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Preface

This e-book is based on the lecture notes of the graduate class “Understanding
Stellar Evolution” developed and taught by Henny Lamers during the spring quarter
at the University of Washington in Seattle from 2004–2014 and now taught by
Emily Levesque. The course consisted of twenty 80-minute lectures. We have chosen
this format because we find it easier to teach from these notes and it helps students to
quickly see the important points in explanations and descriptions. These notes have
developed over the years due to many comments, questions, and suggestions by
graduate students and by requests from colleagues at the University of Washington.

Goal of this e-book: Our goal is to give students a “feeling” and “physical
understanding” for stellar structure and evolution. We therefore try to avoid long,
purely mathematical derivations and explanations. Although these may be straight-
forward and appealing to mathematically inclined students, they often obscure the
physical processes behind them. Instead, we try to explain basic concepts in simple,
sometimes intuitive, physical terms. When needed, we provide references to where
the more rigorous explanations and derivations can be found. From the reactions of
the students, we sense that this approach is appreciated.

References: Each chapter contains a short list of references. In a few cases, we refer
to the original papers in which a new concept was introduced; however, in most
cases, we refer to a more current paper, often a recent review paper, where the topic
and its consequences are explained more clearly. We believe that this is more useful
for the students, particularly as these reviews often cite the original paper. Wherever
possible, the list of references contains URLs for easy access to the relevant paper.

History: When a formula or concept is named after a person (e.g. the Schwarzschild
criterion, the Chandrasekhar limit, or the Hayashi track), some information about
that person is given. We hope that in this way students appreciate the historical
development of stellar evolution theory.

Figures: The figures were made by Emily Levesque. Many of the figures are taken
from the published literature, but are often simplified to show the essential
information more clearly. We make extensive use of color figures. When evolution
or stellar structure diagrams are shown, we try to use a consistent color scheme: red
for hydrogen and H-fusion, blue for helium and He-fusion, and green for carbon and
C-fusion. We are grateful to the many authors and journals for permission to use
figures from their publications, especially to Onno Pols for the many figures from his
lecture notes.

Consulted books: Henny Lamers is grateful to his Utrecht colleague Onno Pols for
his lecture notes on “Stellar structure and evolution” and “Binary evolution,” with
Frank Verbunt. These notes have been a great help, especially for explaining the

xvi



complicated late evolution phases of low-mass stars. Other consulted books include
the excellent and extensive book Physics, Formation and Evolution of Rotating Stars
(Maeder, 2009), Stars and Stellar Evolution (de Boer and Seggewiss, 2008), Evolution
of Stars and Stellar Populations (Salaris and Cassisi, 2006), An Introduction to Stellar
Structure and Evolution (Prialnik, 2004), Stellar Interiors: Physical Principles,
Structure, and Evolution (Hansen and Kawaler, 1994), and Stellar Structure and
Evolution (Kippenhahn and Weigert, 1990).

Proofreading: We thank colleagues and students for comments on individual
chapters. Colleagues: Carlo Abate, Conny Aerts, Eric Agol, Norbert Langer,
Andre Maeder, Max Pettini, Onno Pols, Maurizio Salaris, Gertjan Savonije,
Jorick Vink, and Ralph Wijers.

Students of the Astronomy Department of the University of Washington: Giada
Arney, Hannah Bish, Iryna Butsky, Russell Deitrick, Trevor Dorn-Wallenstein,
David Fleming, Margarte Lazzarini, Andrew Lincowski, Jacob Lustig-Yaeger,
Rodrigo Luger, Eddie Schwieterman, Grace Telford, Michael Tremmel, Spencer
Wallace, Kolby Weisenburger, Matthew Wilde, and Diana Windemut. A special
thanks goes to Chris Suberlak for painstakingly finding all the errors and typos in
the penultimate version of the lecture notes. We hope he found them all!

Versions: The first version of these lecture notes was handwritten by Henny Lamers.
I am grateful to Marion Wijburg at Utrecht University and Rachel Beck and Brandi
Okano at the University of Washington for deciphering my scribbles and the notes’
many equations.

Thanks to students: Many thanks goes to the many graduate students who took this
course over the years. We thank them for their discussions, comments, and
suggestions about this class, the notes, and the exercises. We learned a lot from
your questions during the lectures!

Henny Lamers, Bilthoven, the Netherlands, and Seattle, US, 2016–spring 2017
h.j.g.l.m.lamers@uu.nl
Emily Levesque, Seattle, US, fall 2016–spring 2017
emsque@uw.edu

Comments for teachers.
These lectures are based on a four-credit class (ASTR 531). The course is given in a
spring semester of 10 weeks with two 80-minute lectures per week. Enrolled students
are expected to spend 12 hours per week on this class. This book is slightly more
extended than the original lecture notes. At the request of students, we added
sections on binary evolution.

Throughout this book you will find questions that we asked the students during
the class. They are indicated by “Q?”. The students were encouraged to answer these
questions in class, which sometimes resulted in a class discussion where different
arguments were compared.

Understanding Stellar Evolution
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Suggested homework questions for each chapter are given at the end of the
chapter. The answers are available upon request, to teachers only. The answers can
be obtained from the authors: Henny Lamers at h.j.g.l.m.lamers@uu.nl and Emily
M. Levesque at emsque@uw.edu.

To help teachers using this book, a set of lecture slides is provided. The slides were
developed by Emily Levesque and cover the full set of content presented in the text.
For ease of use we have made these available in both Keynote (v6.6.1) and
Powerpoint (v15.14) format.
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Chapter 1

Stars: Setting the Stage

Everybody knows what stars are: twinkling light spots in the night sky. In reality,
they are huge spheres of gas at high temperature that emit a quantity of light that we
can hardly imagine. The properties of stars are described by quite simple laws of
physics. To understand the stars and their evolution, it is important to get a “feeling”
for their properties, so that they are not just described by astronomically large
numbers. To this purpose, we will first consider the Sun and compare it with the
Earth and other objects on a human scale. After that, we describe the structure and
evolution of stars in a nutshell, as an introduction to the main goal of this book: the
understanding of what stars are, what their structure is, why they shine, why they are
stable, how they are born, how they evolve, and how they die.

1.1 The Sun: Our Star
To get a feeling for the masses, sizes, temperatures, and ages of stars, we first
consider our star: the Sun. We will use approximate values here; more accurate
values are listed in Appendix A. Here and throughout the rest of the book, we will
express quantities in c.g.s. units (centimeter, gram, second), as is usual in astronomy.
Some conversion factors are listed in Appendix A.

– The mass of the Sun is 2 × 1033 g. This is 3 × 105 times as large as the Earth mass
of 6 × 1027 g.

– The radius of the Sun is 7 × 1010 cm. This is 110 times the Earth radius of
6400 km. This implies that the 1.3 million Earths could fit inside the Sun.

– The mean density of the Sun is 1.4 g cm−3, which is 0.25 times the Earth density of
5.5 g cm−3. The mean density of the solar gas is even higher than the density of
water, which is 1 g cm−3.

– The luminosity of the Sun is 4 × 1033 ergs s−1. This is a huge amount of energy.
According to the web, there were about 1.3 billion (1.3 × 109) cars in 2016.
Assume that a car uses on average 1 liter of gasoline per 10 km and that the
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energy contained in 1 liter of gasoline is 3 × 1014 erg (30 MJ). If all cars in the
world drove 100 km per day for 2.8 million years, they would use the same
amount of energy that the Sun emits in one second!

– The surface temperature of the Sun is about 6000 K. This is about three times
higher than the temperature of burning natural gas, which is about 2000 K. The
hottest flames on Earth, i.e., those of burning dicyanoacetylene in oxygen, have a
temperature of 5300 K.

– The age of the Sun and the solar system is 4.5 billion years. A very slow snail with a
speed of 1 cm per hour would be able to go around the earth 9000 times during
that time.

1.2 The Chemical Composition of the Sun and Stars
The chemical composition of the outer layers of the Sun and stars has been
determined spectroscopically. This reflects the composition of the interstellar clouds
from which the stars are formed. The composition is roughly the same for all stars in
the disk of the Milky Way. The abundances of the 10 most abundant elements in the
solar atmosphere, compared to hydrogen by number, are listed below.

This composition can also be expressed in terms of mass fractions as

+ + + =H : He : C N O Ne : rest 0.70 : 0.28 : 0.016 : 0.003. (1.1)

Put another way, 1 g of gas contains 0.016 g of C + N + O + Ne and 0.003 g of more
massive elements. The composition may be different for stars in other galaxies; it
depends on the amount of star formation that occurred in a galaxy in the past. For
instance, for stars in the Small Magellanic Cloud, the total mass fraction of all
elements, apart from H and He, is about five times smaller than that in Galactic stars.

1.3 The Structure of Stars
Due to stellar evolution, a star becomes highly structured, both chemically and
physically. For discussing the evolution of stars, it is useful to distinguish several
regions in stars.

• The core is the central region of a star where fusion occurs or has occurred.
• The shell zone indicates that fusion occurs or has occurred in a shell or shells
around the core.

Table 1.1. The Abundance of the 10 Most Abundant Elements in the Atmosphere of the Sun and Stars in the
Milky Way (Cox 2000).

Nr Element Z m (AMU) Abund Nr Element Z m (AMU) Abund

1 H 1 1.0079 0.00 6 N 7 14.007 −3.95
2 He 2 4.0026 −1.01 7 Mg 12 24.305 −4.42
3 O 8 15.999 −3.07 8 Si 14 28.086 −4.45
4 C 6 12.011 −3.44 9 S 16 32.066 −4.79
5 Ne 10 20.180 −3.91 10 Fe 26 55.847 −4.46

Note. The atomic mass is expressed in atomic mass units: 1 AMU = 1.66054 × 10−24 g. The abundance by
number of element E relative to H is expressed in log (NE/NH).
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• The envelope is the region between the shell zone and the atmosphere.
• The atmosphere is the region of optical depth 10 < τ < 1 from which radiation
can escape.

• The photosphere is the top of the atmosphere, where the optical depth τ ≲ 1 at
the wavelength where most of the light is emitted.

(The optical depth τ describes the probability that photons can escape: this
probability is e�τ.)

Many stars are surrounded by extended layers above the photosphere. The following
regions can be distinguished.

• The chromospheres and corona are the regions above the photosphere where
the temperature rises far above the photospheric temperature. This is typical
for stars with convective envelopes, which generate shocks and magnetic fields
in the upper atmosphere; therefore, only cool stars have chromospheres and
coronae. The Sun has a chromosphere of ∼105 K and a corona of ∼106 K.

• The wind is the region above the photosphere from which gas escapes into the
interstellar medium. The velocity that a stellar wind reaches is typically a few
times the escape velocity at the stellar surface. In some evolutionary phases, the
wind carries away so much mass that the resulting mass loss from the star
affects its evolution. The Sun has a stellar wind with a velocity of ∼600 km s�1

and a mass-loss rate of ∼10�14 Mʘ yr�1, where the symbolMʘ indicates a solar
mass. This is less than the mass-loss rate due to the generation of energy by
nuclear fusion: (dM/dt)fusion = �L/c2 ≈ �7 × 10−14 Mʘ yr�1. The H-fusion
lifetime of the Sun is ∼1010 yr, so the Sun loses only ∼10−3 of its mass during
this period. In later evolution phases of the Sun, the mass-loss rate will increase
drastically.

1.4 Stellar Evolution in a Nutshell
Stars are spheres of gas that are held together by their own gravitational attraction.
During much of its lifetime, a star is remarkably stable. This implies that at each
depth within a star the inward pull by gravity is exactly counterbalanced by the
outward force that results from gas pressure plus radiation pressure. Pressure only
produces a force if there is a gradient, so there must be a strong temperature and
density gradient in the star to counterbalance gravity, with the stellar center having a
much higher density and temperature than the atmosphere. The gradient in
temperature results in an outward flow of energy from the center to the surface.
This energy leaves the star at the photosphere and is radiated into space. Stars must
therefore radiate and continuously replenish this energy loss. This implies that stars
must have an internal energy source that can sustain the temperature gradient during
their long lifetimes. This energy source is nuclear fusion in the center of the star,
where the temperature and density are high enough for fusion to occur.

