Refresher of Math Basics

Arithmetic Operations

$$
\begin{array}{ll}
\frac{a b+a c=a(b+c)}{} & a\left(\frac{b}{c}\right)=\frac{a b}{c} \\
\frac{\left(\frac{a}{b}\right)}{c}=\frac{a}{b c} & \frac{a}{\left(\frac{b}{c}\right)}=\frac{a c}{b} \\
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} & \frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d} \\
\frac{a-b}{c-d}=\frac{b-a}{d-c} & \frac{a+b}{c}=\frac{a}{c}+\frac{b}{c} \\
\frac{a b+a c}{a}=b+c, a \neq 0 & \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)}=\frac{a d}{b c}
\end{array}
$$

Exponent Properties

$$
a^{n} a^{m}=a^{n+m}
$$

$$
\left(a^{n}\right)^{m}=a^{n m}
$$

$$
(a b)^{n}=a^{n} b^{n}
$$

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}
$$

$$
a^{-n}=\frac{1}{a^{n}}
$$

$$
\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}} \quad a^{\frac{\pi}{n}}=\left(a^{\frac{1}{n}}\right)^{n}=\left(a^{n}\right)^{\frac{1}{n}}
$$

Properties of Absolute Value $|a|= \begin{cases}a & \text { if } a \geq 0 \\ -a & \text { if } a<0\end{cases}$
$|a| \geq 0$
$|a b|=|a||b|$
$|-a|=|a|$
$\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$

Properties of Radicals

$\sqrt[n]{a}=a^{\frac{1}{n}} \quad \sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b}$
$\sqrt[m]{\sqrt[n]{a}}=\sqrt[n n]{a} \quad \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
$\sqrt[n]{a^{n}}=a$, if n is odd
$\sqrt[n]{a^{n}}=|a|$, if n is even

Some Trigonometry

"SOHCAHTOA":

Sine $=$ Opposite/Hypotenuse $=" \sin (\theta)$ "
Cosine $=$ Adjacent $/$ Hypotenuse $=" \cos (\theta)$ "
Tangent $=$ Opposite/Adjacent $=" \tan (\theta)$ "
$\theta=\sin ^{-1}$ (opposite/hypotenuse)
$\theta=\cos ^{-1}$ (adjacent/hypotenuse)
$\theta=\tan ^{-1}$ (opposite/adjacent)

Common Algebra Mistakes

Error

Reason for Error

$\frac{2}{0} \neq 0$ and $\frac{2}{0} \neq 2$
Division by zero is undefined!
$-3^{2} \neq 9 \quad-3^{2}=-9,(-3)^{2}=9$ Watch parenthesis!
$\left(x^{2}\right)^{3} \neq x^{5} \quad\left(x^{2}\right)^{3}=x^{2} x^{2} x^{2}=x^{6}$
$\frac{a}{b+c} \neq \frac{a}{b}+\frac{a}{c} \quad \frac{1}{2}=\frac{1}{1+1} \neq \frac{1}{1}+\frac{1}{1}=2$

$$
\frac{1}{x^{2}+x^{3}} \neq x^{-2}+x^{-3} \quad \begin{aligned}
& \text { A more complex version of the previous } \\
& \text { error }
\end{aligned}
$$

$\frac{a b+b x}{a} \neq 1+b x \quad \frac{a+b x}{a}=\frac{a}{a}+\frac{b x}{a}=1+\frac{b x}{a}$
Beware of incorrect canceling!

$$
-a(x-1) \neq-a x-a
$$

$-a(x-1)=-a x+a$
Make sure you distribute the "-"!

$$
\begin{aligned}
& (x+a)^{2} \neq x^{2}+a^{2} \\
& \sqrt{x^{2}+a^{2}} \neq x+a
\end{aligned} \quad \begin{aligned}
& (x+a)^{2}=(x+a)(x+a)=x^{2}+2 a x+a^{2} \\
& 5=\sqrt{25}=\sqrt{3^{2}+4^{2}} \neq \sqrt{3^{2}}+\sqrt{4^{2}}=3+4=7
\end{aligned}
$$

$\sqrt{x+a} \neq \sqrt{x}+\sqrt{a} \quad$ See previous error.
$(x+a)^{n} \neq x^{n}+a^{n}$ and $\sqrt[n]{x+a} \neq \sqrt[n]{x}+\sqrt[n]{a} \quad \begin{aligned} & \text { More general versions of previous three } \\ & \text { errors. }\end{aligned}$
$2(x+1)^{2}=2\left(x^{2}+2 x+1\right)=2 x^{2}+4 x+2$
$2(x+1)^{2} \neq(2 x+2)^{2}$
$(2 x+2)^{2}=4 x^{2}+8 x+4$
Square first then distribute!
See the previous example. You can not
$(2 x+2)^{2} \neq 2(x+1)^{2}$
factor out a constant if there is a power on the parethesis!
$\sqrt{-x^{2}+a^{2}}=\left(-x^{2}+a^{2}\right)^{\frac{1}{2}}$
Now see the previous error.

$$
\frac{a}{\left(\frac{b}{c}\right)}=\frac{\left(\frac{a}{1}\right)}{\left(\frac{b}{c}\right)}=\left(\frac{a}{1}\right)\left(\frac{c}{b}\right)=\frac{a c}{b}
$$

