1. Griffiths problem 5.24 ($4^{\text {th }}$ Edition; called 5.23 in the $3^{\text {rd }}$ Edition) [4pts]

Hints: $\vec{B}=\vec{\nabla} \times \vec{A}$ in cylindrical coordinates: $\left(\frac{1}{s} \frac{\partial A_{z}}{\partial \varphi}-\frac{\partial A_{\varphi}}{\partial z}\right) \hat{s}+\left(\frac{\partial A_{s}}{\partial z}-\frac{\partial A_{z}}{\partial s}\right) \hat{\varphi}+$ $\frac{1}{s}\left(\frac{\partial\left(s A_{\varphi}\right)}{\partial s}-\frac{\partial A_{s}}{\partial \varphi}\right) \hat{z}$.
2. Griffiths problem 5.25 (4 ${ }^{\text {th }}$ Edition; called 5.24 in the $3^{\text {rd }}$ Edition) [9pts]

Hints: Consult the product rules from your youth (Lecture 2). Note that "Uniform" \vec{B} mans that it has no gradient, divergence, or curl.
3. Griffiths problem 5.35 (4 ${ }^{\text {th }}$ Edition; called 5.34 in the $3^{\text {rd }}$ Edition) [5pts]
4. Griffiths problem 6.1 [8pts]

Hints: Use the result from problem \#3b from this homework for $\vec{B}_{\text {loop }}$. Recall that for a spherical to cartesian coordinate conversion, $\hat{\theta}=\cos (\theta) \cos (\varphi) \hat{x}+\cos (\theta) \sin (\varphi) \hat{y}-\sin (\theta) \hat{z}$

