the analysis result ultimately depends
upon the value of the gamma-ray emission probability.
Reputable nuclear data tables will provide you with an
uncertainty on these values.

There is, of course, also an uncertainty on the half-
life and, if a decay correction is made, the uncertainty
on that should also be included. The commercial spec-
trum analysis program libraries may only allow a single
nuclide uncertainty factor to be accounted. If so, it will be
necessary to devise a single factor, taking into account the
likely magnitude of any decay correction and the various
emission probability uncertainties for each nuclide.

Should uncertainty on the nuclear data represent part
of one’s uncertainty budget? In an ideal world, every
laboratory would use the same, well evaluated, set of
nuclear data. For the nuclides within the DDEP database
(see Chapter 15, Section 15.2 and Appendix B}, the stan-
dard uncertainties are small; in general, less than 1%.
However, for other nuclides they may be much larger; for
the 68.28 keV gamma-ray of 2*Th, the emission proba-
bility is quoted in the LARA database as 0.048 --0.006,
a relative uncertainty of 12.2 %. This means that, if taken
into accouint, no laboratory, however careful and skilful,
can provide P*Th results with an uncertainty of better
than 12 %. Within an intercomparison exercise, where
the intention of the measurements is to compare methods
or laboratories, if everyone were using the same nuclear
data the inclusion of the uncertainty on gamma emission
probability would obscure underlying differences due to
methodology. However, under normal circurnstances (and
from the point of view of the recipient) the nuclide data
uncertainty does represent part of the overall uncertainty
of the result and should be included.

Uncertainty on efficiency calibration standards

‘When purchased, the reference material from which the
calibration sources are prepared will be accompanied by
a calibration certificate. This will list, for each nuclide,
the activity per unit mass and the overall uncertainty on
that activity. These uncertainties should then be taken into
account when the efficiency calibration curve is created
(see Chapter 7, Sections 7.6 and 9.9). Ideally, they would
be used to weight the corresponding points within the
fitting process.

It is unlikely that the calibration points will lie exactly
on the fitted calibration line. The degree of scatter of the
calibration points around the line can be said to represent
both the ‘goodness of fit’ of the calibration data and the

uncertainty of estimating the efficiency obtained by calcu-
lation from the calibration equation. (We are ignoring
here the effect of true coincidence summing, which would
make the scatter worse.) This ‘interpolation uncertainty’
is the figure that one would wish to include in the uncer-
tajoty budget.

There will, of course, also be uncertainties introduced
when preparing the calibration source. However, they will
be a constant amount on each calibration peint and it
would not be useful to include them in the weighting
process. In fact, little more than weighing will be involved
in most cases and the extra uncertainty is likely to
be small. Nevertheless, it should be accounted for by
combining with the interpolation uncertainty. Note that
the individual uncertainties on the amount of each nuclide
in the reference material do not appear directly in the
budget. These will contribute to the scatter on the calibra-
tion curve. On the other hand, if individeal efficiencies,
for particular gamma-rays of particular nuclides are used,
the uncertainty on the amount of nuclide in the calibraticn
source should be taken into account.

5.8.8 An example of an uncertainty budget

Table 5.7 shows a notional uncertainty budget based on
Equation (3.74). The data in the table are quoted by way of
examples; they should not be taken too seriously. Indeed,
even the choice of items may not be relevant to other
detector and analysis systems. The procedure one-should
follow is as follows:

e List all identified sources of uncertainty. It may help
to group them into categories such as ‘Source prepara-
tion’, “Calibration’, ‘Counting’ (Colamn 1).

* For each assess, or measure, the magnitude of the uncer-
tainty (Column 2).

* Decide what that magnitude means. Is it a standard
uncertainty or is it a range? {Column 3).

e Decide what the probability distribution is (Column 4).

* Write down the divisor corresponding to that distribu-
tion taken from Table 5.6 (Column 5).

e Calculate the standard uncertainty by dividing the
magnitude by the divisor {Column 6).

e Add all of the standard uncertainties in quadrature to
give the overall standard uncertainty (at the foot of
Column 6) and then multiply by the required coverage
factor to give the final expanded uncertainty.