If a nuclear fusion reaction stops because the required element is exhausted,
gravity forces the star to contract. This releases potential energy (if the star did not
contract, its interior would cool due to energy loss; this would reduce the gas
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pressure, which would no longer be able to withstand the pull of the gravity, and the
interior would shrink anyway). Part of the released potential energy is used to supply
the energy flow from the center to the outside. The remainder is used for raising the
internal temperature. When the central temperature is high enough, the next fusion
reaction may occur, converting the product of the previous phase into more massive
elements. This cycle of nuclear fusion and contraction can go on until all elements
that are available for fusion are exhausted.

Surprisingly, throughout their evolution, most stars maintain a perfect hydro-
static balance between the inward pull by gravity and outward force by the pressure
gradient. This balance is maintained even as some layers of a star may be in turmoil
on a smaller scale (for instance, by convection).

When nuclear energy sources are exhausted, a star can no longer provide the
necessary energy to keep the gas pressure high enough to withstand gravity. Gravity
finally wins! In low-mass stars, the core is compressed to such a high density that the
matter becomes degenerate at an extremely high pressure that is capable of
withstanding the extreme gravity. The result is a small star, about the size of the
Earth, that can live forever but slowly cools and fades: a white dwarf. In high-mass
stars, the core suddenly collapses in just a few seconds. This releases so much energy
that the outer layers are ejected at a very high speed. This is a supernova explosion.
The surviving core remnant is either an extremely dense neutron star or a black hole.

1.5 Summary
1. The Sun is a good example of an average star. It is about a million times

larger in volume than the Earth and it has about a million times more mass.
It radiates so brightly that, even at a distance of 150 million km, the tiny
fraction of its radiation that hits the Earth is enough to sustain life.

2. The age of the Sun is 4.5 billion years. When it was formed, the Sun consisted
of 70% H, 28% He, and only 2% of heavier elements.

3. A star is in perfect equilibrium between the inward pull of gravity and the
outward force produced by the gradient of the gas pressure and the radiation
pressure.

4. The energy source of a star is nuclear fusion, which occurs in its very hot and
very dense center.

5. A star can go through various nuclear fusion phases. In each successive
phase, the nuclear products of the previous phase are fused into more
massive elements.

6. At the end of its evolution, a star ejects its envelope. The remaining core is
either a white dwarf, a neutron star, or a black hole. There is no more nuclear
fusion and the remnant slowly cools.

Reference
Cox, A. N. 2000, Allen’s Astrophysical Quantities (4th ed.; New York: Springer)
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Chapter 2

Observations of Stellar Parameters

In this section, we briefly review observations of the fundamental parameters of
stars. These are mass (M), radius (R), luminosity (L), and effective temperature
(Teff). The existence of observed relations between these parameters provides
important information about the internal structure of stars. Any reliable theory of
stellar structure must be able to explain these observed relations. One of the most
valuable methods for studying stellar evolution is the analysis of the relation
between L and Teff. This relation can be plotted on the Hertzsprung–Russell
diagram (HRD). We describe this diagram and its observational analog, the
color–magnitude diagram (CMD), for stars in clusters of different ages. Changes
in the distribution of stars in the HRD with time provide empirical evidence and
diagnostics of stellar evolution. We also introduce the various types of stars and their
names, which are typically related to their location in the HRD.

2.1 The Distance of Stars
The distance to a star can be measured by several methods. The most direct one is
the parallax method, shown in Figure 2.1. The position of a target star, as compared
to background stars, is observed at two epochs that are half a year apart. A nearby
star will show a difference in projected location, compared to background stars, at
these two epochs due to the parallax. The epochs are chosen in such a way that the
line connecting the two locations of the Earth in its orbit is perpendicular to the
direction of the star. In this way, the displacement, called parallax angle or simply
parallax, reaches a maximum.

Simple geometry shows that the distance d is related to the parallax angle θ by
d = R/tan θ, where R is the radius of Earth’s orbit. For very small angles, d ≈ R/θ if θ
is expressed in radians. SinceR = 1.5 × 1013 cm and an angle of 1 arcsec corresponds
to 4.85 × 10−6 radians, a parallax angle of 1 arcsec corresponds to a distance of
3.09 × 1018 cm = 3.26 lightyears. This distance is called a parsec (pc). Thus we find
that d (in parsecs) = 1/θ (in arcsec).
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Apart from the yearly parallax motion of a star against the background, most
nearby stars also show a continuous motion along the sky due to their space velocity.
This is called the proper motion of a star. It can be derived by comparing
observations that were made exactly one year apart. The parallax measurement
must be corrected for it in order to provide an accurate distance.

Parallax measurements for ground-based observatories reach an accuracy of
∼10−2 arcsec. The Hipparcos satellite reached ∼10−3 arcsec accuracy1. The Gaia
satellite will reach ∼5 × 10−4 arcsec for stars with V ≈ 20 mag (10−8 times as bright
as the second brightest star Vega in the sky) and ∼2 × 10−5 arcsec for stars with
V ≈ 15 mag (10−6 times the brightness of Vega) at the end of its mission in 2021. The
distance accuracy will be 2% for a solar type star at 250 pc and 20% for a star that is
103 times more luminous than the Sun at the distance of about 10 kpc near the
Galactic Center (GAIA Collaboration 2016).

2.2 The Mass of Stars
In principle, the mass of a star can be measured from its radius and surface gravity;
however, this is typically not an accurate method because the surface gravity has to
be derived from the stellar spectrum and involves detailed knowledge of the star’s
atmospheric structure. Accurate mass determinations are only possible from the
orbits of planets (in the case of the Sun) or from the orbits of binary stars.

Figure 2.2 shows a binary system with circular orbits. The orbital period is given
by Kepler’s third law:

π = + = + +P G M M a G M M a a(2 / ) ( )/ ( )/( ) (2.1)2
1 2

3
1 2 1 2

3

and
=a a M M/ / , (2.2)1 2 2 1

where M1 and M2 are the masses of the stars and a1 and a2 are the orbital radii. The
total separation is a = a1 + a2. If the orbits of the stars can be measured (either directly
for visual binaries or indirectly for eclipsing binaries) and combined with radial velocity
measurements (using the Doppler effect), the masses of both stars can be determined.

Figure 2.1. Principle of parallax measurements. The parallax angle θ can be measured by comparing the
position of the star to background stars. In practice, the angle is very small and on the order of milliarcseconds.

1 https://en.wikipedia.org/wiki/Hipparcos
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2.3 The Luminosity of Stars
The luminosity L of a star can be derived from its radiative flux received at Earth and
its distance using the relation

π π σ= = −L d f R T a4 4 (in erg s ) (2.3 )12
bol

2
eff

4

or

= = × −
⊙ ⊙ ⊙L L R R T L b/ ( / ) ( /5777 K) with 3.85 10 erg s , (2.3 )12

eff
4 33

where the bolometric flux fbol is the flux integrated over all wavelengths and
corrected for attenuation by the interstellar medium and Earth’s atmosphere. The
Stefan–Boltzmann radiation constant is σ = 5.67 × 10−5 erg cm�2 K�4. It is named
after the Austrian physicist Jozef Stefan (1835–1893), who proposed it in 1879, and
his Austrian student Ludwig Boltzmann (1844–1906), who proved it in 1884.

Equation (2.3a) states that L is proportional to the surface area of the star, 4πR2,
and the amount of radiation per unit area, σTeff

4, which is described by the effective
temperature Teff.

The effective temperature is approximately equal to the gas temperature in the
photosphere of the star at optical depth τ ≈ 1. This relation connects three basic
stellar parameters L, R, and Teff. If L and Teff can be determined from observations,
then R is known.

2.4 Magnitude, Color, and Temperature
The outer layer of a star from which radiation escapes is called the photosphere. It
has a density and temperature structure with both quantities decreasing outward.
The temperature structure can be derived from a detailed study of the spectrum

Figure 2.2. Orbits of binary stars in circular orbits.
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of the star. For understanding stellar evolution, we are mainly interested in the
effective temperature, defined in Equation (2.3a). As described above, Teff is
approximately the gas temperature in the photosphere at optical depth τ ≈ 1. The
effective temperature can be derived from the spectrum or color of the star, corrected
for the influence of Earth’s atmosphere and reddening by interstellar dust. The
temperature of a star can also be expressed by its spectral type, running from hot to
cool with the designations O (∼30,000–40,000 K), B, A, F, G, K, and M (∼2500–
3500 K). The Sun, with Teff = 5777 K, has the spectral type G2. The relationship
between spectral type and Teff for stars in the Milky Way is tabulated in Table 2.1.

The color of a star is defined as the ratio between the flux in two wavelength
bands, expressed as the difference in magnitudes. It is measured from the brightness
ratio of the star through two filters. The color of the standard star Vega with Teff ≈
10,000 K is used for reference. There are many possible astronomical filters but the
most commonly used are the Johnson U (310 < λ < 390 nm), B (390 < λ < 480 nm),
and V (500 < λ < 590 nm) filters. The flux through these filters is expressed in
apparent magnitudes, mλ. For historical reasons, this is defined by filters

⎛
⎝⎜

⎞
⎠⎟= − ×λ

λm
f

f
2.5 log , (2.4)

0

with the flux f in erg cm�2 s�1. Note that the higher the flux is, the smaller the
magnitude. The normalization values of f0 depend on the filter used, with f0(U) =
4.2 × 10−10 erg cm�2 s�1 nm�1 at λ= 0.36 μm, f0(B)= 6.4 × 10−10 erg cm�2 s�1 nm�1

at λ = 0.44 μm, and f0(V) = 3.8 × 10−10 erg cm�2 s�1 nm�1 at λ = 0.55 μm. These
normalization fluxes are chosen in such a way that the magnitude of the standard star
Vega is zero. The magnitudes through the U, B, and V band filters are indicated byU,
B, andV. Because of the logarithmicmagnitude scale, colors, which are defined byflux
ratios, are expressed inmagnitude differences. The colors of the standard star Vega are
zero per definition. Table 2.1 gives the approximate relation between theU-B andB-V
colors and Teff. For a full list, see Appendix B.

Table 2.1. The Temperature, Spectral Type, Luminosity, Absolute Bolometric Magnitude, Absolute Visual
Magnitude, Bolometric Correction, and Colors of Main-sequence Stars (Cox 2000).

Teff (K) Type log L/Lʘ Mbol MV BC U-B B-V

42,000 O5 V 5.94 −10.1 −5.7 −4.40 −1.19 −0.33
30,000 B0 V 4.78 −7.2 −4.0 −3.16 −1.08 −0.30
20,900 B2 V 2.39 −4.8 −2.45 −2.35 −0.84 −0.24
11,400 B8 V 2.34 −1.1 −0.25 −0.80 −0.34 −0.11
8180 A5 V 1.17 +1.8 +1.95 −0.15 +0.10 +0.15
6650 F5 V 0.54 +3.4 +3.5 −0.14 −0.02 +0.44
5790 G2 V −0.10 +4.5 +4.7 −0.20 +0.12 +0.63
4830 K2 V −0.50 +6.0 +6.4 −0.42 +0.64 +0.91
3840 M0 V −1.06 +7.4 +8.8 −1.38 +1.22 +1.40
3170 M5 V −1.94 +9.6 +12.3 −2.73 +1.24 +1.64
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Q (2.1) Note that the B-V color hardly changes with Teff for temperatures above about 30,000 K.
Explain this in physical terms, using the properties of Planck’s formula for blackbody
radiation.

The flux integrated over all wavelengths is expressed in bolometric magnitude,
defined by

⎛
⎝⎜

⎞
⎠⎟= − ×m

f

f
2.5 log , (2.5)bol

bol

ref

with fref = 2.5 × 10−5 ergs cm�2 s�1. If the distance of a star is known, its apparent
magnitude can be converted to absolute magnitude, indicated by Mλ, which is the
apparent magnitude that a star would have if it was at a distance of 10 pc.

= + –λ λM m d d5 5 log( ) if is in parsecs. (2.6)

The absolute bolometric magnitude describes the flux of a star at a distance of 10 pc,
integrated over all wavelengths. It is related to the luminosity by

⎛
⎝⎜

⎞
⎠⎟= − × +

ʘ
M

L
L

2.5 log 4.74. (2.7)bol

The bolometric correction (BC) is the difference between the bolometric magnitude
and the visual magnitude. It is defined as

= –BC M M . (2.8)vbol

It is a measure of the fraction of the star light that is outside the wavelength range of
the V-filter. Hot stars with Teff > 20,000 K emit most of their radiation in the UV, so
the V-filter captures only a small fraction of its light. On the other hand, cool stars
with Teff < 4000 K emit most of their radiation in the infrared. So both hot and cool
stars have a large negative BC.

