Thursday February 16

Tuesday February 21

Topics for this Lecture:

- Conservation of energy
-Work
- Kinetic \& Potential Energy
-Energy is a new way for us to think about problems.
- Kinetic Energy (KE):
- Energy corresponding to linear motion - $\mathrm{KE}=(1 / 2) \mathrm{mv}^{2}$
- Potential Energy (PE):
- Stored energy (*many different kinds)
- From gravity: PE = mgh
-Work:
- Change in KE and/or PE
- Force required to move an object over a given distance
- Assignment 7 due Friday
- Pre-class due 15 min before class
- Help Room: Here, 6-9pm Wed/Thurs
- SI: Morton 326, M\&W 7:15-8:45pm
- Office Hours: 204 EAL, 10-11am Wed or by appointment (meisel@ohio.edu)

An car of mass 500 kg is traveling at a speed of $20 \mathrm{~m} / \mathrm{s}$. The car covers a distance of 100 m . What is the kinetic energy of the car?
(A) $2 \times 10^{2} \mathrm{~J}$
(B) $5 \times 10^{3} \mathrm{~J}$
(C) $1 \times 10^{4} \mathrm{~J}$
(D) $5 \times 10^{4} \mathrm{~J}$
(E) $1 \times 10^{5} \mathrm{~J}$
(F) $5 \times 10^{6} \mathrm{~J}$
$\mathrm{KE}=1 / 2 \mathrm{mv}^{2}=1 / 2(500 \mathrm{~kg})(20 \mathrm{~m} / \mathrm{s})^{2}=100,000 \mathrm{~kg}^{*} \mathrm{~m}^{2} / \mathrm{s}^{2}=1 \times 10^{5} \mathrm{~J}$

Energy \& Work

How fast will you go at the bottom of this roller coaster?

How much energy does it take to lift this weight?

Why do comets slingshot around the sun?

Energy \& Work

- Energy is a useful way to look at the world
-Often can ignore time information
-Energy is conserved, except when taken away by 'non-conservative forces' (which we'll cover later)
- Energy due to motion: Kinetic Energy (KE) [Units: Joules (J)]
- Stored energy (e.g. due to gravity): Potential Energy (PE) [Units: Joules (J)]
- Can convert between KE \& PE
- Changes in energy can lead to Work (W) [Units: Joules (J)]
-Work is also defined as the product of the force applied along some axis and the displacement along that axis

Work: Work done by a force or forces

-Work done by a force or group of forces - Work $=($ mag. of force $)($ mag. of displacement $)(\cos \theta)$
$-\mathrm{W}=\mathrm{F}^{*} \mathrm{~d}^{*} \cos (\theta)$
-Units of Work and Energy: Joules (J)

- Sign: θ angle between force and displacement
- same direction (+)
- opposite direction (-)
- perpendicular (0)

$\theta=0^{\circ}$
W positive

$$
\begin{aligned}
& \theta=90^{\circ} \\
& W \text { zero }
\end{aligned}
$$

$$
\theta=180^{\circ}
$$

W negative

A person is pulling a crate with a force of 50 N (as shown) over a distance of 3.0 m at a constant speed of $4.0 \mathrm{~m} / \mathrm{s}$. What is the work done on the object by the person?

A. 16.7 J
B. 75 J
C. 130 J
D. 150 J

1. $W=F^{*} d^{*} \cos (\theta)$
2. $W=(50 \mathrm{~N})(3.0 \mathrm{~m}) \cos \left(30^{\circ}\right)=130 \mathrm{~J}$

$$
\begin{aligned}
& W=F^{*} d^{*} \cos (\theta) \\
& 1 \mathrm{~J}=1 \mathrm{~kg}^{*} \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

A crate (weight $=40 \mathrm{~N}$) is sliding down a ramp 10 m long.
The normal force on the crate is 30 N .
What is the work done by the normal force as it slides the length of the ramp?
(A) -300J
(B) -100 J
(C) 0 J
(D) 100 J
(E) 300 J
(F) 400J
(G) 700J
(H) -400 J

1. $W=F^{*} d^{*} \cos (\theta)$
2. Normal force is perpendicular to distance traveled
3. $\theta=90^{\circ}$
4. $\cos \left(90^{\circ}\right)=0$
5. $W=0 \mathrm{~J}$

