Watch the lecture:

- mp4 (download or watch through firefox):
https://inpp.ohio.edu/~meisel/PHYS2001/file/Lecture17 RotationalMot
ion1 ZM2020.mp4
- youtube: https://youtu.be/ dy9law29Ps

NOTE: updates will be frequent via email. Sometimes updates will happen after a lecture has been recorded/posted. The email updates supersede any announcements made here.

Organizational notes about moving to online instruction

- This is going to beinteresting.
- See the March 10 email for the current plans as to how PHYS2001 section 102 (the afternoon section) will be run in online-mode.
- Your feedback is appreciated and will help improve the course.
- This course will be run online for the remainder of the semester.
- Questions for this lecture should be sent to me via email (Meisel@ohio.edu). Please try to refer to the slide and/or video time. I will post the (anonymized) questions and answers to the google doc below:
https://docs.google.com/document/d/1QxKOrDX24GS3Vr6i7URrQbtXePeLS
Q8GsEX2qChVJSM/edit?usp=sharing
- Please keep on top of your email for updates.
- If you need a deadline extension due to your (or your family's) health (or health-related) issues, please let me know.

...in case you missed the March 10 email and it somehow disappeared from your inbox, it is repeated below:

The plans for Section 102 of PHYS2001 are the following:

1) The homework and preclass assignment schedule will remain the same and done through lon-capa as usual.
2) Video lectures will be posted on lon-capa. I will also likely post these on youtube to make sure there aren't video-player compatibility issues.
3) The mechanism of mimicking in-class questions will be the following: Email me a question referring to a particular part of the lecture. The (anonymized) questions and the associated answers will be posted in a readonly google doc that I will keep updated. I will share the link to this document when it is ready.
4) Office hours will be held remotely. My initial plan is to email a Zoom link that you can use to connect to the office hours "meeting". I will sit in the Zoom room for the length of the office hours and will be available to discuss class-related issues in that time. For those that haven't used it, the Zoom download will be available when you first try to connect to a Zoom meeting.
5) The lab situation is still being decided upon. We are working on a dry-lab option. However, it is possible that this will not be ready immediately. Please keep an eye out for future emails.
6) Midterm 2 will either be postponed or, if the suspension of in-class meetings remains through late in the semester, will be done as a timed-assignment through lon-capa. This is similar to the Math Quiz, though we would make the open \& close times for the assignment the same for everyone so that everyone takes the exam at the same times. We will keep you updated as to which route we choose to go.
7) If the suspension lasts through the end of the semester, then the lon-capa administered exam is likely for the final exam as well. We'll have a better idea in the coming weeks whether this is likely or not.

Thank you all for working with me on this and for being patient as we figure things out. Please feel free to email me with your questions (and also feedback about the proposed plan of action).

A brief not about the exams: Reserve the regular exam time

- The most likely solution for the midterm exam will be a timed assignment on lon-capa, which will only be open for a fixed time of day. This means once you start, you will be on a timer, but you also will only be able to work on the assignment within a given time of day, regardless of when you started.
- The exam will likely be open for ~1day, but you will only have a fixed time to complete it once you start. For instance, it could be open from Noon on a Monday to Noon the following Tuesday, but once you start at 6pm on Monday, you must be done by (for example) 7 pm , for a 1 hour exam. If you didn't start until 11:30am on that Tuesday, you would only have 30min to complete the exam.
- We are hoping to put together a practice exam of this type in the next week. That would likely only be a timed assignment, but would be open for several days. This way you (and we) can practice hosting the exam in this way.

Tuesday March 24

Topics for this Lecture:

- Rotational Motion
- Angular acceleration
- Rotational-to-linear quantities
- Moment of Inertia
- Rotational kinetic energy
- Write these equations in your notes if they're not already there. - You will want them for Exam 2 \& the Final.
- $\theta=\mathrm{s} / \mathrm{r}$
- $a_{c}=v_{t}^{2} / r=r^{*} \omega^{2}$
- $\omega=\Delta \theta / \Delta t$
- $\mathrm{F}_{\mathrm{c}}=m v^{2} / \mathrm{r}$
- $v_{t}=r^{\star} \omega$
- $\alpha=\Delta \omega / \Delta t$
- $F_{g}=G \frac{m_{1} m_{2}}{r^{2}}$
- $\quad \mathrm{r} \mathrm{rad}=180^{\circ}$

Midterm Exam 2 is in soon. Study!

