Homework 3

1. Griffiths Problem 3.9 (4 $4^{\text {th }}$ Edition; called 3.8 in the $3^{\text {rd }}$ Edition) [3pts]

Hints: Note that this isn't quite the same as what we worked through in class. However, since that single image charge case also works, the answer to this problem will be a superposition of that solution to one for another image charge. For the second charge, keep in mind the constraints of charge neutrality and the requirement of an equipotential at $r=R$. For calculating \vec{F}, feel free to quote results from the calculation in lecture, when necessary.
2. Griffiths Problem 3.11 (4 $4^{\text {th }}$ Edition; called 3.10 in the $3^{\text {rd }}$ Edition) [4pts]

Hints: Note that the image charge method relies on symmetry. Also note the constraint that the potential must be zero on the conductor wedge's faces.
3. Griffiths Problem 3.13 (4 $4^{\text {th }}$ Edition; called 3.12 in the $3^{\text {rd }}$ Edition) [6pts]

Hints: If $f(y)=\begin{aligned} & b \text { for } 1<y<2 \\ & a \\ & \text { for } 0<y<1\end{aligned}$, then $\int_{0}^{2} f(y) d y=\int_{0}^{1} a d y+\int_{1}^{2} b d y$. Stop once you have solved for the only non-zero coefficient B_{n} in terms of some function $f(n)$, so long as $f(n)$ does not contain any un-evaluated integrals.

