Refresher of Math Basics

Arithmetic Operations

ab+ac=a(b+c)	$a\left(\frac{b}{c}\right) = \frac{ab}{c}$
$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{bc}$	$\frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$

 $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ $\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$ **Properties of Radicals** $\frac{a-b}{c-d} = \frac{b-a}{d-c} \qquad \qquad \frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$ $\frac{ab+ac}{a} = b+c, \ a \neq 0 \qquad \frac{\left\lfloor \frac{a}{b} \right\rfloor}{\left\lfloor \frac{c}{d} \right\rfloor} = \frac{ad}{bc}$

Exponent Properties

 $\frac{a^n}{a^m} = a^{n-m} = \frac{1}{a^{m-n}}$ $a^n a^m = a^{n+m}$

- $(a^n)^m = a^{nm}$ $a^0 = 1, a \neq 0$
- $(ab)^n = a^n b^n$
- $\frac{1}{a^{-n}} = a^n$ $a^{-n} = \frac{1}{a^n}$
- $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n} = \frac{b^{n}}{a^{n}} \qquad a^{\frac{a}{m}} = \left(a^{\frac{1}{m}}\right)^{n} = \left(a^{n}\right)^{\frac{1}{m}}$

 $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Properties of Absolute Value

if $a \ge 0$ $|a| = \begin{cases} a & \text{if } a \le 0 \\ -a & \text{if } a < 0 \end{cases}$ $|a| \ge 0$ |-a| = |a| $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$ |ab| = |a||b|

$\sqrt[n]{a} = a^{\frac{1}{\kappa}}$	$\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$	
$\sqrt[m]{n/a} = \sqrt[nm]{a}$	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	
$\sqrt[n]{a^n} = a$, if <i>n</i> is odd		
$\sqrt[n]{a^n} = a $, if <i>n</i> is even		
Some Trigonometry		

"SOHCAHTOA":

Sine = Opposite/Hypotenuse = " $sin(\theta)$ " $Cosine = Adjacent/Hypotenuse = "cos(\theta)"$ Tangent = Opposite/Adjacent = "tan(θ)" $\theta = \sin^{-1}(\text{opposite/hypotenuse})$ $\theta = \cos^{-1}(adjacent/hypotenuse)$ $\theta = \tan^{-1} (\text{opposite}/\text{adjacent})$ hypotenuse opposite θ adjacent

Common Algebra Mistakes

Error	Reason for Error
$\frac{2}{0} \neq 0$ and $\frac{2}{0} \neq 2$	Division by zero is undefined!
$-3^2 \neq 9$	$-3^2 = -9$, $(-3)^2 = 9$ Watch parenthesis!
$\left(x^2\right)^3 \neq x^5$	$\left(x^{2}\right)^{3} = x^{2}x^{2}x^{2} = x^{6}$
$\frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}$	$\frac{1}{2} = \frac{1}{1+1} \neq \frac{1}{1} + \frac{1}{1} = 2$
$\frac{1}{x^2 + x^3} \neq x^{-2} + x^{-3}$	A more complex version of the previous error.
$\frac{a + bx}{a} \neq 1 + bx$	$\frac{a+bx}{a} = \frac{a}{a} + \frac{bx}{a} = 1 + \frac{bx}{a}$
$-a(x-1)\neq -ax-a$	-a(x-1) = -ax + a Make sure you distribute the "-"!
$(x+a)^2 \neq x^2 + a^2$	$(x+a)^2 = (x+a)(x+a) = x^2 + 2ax + a^2$
$\sqrt{x^2 + a^2} \neq x + a$	$5 = \sqrt{25} = \sqrt{3^2 + 4^2} \neq \sqrt{3^2} + \sqrt{4^2} = 3 + 4 = 7$
$\sqrt{x+a} \neq \sqrt{x} + \sqrt{a}$	See previous error.
$(x+a)^n \neq x^n + a^n$ and $\sqrt[n]{x+a} \neq \sqrt[n]{x} + \sqrt[n]{a}$	More general versions of previous three errors.
	$2(x+1)^{2} = 2(x^{2}+2x+1) = 2x^{2}+4x+2$
$2(x+1)^2 \neq (2x+2)^2$	$(2x+2)^2 = 4x^2 + 8x + 4$
$(2x+2)^2 \neq 2(x+1)^2$	Square first then distribute! See the previous example. You can not factor out a constant if there is a power on the parethesis!
$\sqrt{-x^2+a^2} \neq -\sqrt{x^2+a^2}$	$\sqrt{-x^2 + a^2} = \left(-x^2 + a^2\right)^{\frac{1}{2}}$ Now see the previous error
$\frac{a}{\left(\frac{b}{c}\right)} \neq \frac{ab}{c}$	$\frac{a}{\left(\frac{b}{c}\right)} = \frac{\left(\frac{a}{1}\right)}{\left(\frac{b}{c}\right)} = \left(\frac{a}{1}\right)\left(\frac{c}{b}\right) = \frac{ac}{b}$