- Assignment 9 due Friday
-Pre-class due 15min before class
- Help Room: Teams (see email), 6-9pm Wed/Thurs
- SI: see Emma's email
- Office Hours: via email (meisel@ohio.edu)
- Midterm 2: TBA. Watch you email

A space station designer wants to mimic Earth's gravity by employing a rotating-ring design. Astronauts will inhabit the outer-ring layer, at a radius of 1000 m , which

Quiz yourself:
Tophat questions are open for
review online. rotates about the center at some velocity. How fast must the outer-ring layer be moving?
(A) $8000 \mathrm{~m} / \mathrm{s}$
(B) $99 \mathrm{~m} / \mathrm{s}$
(C) $9.8 \mathrm{~m} / \mathrm{s}$
(D) $1000 \mathrm{~m} / \mathrm{s}$
(E) $31 \mathrm{~m} / \mathrm{s}$
(F) $9800 \mathrm{~m} / \mathrm{s}$

1. On Earth, $F=m g$. On the station, $F=m a_{c}$ 2. So, need to have: $a_{c}=g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

2. $a_{c}=v_{t}^{2} / r=g$
3. $\mathrm{v}_{\mathrm{t}}=\sqrt{\mathrm{gr}}=\sqrt{\left(9.8 \frac{m}{s^{2}}\right)(1000 \mathrm{~m})} \approx 99 \mathrm{~m} / \mathrm{s} \ldots \sim 220 \mathrm{mph}!$

What is the corresponding angular velocity, ω ?
(A) 100rad/s
(B) $10 \mathrm{rad} / \mathrm{s}$
(C) $1 \mathrm{rad} / \mathrm{s}$
(D) $0.1 \mathrm{rad} / \mathrm{s}$
$v_{t}=r \omega \ldots \omega=v_{t} / r=(99 \mathrm{~m} / \mathrm{s}) /(1000 \mathrm{~m}) \approx 0.1 \mathrm{rad} / \mathrm{s} \ldots \sim 1 \mathrm{rpm}$

Relationship between Rotational \& Linear Kinematics

Equations for kinematics in 1D \& Newton's Laws apply to rotational motion as well, by subsituting the appropriate quantities:

Linear Quantity			Corresponding Rotational Quantity		
Quantity	Variable	SI units	Quantity	Variable	SI units
length	x	m	angle	$\theta=\mathrm{s} / \mathrm{r}$	rad
velocity	$\mathrm{v}=\Delta \mathrm{x} / \Delta \mathrm{t}$	m / s	angular velocity	$\omega=\Delta \theta / \Delta \mathrm{t}$	$\mathrm{rad} / \mathrm{s}$
acceleration	$\mathrm{a}=\Delta \mathrm{v} / \Delta \mathrm{t}$	$\mathrm{m} / \mathrm{s}^{2}$	angular acceleration	$\alpha=\Delta \omega / \Delta \mathrm{t}$	$\mathrm{rad} / \mathrm{s}^{2}$
mass	m	kg	$\begin{gathered} \text { Fig. } 10.12 \\ \text { moment of inertia } \end{gathered}$	I (formula depends on object shape)	$\mathrm{kg}^{*} \mathrm{~m}^{2}$
force	$\mathrm{F}=\mathrm{ma}$	N	torque	$\tau=\mathrm{I} \alpha$	$\mathrm{N}^{*} \mathrm{~m}$
momentum	$\mathrm{p}=\mathrm{mv}$	kg*m/s	angular momentum	$\mathrm{L}=\mathrm{I} \omega$	$\mathrm{kg}^{*} \mathrm{~m}^{2} / \mathrm{s}$

To find tangential motion corresponding to a given rotational motion:

- $s=r * \Delta \theta$ "arc length"
- $V_{t}=r * \omega$ "tangential velocity"
- $a_{t}=r^{*} \alpha$ "tangential acceleration"

An object starts at rest and undergoes an average angular acceleration of $0.5 \mathrm{rad} / \mathrm{s}^{2}$ for 10 seconds. What is the angular speed after 10 seconds?
(A) $0.05 \mathrm{rad} / \mathrm{s}$
(B) $0.5 \mathrm{rad} / \mathrm{s}$
(C) $5 \mathrm{rad} / \mathrm{s}$
(D) $10 \mathrm{rad} / \mathrm{s}$
(E) $20 \mathrm{rad} / \mathrm{s}$
(F) $50 \mathrm{rad} / \mathrm{s}$