Work: Net work from changes in kinetic energy

1. Work $=W_{n e t}=F_{n e t} \cdot d=m a \cdot d$
2. From 1D-kinematics, recall: $v_{f}^{2}=v_{i}^{2}+2 a\left(x-x_{0}\right)=2 a d$
3. So: $2 a d=v_{f}^{2}-v_{i}^{2}$
4. We are free to multiply both sides of (2.1) by mass, m, and divide by 2
5. $m a d=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}$
6. Then, we recall that $W_{n e t}=F_{n e t} \cdot d=m a \cdot d$
7. $W_{n e t}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}$
8. Kinetic Energy $=K E=\frac{1}{2} m v^{2}$
9. $W_{\text {net }}=K E_{\text {final }}-K E_{\text {initial }}$
10. $W_{n e t}=\Delta K E$

How much work does it take for a jet to take-off?

A crate is moving horizontally across a floor to the right with a kinetic energy of 100 J. You do +300 J of work on the crate as it moves 5 m .
The magnitude of the work done by the frictional force, which is opposing you, is 150 J . The weight of the crate is 50 N .
What is the kinetic energy of the crate after moving 5 m ?
(A) 50 J
(B) 100 J
(C) 200 J
(D) 250J
(E) 350 J

1. $\mathrm{W}_{\mathrm{NET}}=300 \mathrm{~J}-150 \mathrm{~J}=+150 \mathrm{~J}$
2. $W_{N E T}=\Delta K E$
3. $W_{\text {NET }}=K E_{\text {FINAL }}-K E_{\text {INITIAL }}$
4. $\mathrm{KE}_{\text {FINAL }}=\mathrm{KE}_{\text {INITIAL }}+\mathrm{W}_{\text {NET }}$
5. $K E_{\text {FINAL }}=100 \mathrm{~J}+150 \mathrm{~J}$

As you know from personal experience, it takes more work to push an object with a larger frictional force. Also, when you push an object, you can make it speed-up.

Work: Work done by gravity, considering kinetic energy

Consider an object dropped for some height. How much work has gravity done?

- Initial kinetic energy: $\mathrm{KE}=(1 / 2) \mathrm{mv}^{2}=0$, because $\mathrm{v}_{\mathrm{i}}=0$
- For final kinetic energy, need final velocity:
- $v_{f}^{2}=v_{i}^{2}+2 a\left(y_{f}-y_{i}\right)=v_{i}^{2}+2 a h=2 a h$
- $K E_{f}=\frac{1}{2} m v_{f}^{2}=\frac{1}{2} m(2 a h)=m a h$
- On Earth, so $a=g$
- Therefore,
- $W=\Delta K E=K E_{f}-K E_{i}$
- $=m g h-0$
- $=m g h$
- So work done by gravity is:
- $W_{\text {grav }}=m g h$

Can convert potential energy into kinetic energy (\& back).

- We can ignore kinetics to get work done by gravity!
-This is because work from gravity is work done by moving in a gravitational potential, i.e. work done by changes in potential energy.

Work: Work done by gravity, considering potential energy

- We established: $\mathrm{W}_{\mathrm{g}}=\mathrm{m}^{*} \mathrm{~g}^{*} \mathrm{~h}$ " h " is positive, because, in our
derivation, $a=+g$, so lower heights
- But, keep in mind, here " h " $=\mathrm{y}_{\mathrm{f}}-\mathrm{y}_{\mathrm{i}}$ are larger y .
- So: $\mathrm{W}_{\mathrm{g}}=\mathrm{mgy}_{\mathrm{i}}-\mathrm{mgy}_{\mathrm{f}}=\mathrm{mgh}_{\mathrm{i}}-\mathrm{mgh}_{\mathrm{f}}$
- Gravitational potential energy: $\mathrm{PE}=\mathrm{mgh}$
- $W_{g}=P E_{i}-P E_{f}=-\Delta P E$
- Gravity can be used to store energy:
- Raise object = convert energy into PE
- Lower object = convert energy from PE
Must choose a reference level for h to calculated Δy and get $\triangle P E$.
- If we were to lower an object \& raise it back to the same spot: $\mathrm{W}_{\mathrm{g}}=0$
- The work done by gravity is independent of the path taken!
- Therefore, it is a "Conservative Force".

