1. Griffiths Problem 1.55 ($4^{\text {th }}$ Edition; called 1.54 in the $3^{\text {rd }}$ Edition) [4pts]

Hints: $(\cos (x))^{2}=\frac{1}{2} \cos (2 x)+\frac{1}{2}$ and $(\sin (x))^{2}=\frac{1}{2}-\frac{1}{2} \cos (2 x)$.
2. Griffiths Problem 2.2 (only part (b) of the $3^{\text {rd }}$ Edition) [2pts]

Hints: Use visual symmetry to determine which field component(s) is/are non-zero.
3. Griffiths Problem 2.6 [4pts]

Hints: Remember u-substitution; consider $u=s^{2}+z^{2}$.
4. Griffiths Problem 2.12 [3pts]

Hints: The problem is referring to the integral form of Gauss's Law.
5. Griffiths Problem 2.18 [2pts]

Hints: Look at Griffiths's hint and recall superposition.
6. Griffiths Problem 2.21 [3pts]

Hints: Since $r \rightarrow \infty$ is your reference point, the integral to find the potential inside of the sphere is best broken up into two integrals, one from ∞ to R and the other from R to r. Note that you found the field for the inner region in Griffiths Problem 2.12.
7. Griffiths Problem 2.28 [3pts]

Hints: The law of cosines (i.e. the more general form of the Pythagorean theorem) can be used to find the length of the side of a triangle given two side lengths and the angle that is opposite to the side of interest: $c^{2}=a^{2}+b^{2}-2 a b \cos \theta_{c}$. This can be used to get the distance between a point within a sphere to some point outside, e.g. on the z-axis.
Do the integrals in order φ, θ, r and employ u-substitution for the θ integral.
It turns out $\frac{1}{r z}\left(\sqrt{r^{2}+z^{2}+2 r z}-\sqrt{r^{2}+z^{2}-2 r z}\right)=\frac{2}{z}$ for $r<z$ and $\frac{2}{r}$ for $r>z$.