1. $\alpha=\Delta \omega / \Delta t$
2. $\Delta \omega=\alpha^{\star} \Delta t=\left(0.5 \mathrm{rad} / \mathrm{s}^{2}\right) * 10 \mathrm{~s}=5 \mathrm{rad} / \mathrm{s}$
3. Since $\omega_{0}=0, \omega_{f}=5 \mathrm{rad} / \mathrm{s}$

Three erasers are on a turntable, as pictured. Eraser A is near the edge, eraser C is the closest to the center, and eraser B is in the middle.
The surface is not frictionless. Starting from rest, the turntable slowly accelerates. Which eraser flies off of the edge first?
A. A
B. B
C. C
D. All at the same time

1. $a_{c}=r^{*} w^{2}$
2. ω is the same for $A, B, \& C$, because on a rigid turn-table.
3. r is greatest for A, so a_{c} is greatest there.
4. A would therefore require the greatest force to stay moving in a circle.
5. Absent that force, A will fly-off the quickest.

Rolling (without slipping)

- The linear distance traveled for a given rotation is equal to the arc length between the initial \& final points of contact on the surface of the wheel
- $x=s=r^{*} \Delta \theta$ here θ must be in radians!
- The translational velocity is related to the rotation rate by dividing the relationship for distance by time:
- $v_{t}=r^{*} \omega$

(9) Friedrich $\overline{\text { A. Lohmuller, } \grave{2} 008}$

'04C5Z06 Corvette, Manual Tr.

- Similarly, for acceleration divide by time again to get:

You could use the 2 nd relationship + your tachometer \&

- $a_{t}=r^{*} \alpha$ speedometer readings to find the gear ratio between your crankshaft \& tires, so long as you know your tire radius.
E.g. if it were one, 2000 rpm would equal $\sim 200 \mathrm{rad} / \mathrm{s}$ at your tires. For 0.25 m -radius tires, your velocity would be $50 \mathrm{~m} / \mathrm{s}$ ($\sim 112 \mathrm{mph})$.

Gear	Ratio
1st gear	$2.97: 1$
2nd gear	$2.07: 1$
3rd gear	$1.43: 1$
4th gear	$1.00: 1$
5th gear	$0.84: 1$
6th gear	$0.56: 1$
reverse	$3.28: 1$

A pulley of radius 0.10 m has a string wrapped around the rim. If the pulley is rotating on a fixed axis at an angular speed of $0.5 \mathrm{rad} / \mathrm{s}$, what is the length of the string that comes off of the reel in 10 seconds?
(A) 0.005 m
(B) 0.05 m
(D) 5.0 m
(E) 50 m
(C) 0.5 m
(F) 500 m
"whirligig"/paper centrifuge

1. $\omega=\Delta \theta / \Delta t$
2. $\Delta \theta=\omega^{*} \Delta t=(0.5 \mathrm{rad} / \mathrm{s})(10 \mathrm{~s})=5 \mathrm{rad}$
3. $\Delta \theta=\Delta \mathrm{s} / \mathrm{r}$
4. $\Delta s=r^{\star} \Delta \theta=(0.10 \mathrm{~m})(5 \mathrm{rad})=0.5 \mathrm{~m}$
5. Linear "distance" traveled by string is equal to the arc length.

Newton's Second Law ...for Rotational Motion

Consider a puck on a frictionless tabletop attached to center post (about which it rotates) by massless rod of length r :

1. $F_{t}=m * a_{t}$
2. $F_{t}=m\left(r^{*} \alpha\right)$
3. $\left(F_{t}^{*} r\right)=m r^{\star} r^{\star}{ }^{\star} \alpha$
4. $\tau=\left(m^{\star} r^{2}\right) \alpha$
5. $\tau=I^{*} \alpha$

- I = moment of inertia
- $\mathrm{I}_{\mathrm{POINT}}=m \mathrm{r}^{2}$

Fig. 10.12

Three pucks with various masses are attached to massless rods of various length, as shown.
Which system has the greatest moment of inertia?
(A) 1
(B) 2
(C) 3
(D) All the same
(E) $1 \& 2$ tied
(F) 1 \& 3 tied

1. Point object: $\mathrm{I}_{\text {point }}=m r^{2}$
2. $I_{1}=(m)(r)^{2}=m r^{2}$
3. $I_{2}=(2 m)(r)^{2}=2 m r^{2}$
4. $I_{3}=(m)(2 r)^{2}=4 m r^{2}$

5. $I_{3}>I_{2}>I_{1}$

Moment of inertia depends on the mass \& the mass distribution/location.