2.5 The Mass–Luminosity Relation
Observations show that the luminosity of a star is related to its mass. This
correlation is particularly strong for stars that are fusing H in their center. These
are the main-sequence stars. The empirical relation, based on double lined spectro-
scopic main-sequence binaries, is shown in Figure 2.3.

The figure shows a relation of the type L ∼Mα, with a mean slope of α ≈ 3.8 over
the full mass range. However, a closer look shows three distinct mass ranges: α = 2.4
forM < 0.6Mʘ, α = 4.0 at 0.6 <M < 6Mʘ, and α = 2.9 atM > 6Mʘ. This relation is
only valid for main-sequence stars. Red giants, red supergiants, asymptotic giant
branch stars, and degenerate stars do not follow this relation.
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2.6 The Hertzsprung–Russell Diagram and the Color–Magnitude
Diagram

The Danish astronomer Ejnar Hertzsprung (1873–1967) in Copenhagen and the US
astronomer Henry Norris Russell (1877–1959) at Princeton University independ-
ently discovered in 1905 and 1913 that stars occupy specific regions in the color–
magnitude diagram (CMD). Since the colors are related to Teff and the magnitudes
of stars with known distance are related to L, the CMD can be transformed into a
Teff–L diagram. This last version is called the Hertzsprung–Russell diagram (HRD)
after the discoverers.

Figure 2.4 shows the CMD of stars in the solar neighborhood with accurate
distances measured by the Hipparcos satellite. This is a mixture of stars of all ages.
In this figure, the B-V color is plotted versusMV, which is a measure for the flux in the
V-band corrected for distance. Remember from Equation (2.4) that a higher value of
MV implies a fainter star. The value of the B-V color increases from left to right. This
means that Teff decreases from ∼30,000 K on the left to 3000 K on the right.

Figure 2.4 shows that the stars are not distributed randomly but that they
preferentially occupy specific regions in the CMD: the broad line from upper left to
lower right, i.e., from hot and bright to cool and faint, is called the main sequence
(MS). The fact that the majority of the stars are on the MS indicates that it
represents the longest evolution phase. The wide band of stars that deviate from the
MS to the upper right, i.e., to cool and bright, is called the red giant branch (RGB).
The concentration of G- and K-type stars aroundMv ≈ 1 is called the red clump. The
group of stars in the lower left, i.e., hot and faint, are white dwarfs.

Figure 2.5 shows the difference between the HRD and CMD of globular cluster
M3 at a distance of 10.4 kpc.

Figure 2.3. Mass–luminosity relation from double-lined spectroscopic main-sequence binaries. The dotted line
shows a fit with a slope of α = 3.8 over the entire mass range. The full line shows better linear fits in three mass
ranges: M/Mʘ < 0.6, 0.6 � 6, >6, with corresponding slopes. (Adapted from Pols 2011.)
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Notice three major differences between the two figures.
1. At the hot end (left), the stars in the CMD cover only a small range in B-V but a

much larger range in log Teff.
2. At the cool end (right), the stars cover a small range in log Teff but a large range

in B-V. This difference is due to the highly nonlinear relation between log Teff

and B-V as already shown in Table 2.1.

Figure 2.4. Color–magnitude diagram (CMD) of 8784 stars with accurate distances measured by the
Hipparcos satellite. (Figure courtesy of ESA 1997.)

Figure 2.5. The Hertzsprung–Russell diagram (left: in log L/Lʘ versus log Teff) and the color–magnitude
diagram (right: in V versus B-V) of the globular cluster M3. (Left: reproduced from Johnson & Sandage 1956.
Right: reproduced from Buonanno et al. 1994, with permission. © ESO.)
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3. The horizontal branch at log (L/Lʘ) ≈ 1.7 in the HRD and at V ≈ 15.5 in the
CMD strongly curves downward in the CMD. This is due to the strong UV flux
of hot stars that does not contribute to the flux in the V-band.

Q (2.2) Explain in physical terms why the red giant branch curves strongly to high values of B-V
for a relatively small change in Teff. (Hint: use the properties of the Planck curve for
blackbody radiation)

Q (2.3) Explain why the distribution of stars in the CMD of M3 is completely different from
Figure (2.4).

As a star evolves and its temperature, luminosity, and radius change, it moves to a
different location in the HRD or CMD. This is clear if we compare HRDs with
different ages. Figure 2.6 shows the HRD of three star clusters with different ages.
Note that the MS gets shorter (i.e., extends to lower luminosity) with age and the
ratio between the number of red giants and the number of main-sequence stars
increases with age.

2.7 Nomenclature of Regions in the HRD and CMD
The different regions in the HRD or CMD that are occupied by stars have been
given different names to distinguish stellar types. Later, we will show that each of
these types refers to a specific evolutionary phase with its corresponding internal
structure. Figure 2.7 shows the regions and their names.

The stars are classified according to the region that they occupy in the HRD:
MS stars = Main-sequence stars.
SGB stars = Subgiants (SGB: for subgiant branch).
RGB stars = Red giants (RGB: for red giant branch).
AGB stars = Asymptotic giant branch stars.
HB stars = Horizontal branch stars.
Blue stragglers = stars on the main sequence but brighter than stars at the turn-

off point.

Figure 2.6. HRD of three clusters of increasing age. (Reproduced from Prialnik 2004. © Cambridge University
Press. Reprinted with permission.)
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There are other stars that are not shown in the HRD of the old cluster of Figure 2.7.
BSG stars = Blue supergiants = hot stars more luminous than AGB stars.
RSG stars = Red supergiants = cool stars more luminous than AGB stars.
WR stars = Wolf-Rayet stars = luminous hot He-rich stars.
WD stars = White dwarfs = stellar remnants of low-mass stars (M < 8Mʘ).
NS = Neutron stars = stellar remnants of high-mass stars (M > 8Mʘ).

There are also several types of variable stars not listed here. They will be
described later in Chapter 21 when we discuss pulsating stars.

2.8 Summary
1. The observed brightness of a star is expressed in magnitudes and its color is

expressed by the difference between magnitudes measured in different filters.
Brighter objects have smaller magnitudes. If the distance of a star is known,
the apparent magnitude can be converted into an absolute magnitude.

2. The absolute bolometric magnitude Mbol is a measure of the luminosity of
a star, with Mbol = 4.74 corresponding to the luminosity of the Sun and
log (L/Lʘ) = �0.4 × (Mbol � 4.74).

3. The luminosity of a star depends on its effective temperature and radius as
L/Lʘ = (R/Rʘ)

2 × (Teff/Teff ʘ)
4 with Teffʘ = 5777 K.

Figure 2.7. Nomenclature of different regions in the CMD of the cluster M3 with an age of 11.4 Gyr.
(Reproduced from Renzini & Fusi Pecci 1988.)
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4. The parameters of stars can be plotted in the Hertzsprung–Russell diagram
(HRD), with log (Teff) on the x-axis and log (L/Lʘ) on the y-axis, or in the
color–magnitude diagram (CMD) with a color on the x-axis and a
magnitude (absolute or apparent) on the y-axis.

5. Stars are classified according to their location in the HRD. This classification
is related to the evolutionary phase of the stars.

6. Observations show that there is a strict relation of the type L ∼ Mα between
luminosity and mass for main-sequence stars, with α = 2.4 for M < 0.6Mʘ,
α = 4.0 at 0.6 < M < 6Mʘ, and α = 2.9 at M > 6Mʘ.

Exercises
2.1 (a) Calculate the radius of an M5 I supergiant with log(L/Lʘ) = 5.50 and

Teff = 2700 K.
(b) Assume a mass of approximately 20Mʘ and calculate the mean density

of the star.
(c) Calculate the escape velocity.
(d) Compare these values with those for the Sun.

2.2 (a) Calculate the luminosities of the horizontal branch stars with B-V ≈
+ 0.30 and BC = �0.11 in the cluster M3 (NGC 5272), whose CMD is
shown in the right panel of Figure 2.5. The distance to M3 is 10.4 kpc
and its interstellar extinction is negligible. Compare your result with the
HRD that is shown in Figure 2.5 (left panel).

(b) What is the bolometric correction of the two stars at B-V ≈ �0.25?
2.3 The star τ Sco has an apparent visual magnitude of V = +2.8 and a spectral

type of approximately B0V. Parallax measurements indicate a distance of
470 ly.
(a) Calculate the absolute visual magnitude.
(b) Adopt the bolometric correction from Table 2.1 and calculate the

luminosity L.
(c) Adopt the value of Teff from Table 2.1 and calculate the radius.
(d) Estimate the mass.
(e) Calculate the acceleration of gravity at the stellar surface and the escape

velocity.
(f) Calculate the mean density of the star.
(g) Compare these values with those of the Sun.

2.4 The Gaia satellite will measure parallaxes with an accuracy of 2 × 10−5

arcsec for stars with V < 15.
(a) What is the distance d of an M5 I supergiant with log(L/Lʘ) = 5.50 and

BC = �3.70 that has V = 12, if the effect of interstellar extinction is
ignored?

(b) What is the relative distance accuracy σ(d)/d of such a star?
(c) Assuming that Teff is known, what is the relative accuracy in radius

σ(R)/R?
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Chapter 3

Hydrostatic Equilibrium and Its Consequences

This chapter deals with the condition of hydrostatic equilibrium, which implies that
no part of the star is expanding or contracting. This requires that, at all depths in the
star, the inward-directed force from gravity is counterbalanced by the outward-
directed force of the pressure gradient. Although stars change during their evolution,
the evolutionary timescales are so long compared to the timescale for reaching
hydrostatic equilibrium that for most of its evolution a star can be considered to
remain in hydrostatic equilibrium. This allows a very significant simplification for
computing stellar evolution. We will see that the condition of hydrostatic equili-
brium provides a basic property of stars expressed in the virial theorem.

3.1 Conservation of Mass: The Mass Continuity Equation
The mass Mr within a sphere of radius r is related to the density structure ρ(r) by

π ρ ρ π= =dM dr r r r r dM dr r/ 4 ( ) o ( ) ( / )/4 (3.1)r r
2 2

3.2 Hydrostatic Equilibrium
The equation of hydrostatic equilibrium follows from the equation of motion with
the condition that the net force is zero. The equation of motion of one cm3 gas with
density ρ in the shell at distance r and with a thickness dr can be written as

ρ ρ= − −d r
dt

GM
r

dP
dr

, (3.2)r
2

2 2

where the first term describes the radial acceleration (positive for outward motion),
the second term is the force of gravity, and the last term is the force due to a pressure
gradient. Equation (3.2) is the radial variant of the more familiar form of Newton’s
equation ma = f.
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In hydrostatic equilibrium, abbreviated as HE, the acceleration d2r/dt2 is zero
and so

ρ ρ= − = −dP
dr

GM
r

g , (3.3)r
r2

where gr is the local acceleration of gravity. This is the equation for hydrostatic
equilibrium (HE) in a star. If this is combined with Equation (3.1) for ρ, we obtain an
alternative expression for the pressure gradient

π
= −dP

dM
GM

r4
. (3.4)

r
4

This expression has an interesting consequence. The integration from r = 0 to the
radius R of the star provides a lower limit to the pressure at the center of the star

∫ ∫π π π
− = − < − = −P M P

GM dM
r

GM dM
R

GM
R

( )
4 4 8

, (3.5)c

M
r r

M
r r

0 4 0 4

2

4

where Pc = P(r = 0) = P(Mr = 0) is the pressure at the center of the star. At the radius
R of the star, which encompasses its total mass M, the gas pressure P(M) goes to
zero and so

π
>P

GM
R8

. (3.6)c

2

4

This is a very safe lower limit because, in the integration above, we adopted r4 < R4,
while in fact r4≪ R4 near the center. We can obtain a better estimate if we integrate
Equation (3.3), adopt the mean density ρ̄ in the star, and substitute Mr = (4π/3)r3ρ̄.

∫ ∫π ρ π ρ
π

= − = ¯ ⋅ =− ¯ = −dP P R P G r dr GR
GM

R
a( )

4
3

2
3

3
8

. (3.7 )
R

c

R

0

2

0

2 2
2

4

This provides a better estimate for the central pressure of any star in HE

π
≈P

GM
R

b3
8

. (3.7 )c

2

4

Q (3.1) Argue that, for any realistic density distribution of the star, this will also be a lower limit.

