Tuesday February 12

Topics for this Lecture:
Forces: Friction on Planes, Tension With Pulleys

- Write these equations in your notes if they're not already there.
- You will want them for

Exam 1 \& the Final.

$$
\begin{aligned}
& F_{\text {friction }}=\mu_{\text {kinetic }} F_{\text {normal }} \\
& F_{\text {friction }} \leq \mu_{\text {static }} F_{\text {normal }}
\end{aligned}
$$

Studying for PHYS 200d. LOL.

- Assignment 5 due Friday
...like almost every Friday
- Pre-class due 15min before class ...like every class
-Help Room: Here, 6-9pm Wed/Thurs
-SI: Morton 226, Tu\&Th 6:20-6:10pm
\& Morton 102 Wed 6:20-8:10pm
- Office Hours: 204 EAL, 3-4pm Thurs or by appointment (meisel@ohio.edu)
- Exam Monday February 18.

Morton 201 7:15-9:15PM
-Email me ASAP if you have a class conflict or need special accommodations through AS
-Study!

What is the magnitude of the upward force of the table on the box?

```
(A) 100 N
(B) \(100 \mathrm{~N}+\mathrm{F} \cos (\theta)\)
(E) \(100 \mathrm{~N}-\mathrm{F} \sin (\theta)\)
(F) \(F \cos (\theta)\)
(C) \(100 \mathrm{~N}-\mathrm{F} \cos (\theta)\)
(D) \(100 \mathrm{~N}+\mathrm{F} \sin (\theta)\)
(G) \(F \sin (\theta)\)
```


Solution:

1. Note the box is in equilibrium with regards to vertical motion (i.e. it is not moving vertically)
2. Break the pulling force F into components
3. $F_{x}=F \cos (\theta) ; F_{y}=F \sin (\theta)$
4. Use vertical equilibrium to find the table's normal force:
5. $\sum F_{y}=m a_{y}=0=F_{\text {normal }}+F_{y}-F_{\text {gravity }}=F_{\text {normal }}+F_{y}-W$
6. $0=F_{\text {normal }}+F_{y}-W=F_{\text {normal }}+F \sin (\theta)-W$

7. $\quad F_{\text {normal }}=W-F \sin (\theta)=100 N-F \sin (\theta)$

Consider moving a person on a sled, where friction between the bottom of the sled and the ground is NOT negligible.
You can either push forward and down at an angle θ or pull up and forward at the same angle.
If $F_{1}=F_{2}=F$ and the angles are the same, which situation has the greater acceleration?
(A) pushing
(B) pulling
(C) both are equal
F1

Find $F_{\text {net }}$ in order to determine a:

1. $\Sigma F_{x}=F_{x, n e t}=m a_{x}$
2. $a_{x}=F_{x, \text { net }} / m$...so which situation has the largest $F_{x, \text { net }}$?
3. $F_{\mathrm{x}, \text { net }}=\operatorname{Fos}(\theta)-F_{\text {friction }}$
4. So the situation with the smallest $F_{\text {friction }}$ will have a larger acceleration
5. $F_{\text {friction }}=\mu F_{\text {normal }}$
6. For pushing: $F_{\text {normal }}=W+F \sin (\theta)$... For pulling: $F_{\text {normal }}=W-F \sin (\theta)$
7. $F_{\text {normal }}$ is smaller for pulling, so acceleration will be greater

A box with a mass of 5 kg is sitting on the flat bed of a truck, but is not tied down. The truck accelerates at $2 \mathrm{~m} / \mathrm{s}^{2}$, as does the box (so it's not slipping).
The coefficients of friction between the box and the bed of the truck are $\mu_{s}=0.6$ and $\mu_{k}=0.4$.
What is the magnitude of the frictional force acting on the box?
(A) 2 N
(B) 49 N
(C) 10 N
(D) 16 N
(E) 20 N
(F) 29 N

Does static friction apply? If so, how hard does it have to push to maintain a?:

1. $F_{\text {friction }}=\mu F_{\text {normal }}$
2. $F_{\text {normal }}=m g=(5 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=49 \mathrm{~N}$
3. So: $F_{f, \text { static }}$ could push as hard as $F_{f, \text { static }} \leq \mu_{\mathrm{s}} F_{\text {normal }}=(0.6)^{\star}(49 \mathrm{~N})=29.4 \mathrm{~N}$
4. But, $F_{f, \text { static }}$ only reacts as hard as it has to in order to maintain a
5. $F_{\text {net }}=m a=(5 \mathrm{~kg})\left(2 \mathrm{~m} / \mathrm{s}^{2}\right)=10 \mathrm{~N} \ldots$ which is less than the maximum $F_{f, \text { static }}$
6. $\mathrm{So}, \mathrm{F}_{\mathrm{f}, \text { static }}$ will only match the applied action force (from $F_{n e t}$).
7. Meaning: $F_{f, \text { static }}=10 N$

Two people pull on opposite ends of a massless rope. Each pulls with a force of 40N. What is the tension in the rope?
(A) 0 N
(B) 20 N
(C) 40 N
(D) 80 N

- Might be counterintuitive, so don't rely on intuition!
Stick to your diagrams \& equations!
- Consider F=ma
-Rope isn't accelerating, so net forces must be balanced.
-Force of person on rope must match force of rope on the person!
"Sneaky little hobbitses..."

"... wicked, tricksy, false!"
-Tension is a reaction force.

A person who weighs 800 N is sitting on a chair that weighs 10 N .
The chair is supported by a rope over a pulley.
The person pulls down on the rope with a force of F to support the total weight. What force, F, is required to hold them and the chair stationary?
(A) 400 N
(B) 405 N
(C) 800 N
(D) 810 N
(E) 1600 N
(F) 1620 N

1. Pick your system \& draw the forces
2. Consider that $\mathrm{F}=\mathrm{ma}$. Here $\mathrm{a}=0$.
3. Note that pulleys re-direct the tension, but maintain the tension magnitude.
Therefore, the upward force is $2 * F$.
4. $\mathrm{F}_{\text {net }}=\sum \mathrm{F}=2 \mathrm{~F}-\mathrm{F}_{\mathrm{g}}=\mathrm{ma}=0$
5. $2 \mathrm{~F}-\mathrm{F}_{\mathrm{g}}=0$
6. $2 \mathrm{~F}=\mathrm{W}=800 \mathrm{~N}+10 \mathrm{~N}$
7. $F=(810 \mathrm{~N}) / 2=405 \mathrm{~N}$

gravity

The force-multiplying power of a pulley is often referred to as its "mechanical advantage". In reality it is reduced somewhat by the pulley friction.

A person who weighs 800 N is sitting on a chair that weighs 10 N . The chair is supported by a rope over a pulley.
The person pulls down on the rope with a force of F.
What force, F, is required for them and the chair to accelerate upwards at $0.5 \mathrm{~m} / \mathrm{s}^{2} ?$
(A) 26 N
(B) 405 N
(C) 362 N
(D) 810 N
(E) 426 N
(F) 852 N

1. Pick your system \& draw the forces.
2. Consider that $\mathrm{F}=\mathrm{ma}$. Here $\mathrm{a}=0.5 \mathrm{~m} / \mathrm{s}^{2}$.
3. Note that pulleys re-direct the tension, but maintain the tension magnitude. Therefore, the upward force is $2 \star$.

4. $\mathrm{F}_{\text {net }}=\sum \mathrm{F}=2 \mathrm{~F}-\mathrm{F}_{\mathrm{g}}=\mathrm{ma}$
5. $2 F=m a+F_{g}=m a+W \rightarrow F=(m a+W) / 2$
6. $\mathrm{W}=\mathrm{mg}=\mathrm{m}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \rightarrow \mathrm{m}=(810 \mathrm{~N}) /\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
7. $F=\frac{1}{2}\left((810 N) \frac{0.5 \frac{m}{s^{2}}}{9.8 \frac{m}{s^{2}}}+810 N\right) \approx 426 \mathrm{~N}$

A $200-\mathrm{N}$ box is hanging from a rope.
Two ropes attach the box to the ceiling at the angles given. What is the tension in rope $3 ?$
(A) 50 N
(B) 86 N
(D) 136 N
(E) 173 N
(C) 100 N
(F) 200 N

1. Pick your system: Box + rope 3 .
2. Consider that $F=m a$. Here $a=0 \mathrm{~m} / \mathrm{s}^{2}$.
3. $F_{\text {net }}=\sum F=T_{3}-F_{g}=0$
"System" for this problem.
4. $\mathrm{T}_{3}=\mathrm{Fg}=\mathrm{mg}=\mathrm{W}=200 \mathrm{~N}$

A $200-\mathrm{N}$ box is hanging from a rope.
Two ropes attach the box to the ceiling at the angles given.