Three pucks with various masses are attached to massless rods of various lengths, as shown.
Which system has the greatest angular acceleration?
(A) 1
(B) 2
(C) 3
(D) All the same
(E) $1 \& 2$ tied
(F) 1 \& 3 tied

1. Point object: $\mathrm{I}_{\text {point }}=\mathrm{mr}^{2}$
2. $I_{1}=(m)(r)^{2}=m r^{2}$
3. $I_{2}=(2 m)(r)^{2}=2 m r^{2}$
4. $I_{3}=(m)(2 r)^{2}=4 m^{2}$
5. $\mathrm{I}_{3}>\mathrm{I}_{2}>\mathrm{I}_{1}$
6. $\tau=\mathrm{Ia}=\mathrm{F}^{*} \mathrm{r}^{*} \sin (\theta)=$ same for all

7. $\alpha=\tau / I$
8. Since I is smallest for (1), α is greatest.

Moment of inertia is resistance to rotation given some applied torque. (Just like how inertia is resistance to motion given an applied force.)

Moment of Inertia

- "Moment of inertia", I: resistance to rotational motion
- Depends on mass distribution with respect to the rotation axis

-e.g. A cylinder's I depends on where you're rotating it about
- Can be combined for compound objects
[】] Fig. 10.12
-e.g: Golf club ~ [rod] + [shell at distance (using parallel-axis theorem)]

$$
I_{c}^{\prime}=I_{c}+m_{c} d^{2}
$$

 central diameter
$I=\frac{M R^{2}}{4}+\frac{M \ell^{2}}{12}$

Thin rod about
axis through one end \perp to length

Found by integrating formula for point mass over mass distribution. In general, more concentrated mass is to rotation axis, lower I.

Moment of Inertia

The "swing weight index" of a baseball bat is just an indicator of the moment-of-inertia, I.

SWING WEIGHT NOEX SWM					
	$30^{\prime \prime}$	$31^{\prime \prime}$	${ }^{32}$	$33^{\prime \prime}$	$34^{\prime \prime}$
mavo	-	${ }_{6} 8$	77	${ }^{66}$	97
mammap	-	7.0	7.	8.9	29
z zave map	-	73	8.1	20	10.1
zeane	6^{6}	74	8.2	92	102
z cour maxaman	-	74	${ }^{3}$	23	103
z Eanf maxa	-	76	8.5	95	10.5
mako товQ xL	-	-	${ }^{8.7}$	${ }^{2.6}$	10.6
mako xl	-	-	8.7	9.6	10.6
z-CORE MVERIITXI	-	-	8.9	9.9	10.9
z-COREXI	.	-	8.9	2. 9	10.9

Less weight for a given length means a lower I. But moving the center-of-mass in closer to the rotation axis also lowers I.

Two forces are exerted on a wheel which has a fixed axle at the center. Force A is applied at the rim. Force B is applied halfway between the axle and the rim. $\left|\mathrm{F}_{\mathrm{A}}\right|=1 / 2\left|\mathrm{~F}_{\mathrm{B}}\right|$.
Which best describes the direction of the angular acceleration?
A. Counterclockwise
B. Clockwise
C. Zero

1. $\tau=\mathrm{I} \alpha$
2. $\tau_{B}=-F_{B}\left(r_{\text {rim }} / 2\right) \quad \tau_{A}=F_{A}\left(r_{\text {rim }}\right)=\left(F_{B} / 2\right)\left(r_{\text {rim }}\right)=-\tau_{B}$
3. So, the torques cancel \& the net torque is zero.
4. Therefore, the angular acceleration is zero.

A solid wood cylinder and an aluminum ring are released at the same time from the top of a ramp.

https://www.youtube.com/watch?v=CHQOctEvtTY

1. The ring's mass is concentrated further from the rotation axis than the cylinder.
2. Therefore, the ring has a larger rotational inertia.
3. This means the ring is more resistant to rolling.
4. Therefore, the cylinder will start rolling earlier and make it to the bottom of the ramp first.

This is the same reason a broom is easier to balance brush-end up. It is more resistant to rotating that way.

Pulleys \& Rotational Inertia

-Previously, when dealing with pulleys, we noted they were massless....Why?

- Because the pulley has rotational inertia! It will resist rolling.
- Hanging a weight from a rope wrapped around a massive pulley will behave similarly to a weight hung from a rope attached to a mass on a frictionless table.

This situation: ...is quite a bit like this situation:

Block A applies resistance through inertia.
The pulley applies resistance through rotational inertia.