Figure 3.1. Relation between mass, Mr, and density, ρ, in a spherical shell.
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We see from these arguments that the central pressure in a star will be on the order of

∼P
GM

R
, (3.8)c

2

4

with the proportionality factor depending on the density distribution. The more
strongly peaked the density is, the larger the proportionality factor.

Q (3.2) Could you have guessed that the central pressure is of the order of GM2/R4?
Hint: consider the weight of a column of gas on the center.

Having obtained an estimate for the central pressure of a star, we can use the gas law
to derive an estimate for the central temperature if the gas pressure is larger than the
radiation pressure. We will see later in Section 4.5 that this is a valid assumption
except for degenerate stars and main-sequence stars more massive than about 50Mʘ.

The ideal gas law states that ρ μ= =P nkT m kT( / )H , where n is the number of
particles per cm3 and μmH is the mean mass per particle. The pressure in the center
of the star is ρ μ∼ ¯ ∼P m kT GM R( / ) /c cH

2 4 . Adopting ρ̄ ∼ M /R3, we obtain an order
of magnitude estimate of the central temperature of a star in HE

μ∼T
m
k

GM
R

. (3.9)c
H

3.2.1 Estimate of the Central Properties of the Sun

Let us test the derived estimates for the Sun. The predicted central pressure in
Equation (3.8) is

≃ = × ×
×

≃ × ≃ʘ
−

−P
GM

R
7 10 (2 10 )

(7 10 )
1 10 dyne cm 10 atmosphere.c

2

4

8 33 2

10 4
16 2 10

Detailed solarmodels show that ʘPc ≈ 2.3× 1017 dyne cm�2 (Guenther et al. 1992). The
large discrepancy between this value and our estimate is due to the fact that ρ ρ⋙ ¯c .

The predicted central temperature of the Sun according to Equation (3.9) is

≃ × ×
×

× × × ×
×

≃ ×ʘ
−

−

−
T

0. 5 1. 7 10
1. 4 10

7 10 2 10
7 10

2 10 K.c

24

16

8 33

10
7

Detailed solar models show that ʘTc ≈ 1.6 × 107 K (Guenther et al. 1992). We see
that the estimate of the central temperature is more accurate than the estimate of the
central pressure.

3.3 The Virial Theorem: A Consequence of HE
The virial theorem (VT) links the total potential energy of a star in HE to the total
internal (kinetic) energy of the star. We will see later that this helps with understanding
why stars expand or contract during certain evolutionary phases. The word “virial” is
derived from the Latin word of “vis” meaning “energy” and was introduced by the
Polish–German thermodynamicist Rudolph Clausius (1822–1888) in 1870.
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The mathematical derivation of the virial theorem is easy to follow. Since it is a
consequence of HE, we start from Equation (3.3), multiply both sides by 4πr3 dr, and
integrate from 0 → R. This yields

∫ ∫π ρ π= −r dP
GM

r
r dr4 4 . (3.10)

R R
r

0

3

0

2

Now consider both terms separately. The potential energy of a cm3 of gas with
density ρ at distance r is – (GMr /r) ρ, where Mr is the mass enclosed within radius r.
So the right side of Equation (3.10)

⎛
⎝⎜

⎞
⎠⎟∫ ρ π− =GM

r
r dr E4 (3.11)

R
r

0

2
pot

is the total potential energy of the star (in the literature it is sometimes expressed by
the symbol Ω). For the left term of Equation (3.10), we use the rule for integration by
parts

∫ ∫ ∫= ∣ = +d uv u b
a

u dv v du( ) v .
a

b

a

b

a

b

If we define π=u r4 3 and v = P, so dv = dP and π=du r dr12 2 , we find that

∫ ∫ ∫π π π π= ∣ − = −r dP r P Pr dr Pr dr4 4 12 3 4 . (3.12)
R

R
R R

0

3 3
0

0

2

0

2

We used π ∣r P4 R3
0 = 0 because at the lower boundary r = 0 and at the upper boundary

P(R) = 0. For a star whose HE is dominated by gas pressure, we can link P to the
internal energy. For an ideal gas P = nkT, where n is the number of particles per cm3

and the internal energy per cm3 is u = (3/2) nkT, P = (2/3)u. Using this in Equation
(3.12), we find that

∫ ∫ ∫π π π= − × = − × = −r dP P r dr u r dr E4 3 4 2 4 2 , (3.13)
R R R

0

3

0

2

0

2
kin

where Ekin is the total kinetic energy of star (sometimes expressed by the symbol U).
Combining the results of Equations (3.10), (3.11), and (3.13) yields

− = = −½ >E E E E2 or 0 . (3.14)pot kin kin pot

This is the virial theorem (VT). From the way we derived it, it is clear that it only
applies to the star as a whole, not to individual layers or regions. It can also be
expressed in terms of the total energy of a star

= + = ½ <E E E E 0 . (3.15)tot pot kin pot

Q (3.3) Does the VT apply to massive main-sequence stars, where HE is partly supported by
radiation pressure? Why?

Q (3.4) Does the Virial Theorem apply to degenerate stars?
Hints: (a) Did we use the ideal gas law in deriving it? (b) How did we use it?
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3.3.1 Consequences of the VT for Contracting Stars

1. If a star is formed from a very cold contracting extended interstellar cloud
with a very small total energy, it must have lost half of its final potential
energy in the form of radiation.

2. When a star contracts and decreases its potential energy (i.e., Epot becomes
more negative), the virial theorem requires that

= −½dE dt dE dt/ / . (3.16)kin pot

So only half of the released energy goes into thermal energy for heating the
star; the other half must be radiated away.

3. When a star runs out of nuclear energy and compensates for its radiative
energy loss by contraction, it must release twice as much potential energy as
it radiates because half of the released potential energy is used for heating the
star. So the VT dictates that a contracting star must radiate and increase its
temperature.

4. The VT also applies to galaxy clusters in equilibrium, where the internal
energy is the total kinetic energy of the motions of the galaxies. In fact, the
presence of dark matter in galaxy clusters was discovered from the determi-
nation of the total kinetic energy of the observed galaxies. The total potential
energy of the observed galaxies, required by the VT, turned out to be about a
factor of 10 higher than could be explained by the observed galaxies. This
called for the presence of unseen matter that exerts gravity. This is called
dark matter.

3.4 Summary
1. The central pressure of a star in HE is on the order of Pc ∼ GM2/R4.
2. If the pressure in a star in HE is dominated by gas pressure, then the central

temperature is on the order of μ∼T m k GM R( / )( / )c H .
3. A star in hydrostatic equilibrium must obey the condition expressed in the

virial theorem: its (positive) kinetic energy plus half of its (negative) potential
energy is zero.

4. The total energy of a star in HE is negative and equal to half of the potential
energy.

5. A contracting star uses half of the released potential energy to increase its
average internal temperature. The other half is radiated away.

Exercises
3.1 We have derived the VT mathematically, using some tricks such as

multiplication of the integral and substitutions of variables for integration
in parts. Can you also explain in physical terms that a relation between Epot

and Ekin is to be expected?
3.2 Why is the estimate of Tc (Equation 3.9) better than that of Pc (Equation

3.8) in comparison with the solar value?
Hint: consider how the density is used in both estimates.
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3.3 We will show later that for nonrelativistic degenerate gas P = 1/3u.
What does that imply for the VT for degenerate stars?

3.4 If T̄ and ρ̄ are the mean temperature and density of a star, then show by
using the VT that T̄ can be described by a relation that is similar to
Equation (3.9).

3.5 The VT also applies to the orbits of the individual planets around the Sun.
Show that Kepler’s third law follows directly from the VT.

3.6 Computer exercise.
The estimates of Pc and Tc, derived from the HE condition in Equations
(3.7a) and (3.9), were obtained by assuming a constant mean density. These
estimates can be improved by adopting a more realistic density distribution.
It turns out that a density distribution of the type ρ ρ ≈ −e/ 3c

x10 with x = r/R
is a reasonable approximation for main-sequence stars in the range of
0.11 < x < 0.98. Adopt this, plus a constant density core with ρ ρ =/ 1c at
x < 0.11.
(a) Derive an expression for the mean density by computer.
(b) Use the HE condition to derive an expression for the central pressure.
(c) Derive an expression for the central temperature, using the ideal gas law.
(d) Apply these estimates to a zero-age main-sequence star of 1Mʘ and

compare the results with the values from stellar models: ρc = 78 g cm�3,
Pc = 1.2 × 1017 dyne cm�2, and Tc = 1.36 × 107 K.

(e) Do the same for a zero-age main-sequence star of 60Mʘ: ρc = 2.2
g cm�3, Pc = 1.2 × 1016 dyne cm�2, and Tc = 8.31 × 107 K.

(f) Comment on the differences.

Reference
Guenther, D. B., Demarque, P., Kim, Y.-C. & Pinsonneault, M. H. 1992, ApJ, 387 372
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Chapter 4

Gas Physics of Stars

In this chapter, we describe the relation between the major properties of the gas
inside stars, i.e., density ρ, temperature T, and pressure P. This relation is called the
equation of state (EoS). As the conditions in stars cover a wide range in character-
istics, the EoS varies between different regimes in the (T, P, ρ) domain. At low
densities, the EoS is described by the well-known ideal gas law. At very high
densities, however, quantum mechanical effects play a role and the energy
distribution of particles can no longer be described by ideal gas laws.

If that is the case, matter is said to be degenerate and the EoS is very different
from the ideal gas law. Because of the large ratio in mass between ions and electrons,
ions become degenerate at a much higher density than electrons. This implies that in
the same layers of a star, a different EoS may have to be applied for the electrons
and ions. Apart from the pressure produced by particles, photons can also
contribute to the pressure. This is called radiation pressure. In the cores of massive
main-sequence stars radiation pressure may even dominate over the gas pressure.
We will derive expressions for the various EoS and show the conditions where they
apply.

4.1 Mean Particle Mass
The mean particle mass depends on the composition and the degree of ionization of
the gas. It is convenient to express the mean particle mass in atomic mass units
(AMU). An AMU is so close to a proton mass that we will usemH for simplicity (see
Table 1.1).

The atomic mass Aj is also expressed in units of mH; for instance, the atomic mass
of an O atom is AO × mH with AO = 16. We express the chemical composition in
terms of the mass fractions Xj of each element (e.g., XH, XHe, XC…) for H, He, C,
etc. We adopt the definition frequently used in the literature:

≡ ≡ ≡ − −X X Y X Z X Y, , and 1 . (4.1)H He
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From this we can see that Z is the mass fraction of all elements together except
H and He. The composition of the solar atmosphere is X = 0.70, Y = 0.28, and
Z = 0.02.

The number of free electrons of element j is given by the symbol qj. For instance,
qC ≈ 1 at solar photosphere and qC = 6 in the fully ionized solar core. For fully
ionized gas

= = ≈ >q q q A j1, 2, and 0.5 for 2. (4.2)j jH He

With these definitions, we find that the total number of ions per gram is Σ X A m( / )j j j H

and the total number of electrons per gram is Σ X q A m( / )j j j j H . It is useful to define

μ μ= Σ = Σ −m X A m X A amean mass per ion: 1/ ( / ), so { ( / )} , (4.3 )i j j j i j j jH H
1

μ μ= Σ = Σ −m X q A m q X A bmean mass per electron: 1/ ( / ); so { ( / )} , (4.3 )j j j j e j j j je H H
1

μ

μ

=
Σ + Σ

= Σ + −

m
X A m X qj A m

X A q
c

mean mass per particle:
1

( / ) ( / )
,

so { ( / )(1 )} , and
(4.3 )j j j j j j

j j j j

H
H H

1

ρ μ ρ μ= = ×n m dnumber density of particles: / 5.98 10 / . (4.3 )H
23

With these definitions, the number of electrons, ions, and all particles per cm3 are,
respectively, ne = ρ/μme, ni = ρ/μmi, and n = ρ/μm. It can be shown that for a fully
ionized gas

μ =
+ X
2

1
(4.4)e

(see Exercise 3.1).
Note that the mean mass per electron is not the mass of the electron. For instance,

if the degree of ionization is so low that a gram of gas would contain only 1 electron,
the mean mass per electron would be 1 g.

