Tuesday February 12

Topics for this Lecture:

Forces: Friction on Planes, Tension With Pulleys

- Write these equations in your notes if they're not already there.
- You will want them for Exam 1 & the Final.

$$F_{\text{friction}} = \mu_{\text{kinetic}} F_{\text{normal}}$$

 $F_{\text{friction}} \leq \mu_{\text{static}} F_{\text{normal}}$

- Assignment 5 due Friday...like almost every Friday
- Pre-class due 15min before class...like every class
- •Help Room: Here, 6-9pm Wed/Thurs
- •SI: Morton 226, Tu&Th 6:20-6:10pm & Morton 102 Wed 6:20-8:10pm
- Office Hours: 204 EAL, 3-4pm Thurs or by appointment (meisel@ohio.edu)
- Exam Monday February 18.

Morton 201 7:15-9:15PM

- Email me ASAP if you have a class conflict or need special accommodations through AS
- Study!

What is the magnitude of the upward force of the table on the box?

(A) 100N (E) 100N - F sin(
$$\theta$$
) (B) 100N + F cos(θ) (F) F cos(θ) (G) F sin(θ) (C) 100N - F sin(θ) (G) F sin(θ) (B) 100N + F sin(θ) (B) θ (C) 100N - F cos(θ) (B) θ (C) 100N - F cos(θ) (C) 100N - F cos(θ) (C) 100N - F sin(θ) (C) 100N - F sin(

Solution:

- 1. Note the box is in equilibrium with regards to vertical motion (i.e. it is not moving vertically)
- 2. Break the pulling force F into components 1. $F_x = F\cos(\theta)$; $F_y = F\sin(\theta)$
- 3. Use vertical equilibrium to find the table's normal force:
 - 1. $\sum F_y = ma_y = 0 = F_{\text{normal}} + F_y F_{\text{gravity}} = F_{\text{normal}} + F_y W$ 2. $0 = F_{\text{normal}} + F_y W = F_{\text{normal}} + F \sin(\theta) W$
 - 3. $F_{\text{normal}} = W F \sin(\theta) = 100 \text{N} F \sin(\theta)$

Table

Consider moving a person on a sled, where friction between the bottom of the sled and the ground is NOT negligible. You can either push forward and down at an angle θ

or pull up and forward at the same angle.

If $F_1=F_2=F$ and the angles are the same, which situation has the greater acceleration?

Find **F**_{net} in order to determine **a**:

- 1. $\Sigma F_x = F_{x,net} = ma_x$
- 2. $a_x = F_{x,net}/m$...so which situation has the largest $F_{x,net}$?
- 3. $F_{x.net} = Fcos(\theta) F_{friction}$
- 4. So the situation with the smallest $F_{friction}$ will have a larger acceleration
- 5. $F_{friction} = \mu F_{normal}$
- 6. For pushing: $F_{normal} = W + F \sin(\theta)$... For pulling: $F_{normal} = W F \sin(\theta)$
- 7. F_{normal} is smaller for pulling, so acceleration will be greater

A box with a mass of 5 kg is sitting on the flat bed of a truck, but is not tied down. The truck accelerates at 2m/s², as does the box (so it's not slipping).

The coefficients of friction between the box and the bed of the truck are μ_s =0.6 and

 $\mu_{k} = 0.4$. What is the magnitude of the frictional force acting on the box? (C) 10 N (A) 2 N (B) 49 N

(F) 29 N

1. $F_{friction} = \mu F_{normal}$

(E) 20N

- 2. $F_{normal} = mg = (5kg)(9.8m/s^2) = 49N$
- 3. So: $F_{f,static}$ could push as hard as $F_{f,static} \le \mu_s F_{normal} = (0.6)^*(49N) = 29.4N$ 4. But, F_{f,static} only reacts as hard as it has to in order to maintain *a*
- 5. $F_{net} = ma = (5kg)(2m/s^2) = 10N$...which is less than the maximum $F_{f,static}$ 6. So, $F_{f,static}$ will only match the applied action force (from F_{net}).
- 7. Meaning: $F_{f,static} = 10N$

(D) 16 N

Two people pull on opposite ends of a massless rope.