What are the tensions in ropes 1 and 2?

(A) $100 \mathrm{~N}, 100 \mathrm{~N}$
(B) $50 \mathrm{~N}, 150 \mathrm{~N}$
(C) $173 \mathrm{~N}, 100 \mathrm{~N}$
(D) $150 \mathrm{~N}, 50 \mathrm{~N}$
(E) $100 \mathrm{~N}, 173 \mathrm{~N}$
(F) $200 \mathrm{~N}, 200 \mathrm{~N}$

1. Need to break forces into components to find $X \& Y$ components
 two get 2 equations for $T_{1} \& T_{2}$. Need 2 equations to solve 2 unknowns.
2. Must use $F=m a$ for X-component and Y-component separately
3. $\sum F_{x}=m a_{x}=0=T_{2} \cos \left(\theta_{2}\right)-T_{1} \cos \left(\theta_{1}\right)$
4. $\sum F_{y}=m a_{y}=0=T_{2} \sin \left(\theta_{2}\right)+T_{1} \sin \left(\theta_{1}\right)-T_{3}$
5. From (2.1): $\mathrm{T}_{2}=\mathrm{T}_{1}{ }^{\star}\left(\cos \left(\theta_{1}\right) / \cos \left(\theta_{2}\right)\right)$
6. From (2.2): $\mathrm{T}_{3}=\mathrm{T}_{2} \sin \left(\theta_{2}\right)+\mathrm{T}_{1} \sin \left(\theta_{1}\right)$
7. Use (3) in (4): T3 $=\mathrm{T}_{1}{ }^{*}\left(\cos \left(\theta_{1}\right) / \cos \left(\theta_{2}\right)\right)^{\star} \sin \left(\theta_{2}\right)+\mathrm{T}_{1} \sin \left(\theta_{1}\right)$
8. Therefore: $\mathrm{T}_{1}=\mathrm{T}_{3} /\left[\sin \left(\theta_{2}\right) *\left\{\cos \left(\theta_{1}\right) / \cos \left(\theta_{2}\right)\right\}+\sin \left(\theta_{1}\right)\right]$
9. $\mathrm{T}_{1}=(200 \mathrm{~N}) /[0.866 *\{0.866 / 0.5\}+0.5]=(200 \mathrm{~N}) / 2=100 \mathrm{~N}$
10. Use (4.3) in (3): $\mathrm{T}_{2}=(100 \mathrm{~N}) *\{0.866 / 0.5\}=173 \mathrm{~N}$

Block B of mass 1.5 kg is accelerating downward at a rate of $3.0 \mathrm{~m} / \mathrm{s}^{2}$.
Block A is connected by a massless string. There is no friction between Block A and the table. What is the tension in the string?
(A) 0 N
(B) 1.5 N
(C) 3.0 N
(D) 4.5 N
(E) 8.4 N
(F) 10.2 N
(G) 14.7 N
(H) 19.2 N

1. The string is massless, so the pulley just re-directs tension.
Also A has no friction, so is not resisting the vertical acceleration.
Therefore, just focus on Block B.
2. $\sum F_{y}=m a_{y}$

Here we subtract tension from

1. $F_{g}-T=m a$

2. $T=F_{g}-m a=m g+m a=m(a-g)$
3. $T=(1.5 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}-3.0 \mathrm{~m} / \mathrm{s}^{2}\right)$
4. $\mathrm{T}=10.2 \mathrm{~N}$

Block B of mass 1.5 kg is accelerating downward at a rate of $3.0 \mathrm{~m} / \mathrm{s}^{2}$.
Block A is connected by a massless string. There is no friction between Block A and the table. What is the mass of Block A?