4.2 A General Expression for the Pressure
The pressure exerted by particles or photons can be derived by considering a small
volume, a box of 1 × 1 × 1 cm3, filled with particles of velocity v. When a particle hits
the side of a box at an impact angle θ and bounces off, its momentum 2mv cos θ is
transferred to the walls. The factor of 2 comes from the recoil during the bounce (see
Figure 4.1).

Let us first assume for simplicity that all particles have the same mass m, the same
speed v, and the same momentum p = mv. The time between two collisions with the
same wall is
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θ θΔ = = =t L L2 /v cos 2/v cos , with 1 cm for a box of 1 cm . (4.5)3

The momentum transfer per collision is θ∆ =p p2 cos . So the momentum transfer
per particle per second onto one side of 1 cm2 is

θ
Δ

Δ =
t

p p
1

v cos . (4.6)2

Integrate this over all possible angles for an isotropic velocity distribution, with

∫ θ θ θ θ= − =
π π

d asin cos
1
3

cos
1
3

, (4.6 )
0

/2
2 3

0

/2

and multiply it by the total number of particles n per cm3. The pressure on one wall
exerted by one type of particle with velocity v, momentum p, and density n is P = nv
p/3. In general, the particles will have a distribution in velocity and momentum. If
n(p) is the momentum distribution of the particles and v(p) is the velocity
distribution, normalized by the integral of v(p) n(p)dp = n, the general expression
for the pressure is

∫=
∞

P p p n p dp1/3 v( ) ( ) . (4.7)
0

We will use this expression to calculate the pressure under various conditions.

4.3 Radiation Pressure
The velocity of photons is c and their momentum is p = hv/c. This implies that
n(p)dp = n(v)dv and =dp dvh

c
. For blackbody radiation, n(v) is described by the

Planck function

Figure 4.1. Schematic figure showing the calculation of the pressure produced by a particle bouncing in a box
of 1 × 1 × 1 cm.
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π π=
−

=
−

n v dv
v

c
dv

e
n p dp

v
c

dv
e

c
h

dp( )
8

1
or ( )

8
1

. (4.8)
hv kT hv kT

2

3 /

2

3 /

The Planck function is named after the German physicist Max Planck (1858–1947).
Substituting it into Expression (4.7) yields

∫ ∫= =
∞

P cp n p dp
hv
c

c n v dv
1
3

( )
1
3

( ) , (4.9)rad
0

which results in the final expression for the radiation pressure

=P aT , (4.10)1
3rad

4

with ≡ ≡σ πa
c

k

c h

4 8

15

5 4

3 3 = 7.56 × 10−15 erg cm�3 K�4 = 7.56 × 10−15 dyne cm�2 K�4.

The radiation pressure is often expressed as a fraction of the total (gas +
radiation) pressure

β β β= < < ≈P P P a, with 0 1 0: dominates (4.11 )gas rad

β β= − ≈P P P b(1 ) 1: dominates. (4.11 )rad gas

Almost all stars are dominated by gas pressure. Radiation pressure is only significant
in the interiors of massive stars (M > 30Mʘ), which have a very high luminosity; in
the atmospheres of luminous hot and cool stars, where radiation pressure drives a
stellar wind; and during the very high luminosity phase of supernova explosions.

4.4 Pressure of an Ideal Gas
The Maxwell momentum distribution of particles is

π
π

= −n p dp n
p dp

mkT
e( )

4
(2 )

. (4.12)p mkT
tot

2

3/2
/22

It is named after the British physicist James Clerk Maxwell (1831–1879), who
published it in 1859 at the age of 28. Combining this with the expression for the
momentum, = p mv / , yields

R∫ ρ ρ
μ

= = = =P pn p dp n kT kT m
T1

3
v ( ) / , (4.13)tot

where R = k/mH = 8.31 × 107 erg K�1 mole is the gas constant. We can express the
contribution to the pressure by the different constituents of the gas.

Rρ
μ

μ= = ≃ + +P n kT
T

X
Y Z

aThe pressure by ions: with 1/
4 20

, (4.14 )i i
i

i
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Rρ
μ

μ= = ≃ +P n kT
T

X bThe pressure by electrons: with 1/ (1 )/2, (4.14 )e e
e

e

Rρ
μ

μ μ μ= + = = = +P P P n kT
T

cThe total gas pressure: with 1/ 1/ 1/ . (4.14 )i e e igas tot

The approximate expressions for μ are valid for a fully ionized gas. Remember that
μe mH and μi mH are not the masses of the electrons and ions but the mean mass per
electron and per ion (see Equation (4.3)).

The pressure P at any location in a star is the sum of the contributions by all
constituents at that location. If we only consider ions, electrons, and photons and
ignore other particles, such as neutrinos, we find that the total pressure is

= + + = + = +P P P P P P P P Pwith (4.15)i e i erad gas rad gas

Q (4.1) Calculate Pgas and Prad in the center of the Sun and show that Prad ≪ Pgas (use data in
Appendix C).

4.5 Electron Degeneracy
At very high densities, quantum mechanical effects become important. This changes
the relation between P, T, and ρ, i.e., the equation of state. The velocity distribution
of the electrons at very high densities cannot be Maxwellian because of two
principles of quantum mechanics:

1. Heisenberg uncertainty principle:
Δx Δp > h in one-dimensional and ΔVol Δ3p > h3 in three-dimensional phase
space with the Planck constant h = 6.626 × 10−27 erg s�1 and h3 is the unit of
phase space volume. The uncertainty principle is named after the German
theoretical physicist Werner Heisenberg (1901–1976), who published it in
1927 at the age of 26.

2. Pauli exclusion principle:
No two identical particles (same quantum state) can exist at the same time
and place (i.e., in the same phase-space volume h3). This implies that there
are at most two electrons (spin up and spin down) in a unit of phase space.
The exclusion principle is named after the Austrian–Swiss–American theo-
retical physicist Wolfgang Pauli (1900–1958), who published it in 1924 at the
age of 24.

Figure 4.2 shows a schematic demonstration of the changes in the 1D velocity
distribution n(vx) if more and more identical particles are squeezed into a fixed
volume. The horizontal upper limit is set by Pauli’s exclusion principle. The first
three distributions (black lines) are Maxwellian (M). The blue lines illustrate partial
degeneracy (PD). The green lines show complete degeneracy (CD) when the velocity
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distribution is rectangular up to the Fermi momentum pF = mvF, which is the highest
value of the momentum p for a given density of complete degenerate electron gas.
The last distribution (red line), which extends to px = mc, is for complete relativistic
degeneracy (RD). The Fermi momentum, or Fermi energy, is named after the
Italian–American nuclear physicist Enrico Fermi (1901–1954), the architect of the
nuclear bomb.

The upper limit for a 1D distribution is a constant; however, momentum is
a 3D vector, so the upper limit in 3D phase space is a line of the form

∫ π=f p n p p dp( ) ( ) 2 2 ∼ p3 if n(p) is constant.

Q (4.2) What is the role of temperature in the transition from the Maxwellian to the partial
degenerate distributions?
Hint: consider the width of the distributions for different temperatures.

Q (4.3) What is the role of the particle mass?

Figure 4.3 shows the momentum distribution for electrons for different temper-
atures (left) and different densities (right). The left figure is for ne = 6 × 1027 cm−3,
which corresponds to ρ = 2 × 104 g cm�3 for He and metals, for which μe = 2. The
right figure is for a very low temperature and ne = 2 × 104 and 4 × 104 g cm�3.

4.5.1 Nonrelativistic Complete Degeneracy (CD)

In the case of complete degeneracy, the n(p) distribution is rectangular for p < pF. So
the electron distribution is described by

π= <n p d p
h

p dp p p a( )
2

(4 ) if (4.16 )e
3

3
2

F

= ⩾n p d p p p b( ) 0 if (4.16 )e
3

F.

Using these equations, we can derive the Fermi momentum for a total electron
density ne.

Figure 4.2. One-dimensional velocity or momentum distributions at increasing density. M = Maxwellian
(black lines); PD = partial degeneracy (blue lines); CD = complete degeneracy (green lines); RD = relativistic
degeneracy (red line).
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∫ ∫ π π= = =n n p d p
h

p dp
h

p( )
2

4
8
3

. (4.17)e

P

e

P

0

3

0 3
2

3 F
3

F F

So

⎛
⎝⎜

⎞
⎠⎟π

=p
h n3
8

. (4.18)e
F

3 1/3

Now we can find Pe, with v = p/me

∫ ∫ π π= = =P p n p dp
p
m h

p dp
h

p
1
3

v ( )
1
3

2
4

8
15

. (4.19)e e

p

e0

2

3
2

3 F
5F

We have seen above that pF ∼ ne
1/3, so the pressure is Pe (CD) ∼ ne

5/3, independent
of T!

The electron pressure for complete degeneracy is

ρ μ=P CD K( ) ( / ) , (4.20)e e1
5/3

with = ×
−

−K 1.00 10
g

dyne cm

( cm )
1

13
2

3 5/3
, if μ = 2e , i.e., if =X 0.H

4.5.2 Extreme Relativistic Degeneracy (ERD)

If the density is so high that the electrons are relativistic, then v = c and vp = cp. So

∫ ∫
∫

π π

π π

= =

= = ∼

P p n p p dp
c

pn p p dp

c
h

p dp
c
h

p p n

1
3

v ( )4
3

( ) 4

2
3

4
2
3

with .
(4.21)

e e e

p

e

2 2

3 0

3
3 F

4
F

1/3F

Figure 4.3. Momentum distribution of electrons at several combinations of temperature (left) and densities
(right). (ª Pols 2011.)
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Again, the electron pressure is independent of T, as in the CD case, but now Pe ∼ ne
4/3.

The electron pressure for relativistic degeneracy is

ρ μ=P RD K( ) ( / ) , (4.22)ee 2
4/3

with = ×
−

−K 1.24 10
dyne cm
(g cm )

.2
15

2

3 4/3

4.5.3 Partial Degeneracy (PD)

In the case of partial degeneracy, the momentum distribution of electrons at low
values of p is rectangular in 1D, but at higher values it approaches the tail of the
Maxwell distribution.

The electron pressure for partial degeneracy is

∫π ψ ψ= ≡
+ψ∞ −P PD

h
m kT kT F F

x
e

dx( )
8
3

(2 ) ( ) , where ( )
1

. (4.23)e e r3
3/2

3/2 3/2

0 3/2

This expression is given here for the sake of completeness. Its derivation can be
found in the literature (e.g., Maeder 2009).

4.6 The Equation of State (EoS) for Electron Gas
We have seen that the pressure of CD electron gas has two limiting cases. In the
nonrelativistic case, Pe = K1 × ne

5/3, and in the relativistic case, Pe = K2 × ne
4/3. We

can derive the electron density ne
crit at which the gas goes from CD to RD by

requiring

ρ μ ρ μ
ρ μ

= → = →
→ = = × −

P CD P K K

K K

( ) (RD) ( / ) ( / )

( / ) ( / ) 1.91 10 g cm .
(4.24)

e e e e

e

1
5/3

2
4/3

crit 2 1
3 6 3

Similarly, the boundary between the ideal gas law and CD follows from

ρ μ ρ μ ρ μ= → = = ×n kT K T
K m

k
( / ) ( / ) 1.21 10 ( / ) K. (4.25)e e e e1

5/3 1 H 2/3 5 2/3

The boundary between the ideal gas law and RD follows from

ρ μ ρ μ ρ μ= → = = ×n kT K T
K m

k
( / ) ( / ) 1.50 10 ( / ) K. (4.26)e e e e2

4/3 2 H 1/3 7 1/3

The boundary between radiation pressure and the ideal gas law follows from

⎛
⎝⎜

⎞
⎠⎟ ρ μ ρ μ= → = = × −n kT

a
T T

k
am3
3

( / ) 3.20 10 ( / ) g cm . (4.27)e e e
4

H

1/3
1/3 7 1/3 3

We note that the boundaries are not sharp: the EoS near the boundaries gradually
goes from one regime into the other. For instance, near the boundary between
nonrelativistic and relativistic degeneracy, given by Equation (4.24), some of
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the electrons will be relativistic, with v = c, while others are still nonrelativistic,
with v ≲ c.

Figure (4.4) shows the regimes in the (ρ,T) diagram, where the various expressions
for the EoS apply, for an assumed composition of X = 0.70 and Z = 0.02.

We will see later that the EoS in the core of a main-sequence stars of 0.1 Mʘ is
close to the degeneracy limit. In the cores of main-sequence stars of 0.2 < M <
30Mʘ, the EoS of ideal gas applies. In the cores of main-sequence stars of M >
100Mʘ, the EoS is at the boundary between the ideal gas and radiation dominated
case.

