1. Griffiths Problem 3.26 ($4^{\text {th }}$ Edition; called 3.25 in the $3^{\text {rd }}$ Edition) [5pts] Hints: Before you start calculating, look carefully at the general solution of Laplace's equation in cylindrical coordinates with no z-dependence ("circular coordinates") and the surface charge distribution for this problem. Note that at the surface of a conductor, $\frac{\sigma}{\varepsilon_{0}}=\left.\frac{\partial V}{\partial s}\right|_{\text {below }}-\left.\frac{\partial V}{\partial s}\right|_{\text {above }}$. You can also use this equation to solve for your non-zero coefficients. Also note V is continuous at the conductor surface, which you can evaluate at any azimuthal angle φ.
2. Griffiths Problem 3.27 (4 ${ }^{\text {th }}$ Edition; called 3.26 in the $3^{\text {rd }}$ Edition) [5pts]

Hints: You're using spherical coordinates, so $d \tau=r^{2} \sin \theta d \theta d \varphi$. When you integrate for the potential components, the limits of integration are over the charge distribution. You can save time in this problem by doing the $d r$ integral first for the monopole term and the $d \theta$ integral first for the dipole term. For the latter, use u-substitution with $u=\sin \theta$. Also, $\sin ^{2} \theta+\cos ^{2} \theta=1$ might come in handy for one of your integrals.
3. Griffiths Problem 3.32 ($4^{\text {th }}$ Edition; called 3.30 in the $3^{\text {rd }}$ Edition) [3pts]

Hints: $\hat{z} \cdot \hat{r}=\cos \theta$, while $\hat{y} \cdot \hat{r}=\sin \theta \sin \varphi$.
4. Griffiths Problem 4.4 [3pts]

Hints: You have two fields to consider. $\vec{E}_{\text {point }}$ from the point-charge polarizes the atom to make it a dipole. $\vec{E}_{\text {dipole }}$ is the field resulting in the force between the atom and the charge. Note that we determined $\vec{E}_{\text {dipole }}$ in Lecture 15 and, for this scenario, we can see $\theta=\pi$.
5. Griffiths Problem 4.20 [5pts]

Hints: Use Gauss's law for dielectrics. Since ρ_{f} is uniform, $q_{f, \text { encl }}=\rho_{f} \tau$, where τ is the volume enclosing the charge. Calculate the potential directly, noting that the field's functional form is of course different inside and outside of the sphere.
6. Griffiths Problem 4.22 [11pts]

Hints: Follow the example we did in class of the uniform dielectric sphere in a uniform electric field, which is also covered in Example 4.7 of the book. Write your answer in terms of χ_{e}.