Each pulls with a force of 40N. F_{rope} person

What is the tension in the rope?

(A) 0N (B) 20N (D) 80N

 Might be counterintuitive, so don't rely on intuition! Stick to your diagrams & equations!

- Consider F=ma
 - Rope isn't accelerating, so net forces must be balanced.
 - Force of person on rope must match force of rope on the person!
 - Tension is a reaction force.

A person who weighs 800N is sitting on a chair that weighs 10N. The chair is supported by a rope over a pulley.

The person pulls down on the rope with a force of F to support the total weight.

What force, F, is required to hold them and the chair stationary?

(B) 405N (C) 800N (A) 400N (D) 810N (E) 1600N

- 1. Pick your system & draw the forces
- 2. Consider that F=ma. Here a=0.
- 3. Note that pulleys re-direct the tension, but maintain the tension magnitude.

Therefore, the upward force is 2*F.

- 4. $F_{net} = \sum F = 2F F_{q} = ma = 0$
- 5. $2F F_q = 0$ 6. 2F = W = 800N + 10N
- 7. F = (810N)/2 = 405N

The force-multiplying power of a pulley is often referred to as its "mechanical advantage". In reality it is reduced somewhat by the pulley friction. A person who weighs 800N is sitting on a chair that weighs 10N. The chair is supported by a rope over a pulley.

The person pulls down on the rope with a force of F. What force, F, is required for them and the chair to accelerate upwards at 0.5 m/s²?

- (B) 405N (C) 362N (A) 26N

(F) 852N

1. Pick your system & draw the forces.

(E) 426N

(D) 810N

2. Consider that F=ma. Here $a=0.5m/s^2$.

3. Note that pulleys re-direct the tension, but

maintain the tension magnitude.

Therefore, the upward force is 2*F.

4.
$$F_{net} = \sum_{g} F = 2F - F_g = ma$$

5.
$$2F = ma + F_g = ma + W \rightarrow F = (ma + W)/2$$

6. $W = mg = m(9.8m/s^2) \rightarrow m = (810N)/(9.8m/s^2)$

7.
$$F = \frac{1}{2} \left((810N) \frac{0.5 \frac{m}{s^2}}{9.8 \frac{m}{s^2}} + 810N \right) \approx 426N$$

A 200-N box is hanging from a rope. Two ropes attach the box to the ceiling at the angles given.

What is the tension in rope 3?

4. $T_3 = Fg = mg = W = 200N$

A 200-N box is hanging from a rope. Two ropes attach the box to the ceiling at the angles given.

(C) 173N, 100N

(F) 200N, 200N

What are the tensions in ropes 1 and 2?

(B) 50N, 150N

(E) 100N, 173N

- 1. Need to break forces into components to find X & Y components
- two get 2 equations for $T_1 \& T_2$. Need 2 equations to solve 2 unknowns. 2. Must use F=ma for X-component and Y-component separately
 - 1. $\sum F_x = ma_x = 0 = T_2 cos(\theta_2) T_1 cos(\theta_1)$
 - 2. $\sum F_y = ma_y = 0 = T_2 \sin(\theta_2) + T_1 \sin(\theta_1) T_3$

(A) 100N, 100N

(D) 150N, 50N

- 3. From (2.1): $T_2 = T_1*(\cos(\theta_1)/\cos(\theta_2))$
- 4. From (2.2): $T_3 = T_2 \sin(\theta_2) + T_1 \sin(\theta_1)$
 - 1. Use (3) in (4): $T3 = T_1*(\cos(\theta_1)/\cos(\theta_2))*\sin(\theta_2) + T_1\sin(\theta_1)$
 - 2. Therefore: $T_1 = T_3/[\sin(\theta_2)^*(\cos(\theta_1)/\cos(\theta_2))] + \sin(\theta_1)$
- 3. $T_1 = (200N)/[0.866*\{0.866/0.5\} + 0.5] = (200N)/2 = 100N$
- 5. Use (4.3) in (3): $T_2 = (100N)^*\{0.866/0.5\} = 173N$

Block B of mass 1.5 kg is accelerating downward at a rate of 3.0 m/s². Block A is connected by a massless string.