4.7 Neutron Degeneracy
At very high density, the Fermi energy eF of the degenerate electrons is so high
that the electrons can overcome the energy difference between neutrons and
protons, (mn – mp)c

2, which is 1.29 MeV. This happens at a density in excess of
about ×3 107 g cm�3.

Q (4.4) Why does this require a density limit and not a temperature limit?

The reaction p + e ν→ +n results in a decrease of the number of electrons and
protons and an increase in the neutron density. Just like electrons, neutron gas can
also become degenerate at high density.

Figure 4.4. Regions in the (ρ, T) diagram, where the different EoS apply for a fully ionized gas with a
composition of X = 0.70, Y = 0.28, and Z = 0.02. At this composition, μe = 2/(1 + X) = 1.18 and so ne =
ρ/(mHμe) = 5.1 × 1023 ρ cm−3. (Adapted from Pols 2011.)

Understanding Stellar Evolution

4-9



The electron pressure of nonrelativistic completely degenerate neutron gas is
given by a similar expression as that for CD electrons (Equation (4.20))

ρ μ ρ= × < < × −P K(CD) ( / ) for 3 10 6 10 g cm , (4.28)n n n1,
5/3 7 15 3

with μn = 1 for gas consisting completely of neutrons and = ×
−

−K 5.38 10 .dyne . cm

(g cm )
n1,

9
2

3 5/3

At higher density, the neutron gas becomes relativistically degenerate and the neutron
pressure is

ρ μ ρ= > × −P RD K( ) ( / ) for 6 10 g cm , (4.29)n n n2,
4/3 15 3

with = ×
−

−K 1.33 10
dyne cm
(g cm )

.2,n
15

2

3 4/3

The similarity of Equation (4.28) for neutron stars and Equation (4.20) for the
electron degenerate gas of white dwarfs implies that both types of stars will have a
similar mass–radius relation (which will be derived in Chapter 20). Moreover, the
similarity of Equation (4.29) for neutron stars and Equation (4.22) for white dwarfs
implies that for both types of stars there is a maximum mass at which they can be
stable.

4.8 Polytropic Gas
We have seen above that in several cases the EoS can be written in the very simple
form of

ρ∼ γP . (4.30)

Such a relation is called a polytrope and γ is the polytropic index.
The P(r) and ρ(r) structure of polytropic stars can be derived directly from the

hydrostatic equilibrium condition because there is no T-dependence!
A historical note: in 1926, Sir Arthur Eddington (1882–1944) “guessed” that stars

behave as polytropes, calculated the first model for the solar interior using the
polytropic approximation P ∼ ρ4/3, and found approximately the correct M, R, and
even L. His guess was based on the assumption that the ratio between the gas
pressure and the radiation pressure might be roughly constant throughout the star.
Modern models show that his assumption is incorrect.

Which stars behave as polytropes?
a. Complete electron degenerate stars: because P ∼ n5/3 ∼ ρ5/3.
b. Relativistic degenerate stars: because P ∼ n4/3 ∼ ρ4/3.
c. Stars with a constant ratio β = P P/gas tot (Eddingtons’ assumption)

β ρ= − → ∼ → ∼P P P P P(1 ) .rad rad
4/3

d. Fully convective stars (we will prove this below) P ∼ ρ5/3.
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In degenerate stars, where P(r) and ρ(r) are independent of T, the condition of HE
does not provide any information on the temperature or luminosity of the stars.
However, in nondegenerate polytropic stars, the HE condition not only sets P(r) and
ρ(r) but also the T(r) structure, because if the gas behaves as a polytrope, ρ∼ γP , and
if the gas behaves as an ideal gas, ρ∼P T , then ρ∼ γ−T 1 and ∼ γ γ−T P( 1)/ . The
temperature structure in a star defines the flow of energy; as a result, the luminosity
of such a star is also known.

4.8.1 Proof That a Fully Convective Adiabatic Star Is a Polytrope

The energy transport in some types of stars or some stellar layers is not via the
transport of radiation, but by convection: hot rising cells release their energy at the
top of the convection zones and cool descending cells gain energy in deeper layers.
Let us assume that the convection is (almost) adiabatic, which means that convective
cells have no energy loss or gain. We will show later that this is a reasonable
approximation in a convective layer.

The first law of thermodynamics states that du + P dV = dQ, where u is the
specific internal energy (in ergs gram�1), V = 1/ρ is the specific volume of a gram
of gas, and Q is the heat content. The adiabatic condition implies that dQ = 0 so
du = � P dV.

For an ideal gas u = (3/2) NkT, whereN = nV is the number of particles per gram,
n is the number of particles per volume, and P = nkT, we find PV = NkT and
u = 3/2 PV.

For adiabatic expansion or contraction of rising and descending gas cells

⎛
⎝⎜

⎞
⎠⎟= − → = − → + = −

→ = − → = −

du P dV d PV P dV P dV V dP P dV

P dV V dP
dP
P

dV
V

3
2

3
2

3
2

5
2

3
2

5
3

.

(4.31)

So

ρ∼ → ∼− +P V P . (4.32)5/3 5/3

This shows that a convective region has a polytropic EoS. For ideal gas, ρ∼P T , so
the temperature structure of a convective region is given by

ρ∼ ∼T T Pand . (4.33)2/3 2/5

Q (4.4) Can a fully convective star be completely adiabatic?

4.8.2 The Polytropic Index of Partially Ionized Gas

In the central regions of stars, the gas is fully ionized and acts like an ideal gas
(unless it is degenerate at high density); however, in higher layers closer to the
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surface, where the temperature is lower, the gas may be partially ionized. In those
layers, the gas is not ideal and u ≠ (3/2)NkT because there is also a potential energy
from ionization that is released in the case of recombination. For instance, an
increase in T will increase the degree of ionization, which will cost energy and vice
versa for recombination. The internal energy is therefore higher than that for a fully
ionized gas.

The internal energy of a gram of partially ionized H-gas is given by

χ= +u NkT q m3/2 / , (4.34)H H H

where qH= n+/(n++ n0) is the ionization fraction of H and χH is the ionization
potential of H (13.598 eV). The number of particles N includes the H atoms as well
as the free electrons, so the number of particles per gram isN = (1 + qH)/mH for pure
H gas.

The extra energy term qHχH/mH in u affects the relation between P and ρ. We
have defined the polytrope index γ by ρ= γP . We can also define a temperature

index Δ by T ∼ ΔP , with Δ = γ
γ
− 1

ad and γ =
− Δ

1
1 ad

for an adiabatic gas.

Figure 4.5 shows the value of γ for H-gas as a function of the ionization fraction
of H. For neutral H and fully ionized H, the polytropic index is γ = 5/3 so Δad = 0.4.
For partially ionized H-gas, γ shows a minimum of γ ≈ 1.19 and Δad ≈ 0.16 when H
is about half ionized. These are approximate values because the degree of ionization
depends on T and ρ (see Pols 2011 for a more complete description).

Q (4.5) Explain why γ = 5/3 at both the high- and low-temperature ends.
Q (4.6) What is the physical reason that γ drops in a partially ionized region?

4.9 Summary
1. The equation of state (EoS) describes the relation between P, T, and ρ. At

low densities this relation is given by the ideal gas law: P ∼ ρT.

Figure 4.5. Polytropic index γ for partially ionized H-gas.
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2. Radiation pressure is proportional to T 4. It only plays an important role in
the cores of massive stars and supernovae.

3. At densities in excess of about 103 g cm�3 inside stars (but depending on T)
the momentum distribution of the electrons becomes degenerate: the
electrons are forced to high velocities. Completely nonrelativistic degenerate
electron gas has an EoS of the type Pe ∼ ne

5/3.
4. At densities in excess of 106 g cm�3, electron gas becomes relativistically

degenerate with an EoS of the type Pe ∼ ne
4/3.

5. At densities in excess of 3 × 107 g cm�3, electrons and protons form neutrons.
6. At densities in excess of about 1012 g cm�3, neutrons become degenerate.

Nonrelativistic and completely relativistic neutron gas has an EoS of the
same type as degenerate electron gas.

7. Stars made of gas that have an EoS of the type P ∼ ργ are called polytropic
stars. Their P and ρ structure can be derived from the hydrostatic equili-
brium equation, independent of T.

8. If a polytropic star consists of gas with an ideal EoS (i.e., P ∼ ρT), the
combination of P and ρ also sets the T structure of the stars and hence the
energy flow through the star.

9. Examples of polytropic stars are
– degenerate stars,
– fully convective stars, and
– stars with a constant ratio between Pgas/Prad.

Exercises
4.1 Show that for a fully ionized gas the number of electrons per gram is

(1 + X)/2 mH and that μe = 2/(1 + X).
4.2 Calculate the ratio Prad/Pgas in the center of zero-age main-sequence stars of

1, 10, 30, 60, and 120Mʘ. (Use the models by Ekstrom et al. 2012.)
4.3 Plot the run of temperature versus density in the Sun (Appendix C) in

Figure 4.4. What do you conclude about the equation of state?
4.4 Plot the values of the central temperatures versus densities of zero-age

main-sequence stars of 1, 4, 12, 60, and 120Mʘ in Figure 4.4. What do you
conclude? Use the same models as in Exercise 4.2.

4.5 Compare the densities at which neutrons and electrons become degenerate
at the same temperature. Hint: consider two effects.

1. Energy exchange results in < > = = <m kT mv v3
2e e n n

2 2>. Calculate the
ratio of the momenta pn/pe of neutrons and electrons.

2. Degeneracy occurs when ∼ Δp hd / Vol3 3 , with Δ ∼ nVol 1/ n. Calculate
the ratio nn/ne when the values of × Δp(d Vol)3 for electrons and
neutrons are equal.

3. Calculate the corresponding density ratio ρn/ρe.
4.6 Compare the expected radius of a nonrelativistic complete electron degen-

erate star with that of a nonrelativistic complete neutron degenerate star of
the same mass. Comment on the result.
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Understanding Stellar Evolution

Henny J.G.L.M. Lamers and Emily M. Levesque

Chapter 5

Opacities in Stars

For understanding and calculating stellar structure, particularly the transport of
energy by radiation, we have to know the absorption coefficient of the gas as a
function of density, temperature, and composition. A variety of particles, each with
their own atomic line or continuum transitions, may contribute to the opacity;
however, in each temperature and density region only one or two opacity processes
dominate. In this chapter, we discuss these different processes and the conditions in
the stars where they are important.

Almost all opacity processes are wavelength-dependent; however, for calculating
the radiative transfer inside a star, we can use a cleverly defined wavelength-
independent mean value, the Rosseland-mean opacity. Below we derive its definition
and present approximate expressions for this opacity for the different processes.

5.1 The Rosseland-mean Opacity
The absorption coefficient per gram at frequency ν, κv (in cm2 g�1), is defined as the
cross section for absorption or scattering of photons of frequency ν if these photons
pass through a gram of gas. We can also define the absorption coefficient per cm3 of
gas, kv (in cm2 cm�3 = cm−1), with the obvious relation ρκ=kv v.

In an optically thick medium, such as inside a star, the flux of radiation at
frequency ν that passes through a cm3 at a given radius r depends inversely on the
absorption coefficient kv and on the local gradient of the Planck function νB . This
can be understood intuitively: the higher the absorption coefficient, the more
difficult it will be for the radiation to pass through. On the other hand, the larger
the gradient d νB /dr of the radiation density, the higher the flux. We can therefore
expect

  ∼   −  νF
k

dB
dr

1
. (5.1)v

v
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The minus sign indicates that a positive (outflowing) flux requires an outward
decreasing temperature. If we define the total (frequency integrated) flux as

∫ ν= ν
∞

F F d
0

, then

∫ ∫  ∼ −  = − ×ν νF
k

dB
dr

dv
k

dB
dT

dv
dT
dr

1 1
, (5.2)

v v

where we changed dBν/dr into dBν/dT × dT/dr.
For calculating stellar structure, we want to avoid integration over frequency.

