Homework 4

- 1. Griffiths Problem 3.26 (4th Edition; called 3.25 in the 3rd Edition) **[5pts]** *Hints:* Before you start calculating, look carefully at the general solution of Laplace's equation in cylindrical coordinates with no z-dependence ("circular coordinates") and the surface charge distribution for this problem. Note that at the surface of a conductor, $\frac{\sigma}{\varepsilon_0} = \frac{\partial V}{\partial s}|_{below} - \frac{\partial V}{\partial s}|_{above}$. You can also use this equation to solve for your non-zero coefficients. Also note V is continuous at the conductor surface, which you can evaluate at any azimuthal angle φ .
- 2. Griffiths Problem 3.27 (4th Edition; called 3.26 in the 3rd Edition) **[5pts]** *Hints:* You're using spherical coordinates, so $d\tau = r^2 \sin \theta \, d\theta d\varphi$. When you integrate for the potential components, the limits of integration are over the charge distribution. You can save time in this problem by doing the *dr* integral first for the monopole term and the *d* θ integral first for the dipole term. For the latter, use u-substitution with $u = \sin \theta$. Also, $\sin^2 \theta + \cos^2 \theta = 1$ might come in handy for one of your integrals.
- 3. Griffiths Problem 3.32 (4th Edition; called 3.30 in the 3rd Edition) **[3pts]** *Hints:* $\hat{z} \cdot \hat{r} = \cos \theta$, while $\hat{y} \cdot \hat{r} = \sin \theta \sin \varphi$.
- 4. Griffiths Problem 4.4 [3pts]

Hints: You have two fields to consider. \vec{E}_{point} from the point-charge polarizes the atom to make it a dipole. \vec{E}_{dipole} is the field resulting in the force between the atom and the charge. Note that we determined \vec{E}_{dipole} in Lecture 15 and, for this scenario, we can see $\theta = \pi$.

5. Griffiths Problem 4.20 [5pts]

Hints: Use Gauss's law for dielectrics. Since ρ_f is uniform, $q_{f,encl} = \rho_f \tau$, where τ is the volume enclosing the charge. Calculate the potential directly, noting that the field's functional form is of course different inside and outside of the sphere.

6. Griffiths Problem 4.22 [11pts]

Hints: Follow the example we did in class of the uniform dielectric sphere in a uniform electric field, which is also covered in Example 4.7 of the book. Write your answer in terms of χ_e .