There is no friction between Block A and the table.

(C) 3.0 N

(G) 14.7 N

What is the tension in the string?

(B) 1.5 N

(A) 0 N

(E) 8.4 N

- 1. The string is massless, so the pulley just re-directs tension. Also A has no friction, so is not resisting the vertical acceleration. Therefore, just focus on Block B.
- Here we subtract tension from 2. $\sum F_v = ma_v$ gravity because we defined downward to be +y! 1. $F_{q} - T = ma$

Block B of mass 1.5 kg is accelerating downward at a rate of 3.0 m/s².

Block A is connected by a massless string.

There is <u>no friction</u> between Block A and the table.

What is the mass of Block A?

- 1. The system is just block A and the tension of the string on it.
- 2. The pulley just redirects the tension, so we can use the tension we just found for F.
- 3. F=ma
- 4. $m = F/a = T/a = (10.2N)/(3.0m/s^2) = 3.4kg$

Three boxes are accelerating to the right at a rate of 2.0m/s².

The mass of block A is 2kg. The mass of block B is 1kg.

The mass of block C is 2kg. The friction between the blocks

and the ground is described by coefficients $\mu_{Static} = 0.45$ and $\mu_{Kinetic} = 0.35$. What is the tension in rope 1 (T₁)?

(A) 5.43N (B) 4.41N (C) 12.8N A T₁ B T₂ C T₃

(D) 4.00N (E)10.0N (F) 10.9N

1. Focus! Your system is just Block A and Rope 1.

2.
$$\sum F = T_1 - F_{friction} = ma$$

3. $T_1 = ma + F_{friction} = ma + \mu F_{normal}$

ΣF = T₁ - F_{friction} = ma
 T₁ = ma + F_{friction} = ma + μF_{normal}
 Here, only vertical downward force is from the Weight.
 So your normal force (which is a reaction force) will be equal in magnitude & opposite in direction to this.
 F_{normal} = F_{gravity} = mg

 T₁ = ma + μF_{normal} = ma + μmg = m(a + μg)

Use kinetic friction because

 $= 2kg*(2.0m/s^2 + 0.35*(9.8m/s^2)) \approx 10.9 N$

the block is moving.

A note on coordinate axes:

- Coordinate axes are your friend!
- •Axes are an artificial constraint you place on the world to make the math used to describe your situation as easy as possible.
- You can orient axes however you want.
- •The only rule is that they must be perpendicular to each other.

A block on an incline has a weight of 2.0N. The incline is at an angle θ of 30°.

What is the component of the force due to gravity in the x direction, with x as defined here?

For a Weight of 2.0N, using **SOH**CAHTOA, the component parallel to the incline would be:

$$F_g \sin\theta = (2.0N)^* \sin(30^\circ)$$

= 1.0 N

Comments on problems with inclines:

Why tilt the coordinate axes?

- Gravity points down, but can get parallel and perpendicular components.
- The normal force is perpendicular to the surface.
- Friction is parallel to the surface.
- So, tilting axes makes 2/3 forces along an axis.

How does mass affect motion on incline?