Instead, we prefer to write the flux in a frequency-independent expression that is
similar to Equation (5.1) as ∼ − −F k 1 dB/dr. This can be done if the frequency-
independent k is properly defined. This frequency-independent k is called the
Rosseland-mean opacity, indicated by kR, after the Norwegian astrophysicist
Svein Rosseland (1894–1985), who proposed this in 1924. The definition of kR
follows from

∫ ∫ν  ∼   −   =   − = =  −ν ν
ν

ν

ν
∞

F
k

dB
dr k

dB
dT

dT
dr

F d
k

dB
dT

dv
dT
dr

1 1 1
. (5.3)

R R 0

Comparing the third and the fifth expression for F results in the definition of the
Rosseland-mean opacity per cm3

∫ ∫≡ ν ν

∞ ∞k k
dB
dT

dv
dB
dT

dv
1 1

. (5.4)
vR

0 0

The Rosseland-mean opacity per gram is κ ρ= k / .R R The absorption coefficients
described in the sections below are all Rosseland-mean values.

5.2 Electron Scattering: σe
Free electrons scatter photons. The absorption cross section for electron scattering is
σe (in cm2 g�1). Deep inside stars, the gas is fully ionized and electron scattering is
the dominant opacity with

σ σ= N , (5.5)e eT

where σ = × −−6.65 10 cm electron 1
T

25 2 is the Thomson cross section for electrons
and =Ne 1/μ me H is the number of electrons per gram. In Section 4.1, we have
defined μ me H as mean particle mass per electron with μe = 2/(1 + X) for a fully
ionized astrophysical gas. This means that the electron scattering coefficient is

σ σ
μ μ

= = ≃ + ≈ + −

m
X

X
1 0.40

0.40
1

2
0.2(1 ) cm g . (5.6)1

e
e e

T

H

2

N.B. The cross section (in cm2 g�1) for scattering of photons is indicated by the
symbol σ. The cross section (in cm2 g�1) for absorption of photons is indicated by the
symbol κ.
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5.3 Free–Free Absorption κ: ff

Free–free absorption is the inverse of bremsstrahlung. In bremsstrahlung, an
electron that is deflected by an ion emits a photon. In free–free absorption a photon
is absorbed by an electron when it briefly interacts with an ion. If Zi is the charge of
the ion, the interaction depends on Zi

2.
Because free–free absorption depends on encounters between electron and ions,

we expect the cross section to be κ ∼ Z n ni eff
2

i (in cm2 cm�3), where ρ μ=n m/i i H and
ρ μ=n m/e e H are the number of ions and electrons per cm3.

The absorption coefficient for free–free absorption is

⎛
⎝⎜

⎞
⎠⎟κ ρ= × + −−X Z

A
T7.5 10

1
2

cm g . (5.7)1i

i
ff

22
2

7/2 2

where <Zi
2/Ai> is the mean value of this ratio for all ions and T−7/2 is the

temperature dependence. The steep temperature dependence implies that the
Rosseland-mean value of the free–free absorption is strongest at low temperatures.

Q (5.1) Why is κff in cm2 g�1 proportional to ρ?
Q (5.2) Show that for a low-metallicity composition of Z << 1 the factor <Zi

2/Ai> ≈ 1.

5.4 Bound–Free Absorption: κbf
If a photon with sufficient energy hits an atom that is not fully ionized it may kick
out an electron. This photoionization results in the bound–free absorption of
photons. The Rosseland-mean value of the bound–free absorption is calculated by
summing all possible bound–free transitions of many ions. The result is known as
Kramers’ bound–free opacity law, after the Dutch physicist Hendrik Kramers (1894–
1952), who derived it in 1923.

κ ρ= × +   −−X Z T4.3 10 (1 ) cm g . (5.8)1
bf

25 7/2 2

Note that κbf >> κff for a metal abundance of Z > 0.001.

Q (5.3) Why is κbf in cm2 g�1 proportional to ρ?

5.5 Bound–Bound Absorption: κbb
If the gas inside a star is not fully ionized, it can absorb photons of many possible
wavelengths, resulting in electron transitions from one bound state to another. The
calculation of this Rosseland-mean opacity is very difficult due to the numerous
possible transitions of different ionization stages for the various elements. The
results of such calculations can be found on the web. It turns out that the many line
transitions of Fe group elements give a peak in the Rosseland-mean opacity at
temperatures around 105 to 106 K, depending on the density.
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5.6 Total Rosseland-mean Opacity: κR
Tables of opacities in stellar interiors and atmospheres can be found on the web at

https://opalopacity.llnl.gov/existing.html

Figure 5.1 shows the opacities from the OPAL database for solar composition as
a function of temperature for several densities. Data for other compositions are also
given in the database.

Note the following features.
• At high T and low density, all matter is ionized, so κ σ= ≃ 0.3e cm2 g�1.
• As T decreases, the bound–free and free–free absorption coefficient increases
as κ ∼ ρT�7/2. This explains the decrease from the peak toward higher T.

• At intermediate temperatures (depending on ρ) the gas is partly ionized. This
results in many more possible electron transitions and huge opacities. This
produces the so-called Fe-opacity peak around 105 K for densities 10−6 to
10−4 g cm�3 (i.e., in the envelopes of stars).

• The peak shifts to higher T as the density increases.
• The peak at 104 < T < 105 K at very low density (∼10−10 to 10−8 g cm�3) is
due to H. We will see later that this peak is responsible for convection in the
outer layers of cool stars.

Figure 5.1. Total Rosseland-mean opacity κR for solar composition as a function of T and ρ. (Figure is based
on data from OPAL opacity tables1.)

1 http://opalopacity.llnl.gov/existing.html
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• At very low T < 104 K, the opacity, due to −H , decreases steeply toward lower T
as κ ∼−H T( ) 9. This explains the steep slope of κ in Figure 5.1 at low T. We will
show later that this is important for stars on the Hayashi track, AGB stars, and
red supergiants. It explains why the effective temperature of stars has a lower
limit.

Q (5.4) Why does the Fe opacity peak shift to higher T with increasing ρ?

5.7 The Mean-free Path of Photons: l

The mean-free path of a photon is ≃
κρ
1

l in
⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦ =
− −

[cm].
cm

g
g

cm

2 1

3

1

Inside main-sequence stars at T > 106 K:

⎪

⎪⎫⎬
⎭

ρ
κ

∼
∼

∼−

−1 g cm

1 cm g
, so 1 cm (5.9)

1

3

2
l

This implies that when a photon travels about 1 cm it will be absorbed and re-
emitted or scattered. Photons are scattered so frequently over a short distance that
they quickly lose information about their direction. This means that the radiation
inside a star must be (almost) isotropic.

Q (5.5) If radiation inside a star is isotropic, how can there be a radiative outward moving flux?

5.8 Summary
1. The Rosseland-mean opacity is defined in such a way that the radiative

transfer in a star can be calculated in a frequency-independent way.
2. The absorption coefficient σe for electron scattering is independent of density

and temperature. For highly ionized gas, it is about 0.3 cm2 g�1.
3. The absorption coefficients κff and κbf depend on density and temperature as

∼ρT −7/2.
4. The total absorption coefficient has a strong peak that reaches up to κR ≈

105 cm2 g�1 in the temperature range of 105 to 106 K, depending on density.
It is mainly due to the huge number of spectral lines of partially ionized
metals.

5. At T < 104 K the opacity, mainly due to −H , decreases very steeply to lower
temperature as κ ∼ T 9.

Exercises

5.1 (a) Identify in Figure 5.1 the ranges in T and ρ, where electron scattering
dominates, and where the bound–free and free–free opacity dominates.

(b) Check the dependence of κ on T and ρ in these regions.
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5.2 The average radial distance traveled by a photon in a random walk is
∼r Nl , where N is the number of random steps and l is the step length

(i.e., the mean-free path length).
(a) Use l ≈ 1 cm and r = Rʘ to estimate the number of scatterings a

photon will undergo before reaching the surface of the star.
(b) Calculate the total path length L and the time τL = L/c it takes a

photon created in the center to leave the Sun.
(c) Is it still the same photon? (Same λ, ν?)

5.3 We have argued that radiation inside a star must be almost isotropic. This is
tested in this exercise.
Estimate the fraction of the radiation that is nonisotropic in the Sun at r =
0.5Rʘ.
Hint: split the flow of radiation into two parts, an outward and inward
directed part, (as shown below) and calculate the difference. Compare this
net flow with the radiation density at that location. Adopt this distribution
of radiation density: the length of the arrows is proportional to the radiative
intensity in that direction.

5.4 The internal structure of the Sun is listed in Appendix C.
(a) Sketch the internal structure of the Sun in Figure 5.1.
(b) Identify the three regions in the Sun, where the opacity is dominated by
(1) electron scattering, (2) free–free and bound–free absorption, and (3) H−

opacity.

Reference
Opal opacity tables: http://opalopacity.llnl.gov/existing.html
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Chapter 6

Radiative Energy Transport

The energy of a star is generated in its central regions and transported outward by
radiation, convection, or diffusion. If the energy is transported by radiation, the star
is in radiative equilibrium. Radiative energy transport requires a specific temper-
ature gradient throughout the star that depends on the amount of flux that must be
transported as well as the opacity. This temperature gradient is described by the
Eddington equation. We will show that the combination of hydrostatic equilibrium
and radiative equilibrium results in a relation between the mass and the luminosity
of a star. This also leads to an upper limit for the luminosity of stars.

6.1 Eddington’s Equation for Radiative Equilibrium
In 1926, the British astrophysicist Sir Arthur Eddington (1882–1944) derived an
expression for the energy transport in stars by means of radiation. This is one of the
fundamental equations for understanding the structure and evolution of stars. We
start by giving this expression and then it will be derived intuitively in three steps
that are easy to remember.

TheEddington equation for radiative transfer through an optically thick medium is

κρ
π

= −dT
dr ac T

L
r

3
4

1
4

, (6.1)r
3 2

where a is the radiation density constant (see Section 4.3), and ac = 4 σ, where σ is
the Stefan–Boltzmann constant (see Section 2.3).

Eddington’s equation is also called the equation for radiative equilibrium (RE).
This is because it describes the temperature structure of a star in which the energy
generated in the center is in equilibrium with the energy that is transported outward
by radiation. NB: Radiative equilibrium does not mean that gravity is balanced by
radiation pressure.
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The following is an intuitive derivation of the Eddington equation (see Figure 6.1):
(A). Consider a cm3 of gas in a layer of 1 cm thickness, so the surface area is 1 cm2.
Now consider the amount of radiation that enters and leaves this volume from the
top and the bottom. The medium inside the stars is optically thick, so each cm2

radiates an amount of σT4, where T is the local temperature. If T2 and T1 are the
temperatures at the bottom and the top of the cm3, then the net flux that passes from
the bottom to the top is expected to be

σ σ∼ − = −( )F T T d T dr a( )/ . (6.2 )2
4

1
4 4

(B). The flux will also depend on the transparency of the volume. So we can expect
F ∼ transparency of layer ∼ 1/opacity per cm. So

κρ∼ ∼F k b1/ 1/ . (6.2 )

(C). The flux is related to the luminosity that passes through the star at radius r

π∼F L r c/4 . (6.2 )r
2

Combining conditions, (A), (B), and (C), yields

π κρ
σ

κρ
∼ − = −L

r
d
dr

T
ac

T
dT
dr

d
4

1 1
4

4 . (6.2 )r
2

4 3

So from this simple intuitive derivation, we expect

κρ
π

∼ −dT
dr ac T

L
r

e
1

4
. (6.2 )r

3 2

In simple terms: the higher the opacity, the higher the temperature gradient must be
in order to transport sufficient radiation through each layer.

Equation (6.2e) is very similar to the Eddington Equation (6.1) for energy
transport by radiation. The difference of a factor of 3/4 comes from proper
integration of the radiation intensity over all angles. The simplest way to remember
and write the Eddington equation is therefore

π κρ
σ= −L

r
d T

dr4
4
3

1
, (6.3)r

2

4

Figure 6.1. Schematic description of radiative transport.
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where one only has to remember the factor of 4/3; the other factors are trivial.

Comments:
– Radiative equilibrium means that the energy is transported in a star by
radiation. It does not mean that gravity is balanced by radiation pressure.

– The full derivation of Eddington’s equation is given in several textbooks in
terms of radiative diffusion (e.g., Kippenhahn & Weigert 1990).

– The Eddington equation is sometimes derived using the radiation pressure
(e.g., Prialnik 2004). However, this might be confusing since radiative transfer
is related not to the pressure balance but to the diffusion of energy.