(A) 3.4 kg
(B) 1.5 kg
(C) 6.4 kg
(D) 4.5 kg

1. The system is just block A and the tension of the string on it.
2. The pulley just redirects the tension, so we can use the tension we just found for F.
3. $F=m a$
4. $\mathrm{m}=\mathrm{F} / \mathrm{a}=\mathrm{T} / \mathrm{a}=(10.2 \mathrm{~N}) /\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right)=3.4 \mathrm{~kg}$

Three boxes are accelerating to the right at a rate of $2.0 \mathrm{~m} / \mathrm{s}^{2}$. The mass of block A is 2 kg . The mass of block B is 1 kg . The mass of block C is 2 kg . The friction between the blocks and the ground is described by coefficients $\mu_{\text {Static }}=0.45$ and $\mu_{\text {Kinetic }}=0.35$. What is the tension in rope $1\left(T_{1}\right)$?
(A) 5.43 N
(B) 4.41 N
(C) 12.8 N
(F) 10.9 N

1. Focus! Your system is just Block A and Rope 1.
2. $\sum \mathrm{F}=\mathrm{T}_{1}-\mathrm{F}_{\text {friction }}=\mathrm{ma}$
3. $\mathrm{T}_{1}=\mathrm{ma}+\mathrm{F}_{\text {friction }}=\mathrm{ma}+\mu \mathrm{F}_{\text {normal }}$
4. Here, only vertical downward force is from the Weight. So your normal force (which is a reaction force) will be equal in magnitude \& opposite in direction to this.

$$
F_{\text {normal }}=F_{\text {gravity }}=m g
$$

5. $\mathrm{T}_{1}=\mathrm{ma}+\mu \mathrm{F}_{\text {normal }}=\mathrm{ma}+\mu \mathrm{mg}=\mathrm{m}(\mathrm{a}+\mu \mathrm{g})$

$$
=2 \mathrm{~kg}^{\star}\left(2.0 \mathrm{~m} / \mathrm{s}^{2}+0.35^{\star}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\right) \approx 10.9 \mathrm{~N}
$$

A note on coordinate axes:

-Coordinate axes are your friend!

- Axes are an artificial constraint you place on the world to make the math used to describe your situation as easy as possible.
- You can orient axes however you want.
-The only rule is that they must be perpendicular to each other.

Example:

Consider a block sliding down a frictionless ramp.

More convenient choice.

A block on an incline has a weight of 2.0 N . The incline is at an angle θ of 30°. What is the component of the force due to gravity in the x direction, with x as defined here?
(A) 0.5 N
(B) 1.0 N
(C) 1.7 N
(D) 2.0 N
(E) 2.3 N
(F) 4 N

For a Weight of 2.0 N , using SOHCAHTOA, the component parallel to the incline would be:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{g}} \sin \theta & =(2.0 \mathrm{~N})^{\star} \sin \left(30^{\circ}\right) \\
& =1.0 \mathrm{~N}
\end{aligned}
$$

Comments on problems with inclines:

Why tilt the coordinate axes?

- Gravity points down, but can get parallel and perpendicular components.
- The normal force is perpendicular to the surface.
- Friction is parallel to the surface.
- So, tilting axes makes 2/3 forces along an axis.

How does mass affect motion on incline?

- IF gravity \& friction are the only forces,
- Then all forces involved are scaled by the same mass:

$$
\begin{aligned}
& -F_{\text {gravity }, x}=m^{\star} g^{*} \sin (\theta) \\
& -F_{\text {friction }}=\mu F_{\text {normal }}=\mu F_{\text {gravity }, \mathrm{y}}=\mu^{\star} m^{\star} g^{\star} \cos (\theta)
\end{aligned}
$$

If only gravity \& friction are involved, then motion on a plane is independent of an object's mass.

- So acceleration: $F=$ 久ía $=F_{\text {gravity }, x}-F_{\text {friction }}=\not$ h $^{\star} g^{\star} \sin (\theta)-\mu^{\star} \not$ 亿 $^{*} g^{\star} \cos (\theta)$
- Therefore, for this situation: $\mathrm{a}=\mathrm{g}^{*}\left[\sin (\theta)-\mu^{*} \cos (\theta)\right]$

Suppose you increase the angle θ.
What happens to the x component of F_{g} and the normal force F_{N} ?
(A) $F_{g, x}$ increases; F_{N} increases
(B) $F_{q, x}$ increases; F_{N} same
(C) $F_{g, x}$ increases; F_{N} decreases
(D) $F_{g, x}$ decreases; F_{N} increases
(E) $F_{g, x}$ decreases; F_{N} same
(F) $F_{g, x}$ decreases; F_{N} decreases

(G) $F_{g, x}$ same; F_{N} increases
(H) $F_{g, x}$ same; F_{N} same
(I) $F_{g, x}$ same; F_{N} decreases

Math Solution:

-The normal force is a reaction force to the opposing perpendicular force.