- IF gravity & friction are the only forces,
- Then all forces involved are scaled by the same mass:
- $-F_{\text{gravity,x}} = \text{m*g*sin}(\theta)$ $-F_{\text{friction}} = \mu F_{\text{normal}} = \mu F_{\text{gravity,y}} = \mu \text{*m*g*cos}(\theta)$
- So acceleration: $F = ma = F_{gravity,x} F_{friction} = m^*g^*sin(\theta) \mu^*m^*g^*cos(\theta)$
- Therefore, for this situation: $a = g^*[sin(\theta) \mu^*cos(\theta)]$

If only gravity & friction are involved, then motion on a plane is independent of an object's mass.

What happens to the x component of F_{α} and the normal force F_{N} ? (A) $F_{q,x}$ increases; F_N increases (B) $F_{a,x}$ increases; F_N same

(C)
$$F_{g,x}$$
 increases; F_N decreases
(D) $F_{g,x}$ decreases; F_N increases
(E) $F_{g,x}$ decreases; F_N same
(F) $F_{g,x}$ decreases; F_N decreases

(H) $F_{q,x}$ same; F_N same Logic Solution: (I) $F_{\alpha,x}$ same; F_N decreases • For θ =90°, just free-fall: F_{gravity,x} pointing straight down Math Solution: • The normal force is a reaction force to the opposing

•As $\theta \rightarrow 90^\circ$, $\sin(\theta) \rightarrow 1$.

(G) $F_{q,x}$ same; F_N increases

Suppose you increase the angle θ .

- perpendicular force.
 - $|F_N| = |F_{q,y}| = mg*cos(\theta)$
- •As $\theta \rightarrow 90^{\circ}$, $\cos(\theta) \rightarrow 0$.

• $|F_{q,x}| = mg*sin(\theta)$

• The x-component of gravity, from SOHCAHTOA, is:

 Not pressing against a surface and so no normal force

& so maximized

• For θ =0°, just sitting on a plane:

maximized

 No horizontal gravity Gravity fully vertical, so F_{normal} below the horizontal. The kinetic coefficient of friction is 0.3 between the crate and the ramp.

What is the acceleration of the crate along the ramp? (A) 9.80m/s^2 (B) 8.49m/s^2 (C) 4.90m/s² (D) 2.35 m/s² (E) 2.54m/s² (F) 0.00m/s² Solution:

- 1. Draw & choose +x to be along the ramp. +y to be perpendicular to ramp.
- 2. Want a_x , so need $F_{net.x}$ in order to use $\sum F_x = ma_x$.
 - 1. $\sum F_x = F_{\text{gravity},x} F_{\text{friction}}$
 - 2. From SOHCAHTOA: $F_{\text{gravity},x} = m^*g^*\sin(\theta)$

A 30kg (294N) crate is sliding down an incline at an angle 30°

- 3. But $F_{\text{friction}} = \mu F_{\text{normal}}$... so we need the normal force (which is in +y) 3. The normal force is a reaction force which opposes that are perpendicular to
 - & toward the surface (here just the y-component of the weight): 1. $|F_{normal}| = |F_{gravity,y}| = m*g*cos(\theta)$ As promised earlier. Mass doesn't matter here.
- 2. Therefore, $\vec{F}_{friction} = \mu * m * g * cos(\theta)$ 4. Going back to F=ma ...then a = F/m.
 - - 1. $a = (Fg,x Ff)/m = (pa^*g^*sin(\theta) \mu^*pa^*g^*cos(\theta))/pa^*$ 2. $a = g^*\{\sin(\theta) - \mu^*\cos(\theta)\} = (9.8m/s^2)\{0.5 - (0.3)^*0.866\} = 2.35m/s^2$

A block with a weight of 10N is sitting at rest on an incline which is tilted at an angle of 30°. The force of friction is 5.0N.

What is the net force acting on the block?

(1) 0 N (2) 5N down the incline (3) 5N up the incline

(4) 10N straight down (5) 5N straight up (6) 15N straight down

A body at rest remains at rest, or, if in motion, remains in motion at a constant velocity, *unless* acted upon by a net external force.

"At rest" = no acceleration = no net force.