Book A is raised from the floor to a point 2.0 m above the floor. An identical book (B) is raised from a point 2.0 m below the ceiling to the ceiling. Which book undergoes the greatest increase in gravitational potential energy?
A. Book A
B. Book B
C. Same for both books

- $\Delta \mathrm{PE}=\mathrm{mgh}_{\mathrm{f}}-\mathrm{mgh}_{\mathrm{i}}=\mathrm{mg}(\Delta \mathrm{h})$
- For both cases $\Delta h=2.0 m$
- ...so same $\Delta P E$

Does it take more energy to walk up one step versus another one higher on the stair case? No!

Kinetic \& Potential Energy: The basics

- Kinetic Energy:
- $\mathrm{KE}=(1 / 2) \mathrm{mv}^{2}$
- Zero velocity = zero kinetic energy
- Potential Energy:
- $\mathrm{PE}=\mathrm{mgh}$
- Zero at reference level, non-zero above \& below
- Can convert from one KE to another:

- Vibrating vocal cords $\left(\mathrm{KE}_{1}\right)$ bump into air molecules, causing them to oscillate $\left(\mathrm{KE}_{2}\right)$. Vibrating air molecules (a.k.a. sound) bump into your ear drum, causing it to vibrate $\left(\mathrm{KE}_{3}\right)$. Your ear drum causes bones in the ear to vibrate $\left(\mathrm{KE}_{4}\right)$, stimulating nerves in the ear, which send electrical impulses to your brain.
- Can convert from one PE to another:
-Think of people on a teeter-totter.
- Can convert from KE to PE \& back:

- On a roller coaster, your initial height is converted to a high speed. Your high speed allows you to climb high hills later on the coaster.
- A conservative force is one for which the work depends only on the beginning and ending points of the motion taken, not the actual path.

Friction does more work on the block if one slides it along the indirect path across the tabletop. The longer the path, the more work friction does.

- Conservative: gravity, springs,
- Conservative force can be used to create Potential Energy (stored energy)
- Non-conservative: Friction, air resistance, tension, normal force, engines, etc...
- Cannot recover work done by non-conservative force as energy

Non-conservative forces \& Energy

- Both Conservative \& Non-conservative forces can change kinetic energy KE
- $\Delta \mathrm{KE}=\mathrm{W}_{\text {net }}$
- $\Delta \mathrm{KE}=\mathrm{W}_{\mathrm{NC}}+\mathrm{W}_{\mathrm{C}}$
- Work done by conservative forces can be stored \& therefore treated as a change in potential energy PE
- $W_{C}=-\Delta \mathrm{PE}$
- So $\ldots \Delta \mathrm{KE}=\mathrm{W}_{\mathrm{NC}}-\Delta \mathrm{PE}$

In the absence of

- $\mathrm{W}_{\mathrm{NC}}=\Delta \mathrm{KE}+\Delta \mathrm{PE}$
- Total Mechanical Energy: TME = E = KE +PE
- So, $\mathrm{W}_{\mathrm{NC}}=\Delta \mathrm{E}$
- $W_{N C}=\Delta E=E_{f}-E_{i}$ non-conservative forces,
energy is conserved.
- $\mathrm{E}_{\mathrm{f}}=\mathrm{E}_{\mathrm{i}}+\mathrm{W}_{\mathrm{NC}}$
- When considering initial \& final energy of a system:
- $E_{f}=E_{i}+W_{N C}$
- $\left(\mathrm{KE}_{f}+P E_{f}\right)=\left(K E_{i}+P E_{i}\right)+W_{N C}$
- ...if $\mathrm{W}_{\mathrm{NC}}=0$, then $\left(\mathrm{KE}_{\mathrm{f}}+P E_{\mathrm{f}}\right)=\left(\mathrm{KE}_{\mathrm{i}}+P \mathrm{E}_{\mathrm{i}}\right)$

Conservation of Energy

Total energy of a system stays the same unless there is energy being added or taken away by non-conservative forces.

$$
\left(\mathrm{KE}_{\mathrm{f}}+P E_{f}\right)=\left(K E_{i}+P E_{i}\right)+W_{N C}
$$

If $\mathrm{W}_{\mathrm{NC}}=0$, then the total mechanical energy (TME a.k.a. E) stays the same. Energy may change between types, but the total stays same.