- $\left|F_{N}\right|=\left|F_{g, y}\right|=m g^{*} \cos (\theta)$
- As $\theta \rightarrow 90^{\circ}, \cos (\theta) \rightarrow 0$.
- The x-component of gravity, from SOHCAHTOA, is:
- $\left|F_{g, x}\right|=m g^{*} \sin (\theta)$
- As $\theta \rightarrow 90^{\circ}, \sin (\theta) \rightarrow 1$.

Logic Solution:

- For $\theta=90^{\circ}$, just free-fall:
- $\mathrm{F}_{\text {gravity, } \mathrm{x}}$ pointing straight down \& so maximized
- Not pressing against a surface and so no normal force
- For $\theta=0^{\circ}$, just sitting on a plane:
- No horizontal gravity
- Gravity fully vertical, so $F_{\text {normal }}$ maximized

A $30 \mathrm{~kg}(294 \mathrm{~N})$ crate is sliding down an incline at an angle 30° below the horizontal. The kinetic coefficient of friction is 0.3 between the crate and the ramp. What is the acceleration of the crate along the ramp?
(A) $9.80 \mathrm{~m} / \mathrm{s}^{2}$
(B) $8.49 \mathrm{~m} / \mathrm{s}^{2}$
(C) $4.90 \mathrm{~m} / \mathrm{s}^{2}$
(D) $2.35 \mathrm{~m} / \mathrm{s}^{2}$
(E) $2.54 \mathrm{~m} / \mathrm{s}^{2}$
(F) $0.00 \mathrm{~m} / \mathrm{s}^{2}$

Solution:

1. Draw \& choose $+x$ to be along the ramp. $+y$ to be perpendicular to ramp.
2. Want a_{x}, so need $F_{n e t, x}$ in order to use $\sum F_{x}=m a_{x}$.
3. $\sum F_{x}=F_{\text {gravity }, \mathrm{x}}-F_{\text {friction }}$
4. From SOHCAHTOA: $\mathrm{F}_{\text {gravity }, \mathrm{x}}=\mathrm{m}^{\star} \mathrm{g}^{\star} \sin (\theta)$
5. But $F_{\text {friction }}=\mu F_{\text {normal }}$...so we need the normal force (which is in $+y$)
6. The normal force is a reaction force which opposes that are perpendicular to \& toward the surface (here just the y-component of the weight):
7. $\left|F_{\text {normal }}\right|=\left|F_{\text {gravity,y }}\right|=m^{*} g^{\star} \cos (\theta)$
8. Therefore, $F_{\text {friction }}=\mu^{*} m^{*} g^{*} \cos (\theta)$

As promised earlier.
Mass doesn't matter here.
4. Going back to $F=m a$...then $a=F / m$.

1. $\mathrm{a}=(\mathrm{Fg}, \mathrm{x}-\mathrm{Ff}) / \mathrm{m}=\left(\mathrm{p} 1^{*} \mathrm{~g}^{*} \sin (\theta)-\mu^{*} \mathrm{~h}^{*} \mathrm{~g}^{*} \cos (\theta)\right) / \mathrm{ph}$
2. $a=g^{\star}\left\{\sin (\theta)-\mu^{*} \cos (\theta)\right\}=\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left\{0.5-(0.3)^{\star} 0.866\right\}=2.35 \mathrm{~m} / \mathrm{s}^{2}$

A block with a weight of 10 N is sitting at rest on an incline which is tilted at an angle of 30°. The force of friction is 5.0 N . What is the net force acting on the block?
(1) 0 N
(4) 10 N straight down
(2) 5 N down the incline
(3) 5 N up the incline
(5) 5 N straight up
(6) 15 N straight down

A body at rest remains at rest, or, if in motion, remains in motion at a constant velocity, unless acted upon by a net external force.
"At rest" = no acceleration = no net force.