A 0.50 kg weight is hung from a frictionless pulley which has a mass of 1.5 kg and radius of 0.10 m . How long does it take for the mass to fall 1 m ?

- Ultimately need the acceleration of the mass to turn this into a 1D kinematics problem
- Can use $\sum F=m a$
- $\sum F=m g-T=m a$
- So $a=g-\frac{T}{m}$...but we don't know T
-Can work to a through the relation to rotational motion, $a=R \alpha$
- $\tau=I \alpha=R T$, where $I=\frac{1}{2} M R^{2}$
- So $\alpha=\frac{R T}{\frac{1}{2} M R^{2}}=2 \mathrm{~T} /(\mathrm{MR})$
-And therefore $a=R \alpha=\frac{2 T}{M}$
- Set our a equal, $g-T / m=\frac{2 T}{M}$
-Then $\frac{g}{\mathrm{~T}}=\frac{1}{\mathrm{~m}}+\frac{2}{\mathrm{M}}=\frac{\mathrm{M}+2 \mathrm{~m}}{\mathrm{mM}}$, meaning $T=\frac{g m M}{(M+2 m)}$
- Substituting in, $a=\frac{2 g m}{(M+2 m)}$
- Recall $y=y_{i}+v_{i} t+\frac{1}{2} a t^{2}$.
- Since $y_{i}=0$ and $v_{i}=0, t=\sqrt{2 y / a}=\sqrt{\frac{2 y}{2 g m}(M+2 m)}=0.71 \mathrm{~s}$

$$
I=\frac{M R^{2}}{2}
$$

Solid cylinder (or disk) about cylinder axis

Moment of Inertia: Multiple Objects

- Moments of inertia add together for a compound object.
- Example:

Disk with two point masses on top, all spinning about the center of the disk

- $\mathrm{I}_{\text {total }}=\mathrm{I}_{\text {cylinder }}+\mathrm{I}_{\text {point, } \mathrm{A}}+\mathrm{I}_{\text {point }, \mathrm{B}}$
- $I_{\text {total }}=(1 / 2) M_{\text {disk }}\left(R_{\text {disk }}\right)^{2}+M_{A} R_{A}^{2}+M_{B} R_{B}^{2}$

Each red dot represents a 1kg mass on a turntable. Which of the three turntables requires the least torque to achieve a given angular velocity after some fixed amount of time?

1. $\tau=\mathrm{I} \alpha$
2. $\alpha=\tau / I$
3. So, smallest moment of inertia will require least torque to achieve the same angular acceleration.
4. The mass in situation (C) is the most concentrated near the rotation axis, so it will have the smallest moment of inertia \& therefore will accelerate the quickest.
5. Therefore, (C) will achieve a given rotational velocity first.

Could calculate: $I_{\text {total }}=(1 / 2) M_{\text {cylinder }} R^{2}+M_{1} R_{1}^{2}+M_{2} R_{2}^{2}+M_{3} R_{3}^{2}$

Rotational Kinetic Energy

- Rotation has an associated kinetic energy
- As noted previously, by swapping-in the appropriate variables, our equations describing motion in 1D work for rotation as well:

$$
-K E_{\text {rotation }}=1 / 2 \mathrm{I} \omega^{2}
$$

- For example, a rolling object has both translational \& rotational kinetic energy

$$
-\mathrm{KE}_{\text {total }}=\mathrm{KE}_{\text {translation }}+\mathrm{KE}_{\text {rotation }}=1 / 2 \mathrm{mv} v^{2}+1 / 2 \mathrm{I} \omega^{2}
$$

- Can be used to store energy!
...often used to smooth-out power availability for intermittent power sources

Pottery Wheel

Engine Flywheel

An engineer is designing a flywheel for a hybrid vehicle which will be used to store energy by engaging the engine while braking. The maximum rotational velocity of the flywheel will be limited by the strength of the chosen material. The engineer wants to maximize the power storage capability of the flywheel. Compared to a nominal design, should they choose a material with twice as much mass or twice as high of a maximum rotational velocity?
A. Double the mass
B. Double the maximum rotational velocity
C. Either will give the same result

1. $K E_{\text {rotation }}=1 / 2 I \omega^{2}$
2. The flywheel inertia, I, will be proportional to the mass: $\mathrm{I}_{\text {disk }}=(1 / 2) \mathrm{MR}^{2}$

FLYWHEEL KERS

FLYWHEEL MODULE

3. Doubling M will double I and therefore double KE.
4. But, doubling ω will quadruple KE.