You have $\$ 100$ in your pocket and $\$ 500$ in your checking account. You withdraw some money from the checking account to pay for $\$ 250$ worth of books.
You have \$300 left in your checking account. How much money do you have left in your pocket?

Checking	Pocket	Total Assets
$\$ 500$	$\$ 100$	$?$
$\$ 600$		
$\$ 300$	$? \$ 50$	$? \$ 350$

(A) $\$ 0$
(C) $\$ 100$
(B) $\$ 50$
(E) $\$ 200$
(D) $\$ 150$
(F) $\$ 250$

1. Start with total of $\$ 600$.
2. Spend $\$ 250$ - leaves $\$ 350$.
3. If $\$ 300$ in Checking, then $\$ 50$ in pocket.

Energy accounting is like financial accounting.

An airplane has $25,000 \mathrm{~J}$ of KE and a potential energy of $100,000 \mathrm{~J}$.
The airplane slowly descends.
During this time drag forces do a total of 5,000J of work on the plane.
The final potential energy is $90,000 \mathrm{~J}$.
What is the final KE of the plane?

PE	KE	Total Mechanical Energy
$100,000 \mathrm{~J}$	$25,000 \mathrm{~J}$	$? \quad 125,000 \mathrm{~J}$
90,000	$? 30,000 \mathrm{~J}$	$? 120,000 \mathrm{~J}$

(A)10,000J	(B) $15,000 \mathrm{~J}$
(C) $20,000 \mathrm{~J}$	(D) $25,000 \mathrm{~J}$
(E) $30,000 \mathrm{~J}$	(F) $35,000 \mathrm{~J}$

1. Total $E=K E_{i}+P E_{i}=25,000 \mathrm{~J}+100,000 \mathrm{~J}=125,000 \mathrm{~J}$
2. Lose 5000
3. $E_{f}=E_{i}-5000 \mathrm{~J}=125,000 \mathrm{~J}-5,000 \mathrm{~J}=120,000 \mathrm{~J}$
4. In the end, 90,000 in form of $P E$
5. $E_{f}=P E_{f}+K E_{f}$
6. $K E_{f}=120,000 \mathrm{~J}-90,000 \mathrm{~J}=30,000 \mathrm{~J}$

An 0.2 kg ball is dropped from a height of 3.0 m above the floor. What is the speed of the ball just before it hits the floor? (ignore air resistance)
(A) $3 \mathrm{~m} / \mathrm{s}$
(B) $9.8 \mathrm{~m} / \mathrm{s}$
(C) $5.9 \mathrm{~m} / \mathrm{s}$
(D) $7.7 \mathrm{~m} / \mathrm{s}$

- Could use free-fall equations...
...but using energy is easier.
- Know mass, final \& initial heights, \& initial velocity. Therefore, know:
- $P E_{i}=\mathrm{mgh}_{\mathrm{i}}=(0.2 \mathrm{~kg})^{*}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)^{\star}(3 \mathrm{~m})=5.88 \mathrm{~J}$
- $P E_{f}=\mathrm{mgh}_{\mathrm{f}}=\mathrm{m}^{*} \mathrm{~g}^{*}(0 \mathrm{~m})=0 \mathrm{~J}$
- $\mathrm{KE}_{\mathrm{i}}=(1 / 2) \mathrm{m} v_{i}^{2}=(1 / 2) \mathrm{m}(0 \mathrm{~m} / \mathrm{s})^{2}=0 \mathrm{~J}$
- $E_{f}=E_{i}+W_{N C}$
- No non-conservative forces, so $\mathrm{W}_{\mathrm{NC}}=0 \ldots$ so, $\mathrm{E}_{\mathrm{f}}=\mathrm{E}_{\mathrm{i}}$
- $P E_{i}+K E_{i}=P E_{f}+K E_{f}$
- $\mathrm{KE}_{\mathrm{f}}=5.88 \mathrm{~J}=(1 / 2) \mathrm{m} v_{f}^{2}$
- $v_{f}=\sqrt{2 K E / m}=\sqrt{2(5.88 J) /(0.2 \mathrm{~kg})}=\sqrt{2\left(5.88 \mathrm{kgm}^{2} \mathrm{~s}^{-2}\right) /(0.2 \mathrm{~kg})}=7.7 \mathrm{~m} / \mathrm{s}$

3 balls of the same mass are thrown from a cliff, all with a speed of $25 \mathrm{~m} / \mathrm{s}$. A is thrown upward at an angle of 45°.
B is thrown horizontally.
C is thrown downward at an angle of 45°.
Which one is traveling fastest just before it hits the ground?