It is useful to consider where these various sources
of uncertainty are taken into account, as in Celumn
7. In many cases, this will be within the spectrum
analysis program, although it is possible that the program
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does not handle particular items correctly. In Table 5.7,
this is indicated in the case of the uncertainty of the
random summing correction where, in this case, a post-
analysis adjustment to the uncertainty turned out to
be necessary. The budget quoted referred to a labo-
ratory when GammaVision™ was used for spectrum
analysis. The items designated as being taken into
account by ‘Additional Random’ refer to the box within
‘GammaVision™ into which optional extra amounts
of uncertainty, which would not otherwise be taken
into account, can be specified. In the example of
Table 5.7, an amount of 3.38 % would be specified, repre-
senting all the ‘Additional Random’ items summed in
quadrature.

The example shown is incomplete in that it does not
take into account the degrees of freedom of each of the
uncertainty items. Unless the overall number of degrees
of freedom is infinite, calculation of the expanded uncer-
tainty by multiplying by the factors derived from Table 5.1
would not be valid. It would not be appropriate to go
inte such matters here and for a fuller explanation of
uncertainty budgets other sources should be consulted
{e.g. Bell, 2001 and UKAS, 1997). It should be said
that, for the majority of uncertainty items in a gamma
spectrometry budget, infinite degrees of freedom can be
assumed.

PRACTICAL POINTS

® The basic distribution underlying counting statistics is
binomial in nature.

@ In most practical circumstances, it is appropriate to
assume a Poisson distribution, which, if the number
of counts is large, can be approximated by a Normal
{Gaussian) distribution.

¢ For a Poisson distribution, the following is true:
var(n} = n.

® The simple peak calculation area algorithms are:

U Lt Utm
A=2Ci—r1( Yo+ ¥ c,.)/zm
i=L imLem  i=U41
u L-1 Utm
var(A)= Y C,-—J—nz( 3G+ X Cl) fdm?
=L i=L-m =U+1

® For lowest peak area uncertainty, the background region
width (m) should be as large as possible under the
particular circumstances. There would be little point in
using more than about 10 channels.

¢ From the point of view of peak area uncertainty,
the optimum spectrum size is 4096-8192 chan-
nels, depending upon the gamma-ray energy to be
measured.

* Optimumn sharing of counting time between samples
and background is achieved when the ratio of count
times equals the ratio of sample to background activity.

® Decision Iimits are calculated according to the
following equations:

Limit Single count Peak area
Le (95%) 2.33./8 1.645./1B(1 + n/2m}]
Ly (95%) (N+)71.645 {A+)*1.645

L (N+2B) JIA+ B(1+n/2m)]

(*if A < 0 or N < 0, then that part of the equation in parentheses
is ignored)

Confidence  1.96,/(N+2B)  196./[A+ B(1+n/2m)]
limits (95 %)

Ly (95%) 271446508 2714329 /1Bl +n/2m)]
Lo (95%,  S0(1+ 50{1+

>10%) VIU+B/125)] 1+ B(1 +n/2m)/25])

e If the combined probability of decay and detec-
tion (pe) is high, then Poisson statistics are inappli-
cable. The correct Binomial treatment provides the
following — for a count », the expected count is
E(n) = n+1— pe and the variance, var(a) = (n 1)
{1 pe).

¢ If the number of counts is small (< 25) then the decision
limits cannot be calculated from the Normal distribution
but must be taken from statistical tables of the Poisson
distribution.

e All results should be accompanied by a realistic uncer-
tainty, taking into account all sources of uncertainty in
the measurement. This is arrived at by constructing a
complete uncertainty budget.

¢ When counts are judged against the critical limit and

found to be "not significant’, the upper limit should be

quoted, rot the MDA.

The MDA should be used when assessing the perfor-

mance, or expected performance, of a method.

e It is important to remember that the MDA is nor the
Minimum Activity Detectable.
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