Tuesday February 26

Topics for this Lecture:

- Conservation of energy
- Work
- Kinetic \& Potential Energy
- Energy is a new way for us to think about problems.
- Kinetic Energy (KE):
- Energy corresponding to linear motion - $\mathrm{KE}=(1 / 2) \mathrm{mv}^{2}$
- Potential Energy (PE):
- Stored energy (*many different kinds)
- From gravity: PE = mgh
- Work:
- Change in KE and/or PE
- Force required to move an object over a given distance
- Assignments 6 and 7 due this Friday
- Pre-class due 15min before class
- Help Room: Here, 6-9pm Wed/Thurs
- SI: Morton 226, Mon\&Thurs 6:20-7:10pm
- Office Hours: 204 EAL, 3-4pm Thurs or by appointment (meisel@ohio.edu)

Exam 1 Results

Average: 62.8

Exam 1, quick re-hash

Average: 62.8
Standard Deviation: 19.3
Top quartile: >78
Bottom quartile: <49

- Solutions will be posted on CAPA in the practice exam folder (by Friday evening)
- Come talk to me and/or email me if you have any questions
- Let me know of any grading issues/disputes and I can take a look at your exam
- If your grade wasn't what you hoped it would be, please come discuss studying strategies with me

An car of mass 500 kg is traveling at a speed of $20 \mathrm{~m} / \mathrm{s}$. The car covers a distance of 100 m . What is the kinetic energy of the car?
(A) $2 \times 10^{2} \mathrm{~J}$
(B) $5 \times 10^{3} \mathrm{~J}$
(C) $1 \times 10^{4} \mathrm{~J}$
(D) $5 \times 10^{4} \mathrm{~J}$
(E) $1 \times 10^{5} \mathrm{~J}$
(F) $5 \times 10^{6} \mathrm{~J}$
$\mathrm{KE}=1 / 2 \mathrm{mv}^{2}=1 / 2(500 \mathrm{~kg})(20 \mathrm{~m} / \mathrm{s})^{2}=100,000 \mathrm{~kg}^{*} \mathrm{~m}^{2} / \mathrm{s}^{2}=1 \times 10^{5} \mathrm{~J}$

Energy \& Work

How fast will you go dit he bottom of this roller coaster?

How much energy does it take to lift this weight?

Why do comets slingshot around the sun?

Energy \& Work

- Energy is a useful way to look at the world
-Often can ignore time information
-Energy is conserved, except when taken away by 'non-conservative forces' (which we'll cover later)
- Energy due to motion: Kinetic Energy (KE) [Units: Joules (J)]
- Stored energy (e.g. due to gravity): Potential Energy (PE) [Units: Joules (J)]
- Can convert between KE \& PE
- Changes in energy can lead to Work (W) [Units: Joules (J)]
-Work is also defined as the product of the force applied along some axis and the displacement along that axis

Work: Work done by a force or forces

-Work done by a force or group of forces

- Work $=($ mag. of force) $($ mag. of displacement) $(\cos \theta)$
$-\mathrm{W}=\mathrm{F}^{*} \mathrm{~d}^{*} \cos (\theta)$
-Units of Work and Energy: Joules (J)
- Sign: θ angle between force and displacement
- same direction (+)
- opposite direction (-)
- perpendicular (0)

$\theta=0^{\circ}$
W positive

$$
\begin{aligned}
& \theta=90^{\circ} \\
& W \text { zero }
\end{aligned}
$$

$$
\theta=180^{\circ}
$$

W negative

A person is pulling a crate with a force of 50 N (as shown) over a distance of 3.0 m at a constant speed of $4.0 \mathrm{~m} / \mathrm{s}$. What is the work done on the object by the person?

A. 16.7 J B. 75 J C. 130 J D. 150 J

1. $W=F^{*} d^{*} \cos (\theta)$
2. $W=(50 \mathrm{~N})(3.0 \mathrm{~m}) \cos \left(30^{\circ}\right)=130 \mathrm{~J}$
$\mathrm{W}=\mathrm{F}^{\star} \mathrm{d}^{\star} \cos (\theta)$
$1 \mathrm{~J}=1 \mathrm{~kg}^{\star} \mathrm{m}^{2} / \mathrm{s}^{2}$

A crate (weight=40N) is sliding down a ramp 10m long. The normal force on the crate is 30 N .
What is the work done by the normal force as it slides the length of the ramp?
(A) -300J
(B) -100 J
(E) 300 J
(F) 400J
(C) 0 J
(D) 100 J
(G) 700 J
(H) -400 J

1. $\mathrm{W}=\mathrm{F}^{\star} \mathrm{d}^{\star} \cos (\theta)$
2. Normal force is perpendicular to distance traveled

$$
\text { 1. } \theta=90^{\circ}
$$

3. $\cos \left(90^{\circ}\right)=0$
4. $W=0 \mathrm{~J}$

Work: Net work from changes in kinetic energy

1. \quad Work $=W_{n e t}=F_{n e t} \cdot d=m a \cdot d$
2. From 1D-kinematics, recall: $v_{f}^{2}=v_{i}^{2}+2 a\left(x-x_{0}\right)=2 a d$
3. So: $2 a d=v_{f}^{2}-v_{i}^{2}$

3 . We are free to multiply both sides of (2.1) by mass, m, and divide by 2

1. $m a d=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}$
2. Then, we recall that $W_{n e t}=F_{n e t} \cdot d=m a \cdot d$
3. $W_{n e t}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}$
4. Kinetic Energy $=K E=\frac{1}{2} m v^{2}$
5. $W_{\text {net }}=K E_{\text {final }}-K E_{\text {initial }}$
6. $W_{n e t}=\Delta K E$

A crate is moving horizontally across a floor to the right with a kinetic energy of 100 J. You do +300 J of work on the crate as it moves 5 m .
The magnitude of the work done by the frictional force, which is opposing you, is 150 J . The weight of the crate is 50 N .
What is the kinetic energy of the crate after moving 5 m ?
4
(A) 50 J
(B) 100 J
(C) 200 J
(D) 250 J
(E) 350 J

1. $\mathrm{W}_{\mathrm{NET}}=300 \mathrm{~J}-150 \mathrm{~J}=+150 \mathrm{~J}$
2. $\mathrm{W}_{\mathrm{NET}}=\Delta \mathrm{KE}$
3. $\mathrm{W}_{\text {NET }}=K E_{\text {FINAL }}-K E_{\text {INITIAL }}$
4. $\mathrm{KE}_{\text {FINAL }}=\mathrm{KE}_{\text {INITIAL }}+\mathrm{W}_{\text {NET }}$
5. $K E_{\text {FINAL }}=100 \mathrm{~J}+150 \mathrm{~J}$

As you know from personal experience, it takes more work to push an object with a larger frictional force. Also, when you push an object, you can make it speed-up.