$\begin{array}{llll}\text { (A) A } & \text { (B) B } & \text { (C) C } & \text { (D) All have the same speed }\end{array}$

1. No non-conservative forces, so $E_{f}=E_{i}$
2. $E_{i}=m g h+(1 / 2) m v^{2}$
3. Same mass \& same initial height
4. "Same speed"; i.e. same v
5. ...So same E_{i}
6. $E_{f}=K E_{f}+P E_{f}$
7. $P E_{f}=m g h=m g *(0 m)=0 J$
8. $E_{f}=K E_{f}$
9. $K E_{f}=(1 / 2) m v^{2}=E_{i}$, which is the same for all
10. Since m is the same, v_{f} must therefore be the same

Four identical balls roll off four tracks.
The tracks are of the same height but different shapes, as shown.
For which track is the ball moving the fastest when it leaves the track?

A. Yellow
B. Red
C. Green
D. Blue
E. All the same

1. No non-conservative forces, so $E_{f}=E_{i}$
2. $E_{i}=m g h+(1 / 2) m v^{2}$
3. Same mass, same initial height, all starting from rest $\left(\mathrm{KE}_{\mathrm{i}}=0\right)$
4. So same E_{i}
5. $E_{f}=K E_{f}+P E_{f}$
6. $P E_{f}=m g h=m g^{*}(0 m)=0 J$
7. $E_{f}=K E_{f}$
8. $\mathrm{KE}_{\mathrm{f}}=(1 / 2) \mathrm{mv}^{2}=\mathrm{E}_{\mathrm{i}}$, which is the same for all (b/c all leaving at same height)
9. Since m is the same, v_{f} must therefore be the same

Four identical balls roll off four tracks.
The tracks are of the same height but different shapes, as shown.
For which track does the trip from start to finish take the least time?
A. Yellow
B. Red
C. Green
D. Blue
E. All the same

1. A ball on the blue path converts PE to KE very early-on.
2. Increased KE earlier, means increased velocity earlier
3. Increased velocity means less travel time

Energy conservation helps deal with complicated object paths, but we lose time information!

Bruce Yeaney

An 80-kg stunt-person starts at rest and slides down a roof, flies through the air, and lands on a large pad, which compresses 1.2 m in order to bring the stuntperson to a stop. Assume it is an icy day and the roof is frictionless. Ignore air resistance. What is the average force on the stunt-person due to the pad? (Hint: pick the top of the landing pad as the $\mathrm{h}=0$ reference level.)

(A) 3400 N
(B) 3140 N
(C) 4080 N
(D) 0 N
(E) 940 N
(F) 2350 N

$$
\left(\mathrm{KE}_{\mathrm{f}}+P E_{\mathrm{f}}\right)=\left(\mathrm{KE}_{\mathrm{i}}+P E_{i}\right)+W_{N C}
$$

$$
\begin{aligned}
& \text { 1. }\left(\mathrm{KE}_{\mathrm{F}}+P E_{F}\right)=\left(\mathrm{KE}_{0}+P E_{0}\right)+\mathrm{W}_{\mathrm{NC}} \\
& \text { 2. }(0+(-1.2) \mathrm{mg})=(0+4 \mathrm{mg})+\mathrm{F}^{*} \mathrm{~d}^{*} \cos \left(180^{\circ}\right) \\
& \text { 3. }-1.2 \mathrm{mg}=4 \mathrm{mg}+\mathrm{F}^{*}(1.2)^{*}(-1) \\
& \text { 4. } 1.2 \mathrm{~F}=5.2 \mathrm{mg} \\
& \text { 5. } \mathrm{F}=3400 \mathrm{~N}
\end{aligned}
$$

	KE	PE	$\mathrm{E}_{\mathrm{TOT}}$
Top	0	$\operatorname{mg}(4 \mathrm{~m})$	4 mg
Top of Pad	$1 / 2 \mathrm{mv}^{2}$	0	$1 / 2 \mathrm{mv}^{2}$
Rest	0	$\operatorname{mg}(-1.2 \mathrm{~m})$	-1.2 mg