Q (6.1) Free–free absorption and bound–free absorption are real absorption: photons disappear
and are re-emitted at another wavelength. But electron scattering does not “absorb”
photons; it just sends them in another direction (with a very small mean-free path). With
this in mind, why does electron scattering play a role at all in radiative transfer and in the
structure of stars?

6.2 Mass–Luminosity Relation for Stars in HE and RE
Stars in HE that transport energy by radiation obey a mass–luminosity relation.
This can be derived rigorously for stars with a constant ratio Prad/Pgas (i.e., for
polytropic stars with γ = 4/3 in RE), but we will derive it intuitively.

We have seen that, for stars in HE,


μ≃T

GM
R

a. (6.4 )c

We have also seen that, for stars in RE,

π κρ
σ= −L

r
d T

dr
b

4
4
3

1
. (6.4 )r

2

4

Let us make the following order-of-magnitude approximations

ρ π π− ≃ ≃ π ≃dT
dr

T
R

M R L r L R, (4 /3) / and /4 /4 . (6.5)c
r

4 4
3 2 2

This yields

π σ
κ

π μ μ
κ

≃ ∼L R
R

M R
G M

R
M4

4
3

4
3

1
. (6.6)2

3 4

4

4 4

4

4
3

So, for stars in HE and RE, we expect the following mass–luminosity relation


σ μ

κ
μ
κ

≈ − ∼L
G

M M . (6.7)
4

4

4
3

4
3
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The most surprising result is that we made no assumption about the energy production
process! This shows that a star can only be in HE and RE if it has some fixed
luminosity, independent of the energy source. This implies that the energy generation
process must adjust itself to the required value; otherwise the star is not in
equilibrium.

Considering the simplicity of our derivation, it agrees surprisingly well with the
observed mean M-L relation for main-sequence stars of L ∼ M3.8 (Section 2.5).

Q (6.2) Why is this relation not valid for lower main-sequence stars, red giants, and red
supergiants?

Q (6.3) Is the relation valid for degenerate stars? Why?

6.2.1 Consequences of the M-L Relation

1. The dominant opacity in massive main-sequence stars is electron scattering,
so κ = σe with σe ≃ 0.20(1+X) cm2 g�1. The values of σe and μ for different
compositions are

• σe = 0.34 and μ = 0.61 if X = 0.70 and Y = 0.30 and
• σe = 0.20 and μ = 1.33 if X= 0 and Y= 1.

Because L ∼ μ4/σe, a He star of 1Mʘ will be about 40 times more luminous
than a star of 1Mʘ with normal composition. This explains why hot
horizontal branch stars are much more luminous than the main-sequence
stars at the turn-off point, although they have about the same mass (Figure
2.5).

2. The strong dependence of L on μ (as L ∼ μ4) and the weaker dependence of
L on 1/σe explains why main-sequence stars increase in luminosity during the
H-fusion phase when their He abundance increases.

3. It also explains why the post-MS evolution tracks of massive stars are
approximately horizontal: their composition hardly changes during the short
phase when they move to the right in the HRD. The red supergiant phase is
an exception because these stars are largely convective.

6.3 The Eddington Limit: The Maximum Luminosity and the
Maximum Mass

For any star in HE, the inward force due to gravity should be larger than the
outward force by radiation pressure, because HE requires

ρ+ =dP
dr

dP

dr
GM r

r
( )

(6.8)r
rad gas

2

and so

ρ< =dP
dr

GM r
r

r P
a

T
( )

with
3

. (6.9)rad
2 rad

4
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Radiative equilibrium requires

⎛
⎝⎜

⎞
⎠⎟ σ

κρ
π

= = = −dP
dr

d
dr

aT
c

d
dr

T
c

L r
r3

4
3

( )
( )

4
. (6.10)rrad

4
4

2

Combining these two equilibrium conditions, with r2 and ρr canceling, gives

π
κ

<L r
cGM r

r
( )

4 ( )
( )

. (6.11)

NB: Layers in a star where Condition (6.11) is violated cannot be in radiative
equilibrium. Such layers may exist in a star, but only if they are convective.

The most luminous main-sequence stars are the massive stars. In these stars,
electron scattering is the dominant opacity, with σe being about constant throughout
the star. This gives an upper limit for the luminosity of massive stars, which is called
the Eddington limit.

π σ< =L L cGM4 / . (6.12)eE

If a star’s luminosity exceeded LE, it would be blown up by its radiation pressure.
Substitution of the electron scattering coefficient σe = 0.20 (1 + X) cm2 g�1 gives

σ
= × ≃ × =

⊙ ⊙ ⊙

L
L

M
M

M
M

X
1.3 10

3.8 10 , if 0.70. (6.13)
e

E
4

4

The influence of the radiation pressure is often expressed in terms of the Eddington
factor ΓE

Γ κ
π

Γ≡ = <L
L

L
cGM4

, with 1 for stable stars. (6.14)E
E

E

We have seen in Figure 2.3 that for MS stars with 10M > 6Mʘ the empirical mass–
luminosity relation is L/Lʘ ≈ 12 (M/Mʘ)

2.9. If we extrapolate this relation to
higher masses and combine it with the Equation (6.13) for the Eddington limit, we
find that

≈ ≈ ×⊙ ⊙M M L L70 and 3  10 . (6.15)max max
6

The empirically derived maximum mass is Mmax ≃ 160–300Mʘ and Lmax ≃ 3 ×
106 Lʘ for stars in the LMC cluster R136 (Crowther et al. 2010). The difference
between the predicted and the empirically derived values of Mmax and Lmax

suggest that the mass–luminosity relation for the most massive stars is flatter than
the extrapolation that we adopted here. We will show later in Chapter 13 that this
is indeed the case.

6.4 Summary
1. If the energy inside a star is transported outward by radiation, a specific

T-gradient is required that is described by the Eddington Equation (6.1).
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2. For a star in which the energy transport is by radiation, the combination of
the hydrostatic and radiative equilibrium results in a relation between
luminosity and mass of the type L ∼ (μ4/κ)M3. This simple prediction
agrees reasonably well with the observed M-L relation for main-sequence
stars of L ∼ M3.8.

3. The strong dependence of L∼ μ4 in the relation predicts that He-stars are
about a factor of 40 brighter than main-sequence stars of the same mass. This
explains the brightness of stars on the horizontal branch. The same
μ-dependence also explains the brightening of stars during the main-sequence
phase.

4. A star can only be in hydrostatic equilibrium if the outward force due to the
radiation pressure gradient is smaller than the inward force due to gravity.
This sets an upper limit to the luminosity of stars, known as the Eddington
limit.

5. Application of the Eddington limit to massive stars, in which electron
scattering is the dominant opacity, results in an estimate for the maximum
stellar luminosity and mass of Lmax ≈ 3 × 106 Lʘ and Mmax ≈ 102Mʘ, in
reasonable agreement with the observed value.

Exercises

6.1 The predicted mass–luminosity relation implies that L∼ μ4/κ.
(a) Compare this with the results of the stellar models for zero-age

main-sequence stars with Z = 0.014 and Z = 0.002, listed in
Appendix D,

(b) Explain the trend that the luminosity of massive stars is about the
same for both compositions, but that the luminosity of the metal-
poor low-mass stars is higher than those of Z = 0.014 stars.

6.2 The Eddington limit was derived in Section 6.3 by extrapolating the
empirical mass–luminosity relation of L/Lʘ ≈ 12(M/Mʘ)

2.9 to higher
mass. This can be improved by adopting the predicted M-L relation for
zero-age main-sequence stars, listed in Appendix D.

(a) Derive the approximate M-L relation in the mass range of 30 to
60Mʘ.

(b) Extrapolate this relation and derive the Eddington limit, in mass and
luminosity.

References
Crowther, P., Schnurr, O., Hirschi, R., et al. 2010, MNRAS, 408, 731
Kippenhahn, R., & Weigert, A. 1990, Stellar Structure and Evolution (Berlin: Springer)
Prialnik, D. 2004, in An introduction to Stellar Structure and Evolution 2004 (Cambridge:

Cambridge Univ. Press), 215
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Chapter 7

Convective Energy Transport

In most stars, energy is transported outward by radiation. In those layers where the
transport of energy by radiation is not efficient enough, convection will take over.
Hot bubbles rise from deeper layers, deliver their heat in higher layers, and descend
again as cooler bubbles. A similar process occurs in the Earth’s atmosphere when the
surface is heated by the Sun to such a degree that it cannot get rid of the heat by
conduction or radiation. In that case, the Earth’s atmosphere becomes convective,
enabling birds of prey to soar high in the sky with minimum effort.

In this chapter, we derive the conditions necessary for layers to become convective
if they are chemically homogeneous and if there is a chemical gradient.
Subsequently, we discuss the efficiency of convective energy transport. This results
in expressions for the average velocity of the convective cells and for the temperature
difference between the hot rising cells and the cool descending cells. We will show
that both this temperature difference and the average velocity of the cells are
surprisingly small and explain the underlying reason. We discuss which layers in
stars are convective and how this affects mixing of their chemical composition.

7.1 The Schwarzschild Criterion for Convection
We start with the qualitative picture that was introduced by the German astrophys-
icist Karl Schwarzschild (1873–1916) in 1906 (Schwarzschild 1906). Consider a gas
layer in a star and assume that a blob of gas in that layer accidentally starts moving
upward. If it falls back immediately, then that layer is obviously stable. However, if
the blob keeps rising, that layer is unstable for rising blobs and the layer will be
convective.

Consider the following picture of a blob of gas at its initial location r1, which is in
equilibrium with its surroundings. The surrounding medium has a temperature,
pressure, and density Ts (r1), P

s(r1), and ρs(r1). Suppose the blob moves upward to
location r2, where the ambient medium has Ts(r2), P

s(r2), and ρs(r2). The conditions
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inside the blob at r2 are Tb(r2), P
b(r2) and ρb(r2). These may be different from the

surroundings at r2.
When the blob rises, it will remain in pressure equilibrium with the surroundings;

otherwise, the blob would expand or contract to equalize the interior pressure with
the outside pressure. This implies that Pb(r2) = Ps(r2), and because of the ideal gas
law, P∼ ρT,

ρ ρ=T r r T r r( ) ( ) ( ) ( ). (7.1)b b s s
2 2 2 2

Will the blob keep rising or will it fall back to its original position? The blob will
keep rising (due to buoyancy force) if its density at r2 is lower than that of the
surrounding medium, i.e., if

ρ ρ<r r( ) ( ). (7.2)b s
2 2

Combining (7.1) and (7.2) shows that the blob will keep rising if Tb(r2) > Ts(r2). This
will be the case if the temperature inside the blob decreases upward more slowly
than in the surrounding medium. We can express this condition in terms of the
T-gradients in the blob and in the surrounding medium:

<dT
dr

dT
dr

. (7.3)
b s

Q (7.1): What is the reason for the absolute value signs?
Q (7.2): Show that a descending blob will keep descending under the same condition.

Assume that a layer is in radiative equilibrium: (dT/dr) = (dT/dr)rad. If the blob of
gas rises adiabatically, i.e., without losing energy, its T-gradient is (dT/dr)ad. In that
case, Condition (7.3) can be written as the Schwarzschild criterion for convection:

<dT dr dT dr/ / . (7.4)ad rad

This criterion is easy to remember: the star always adopts the least steep temperature
gradient. It shows that if a layer is in radiative equilibrium, it will automatically
become convective when Criterion (7.4) is satisfied.

We will show below that the mean temperature gradient in a convective zone is
very close to the adiabatic gradient.

7.1.1 The Schwarzschild Criterion in Terms of the Polytropic Index

We can express the Schwarzschild criterion for convection in terms of the local
adiabatic polytropic index γ ρ≡ d n P d n/l l .

The Schwarzschild criterion states that convection occurs if

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟> → >dT

dr
dT
dr

d n T
dr

d n T
dr

. (7.5)
ad rad ad rad

l l
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Combining ρ∼T P / for an ideal gas and the definition of the polytropic index,
ρ∼ γP , yields T ∼ P (1−1/γ) and thus

⎛
⎝⎜

⎞
⎠⎟γ

= −d n T
dr

d n P
dr

d n P
dr

1
1

with from HE. (7.6)
l l l

So the Schwarzschild criterion can also be written as

⎛
⎝⎜

⎞
⎠⎟

γ
γ

<
−dT

dr
T
P

dP
dr

1
. (7.7)

rad

ad

ad

A layer is convective if

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟γ γ

γ γ− > − → <dℓn P
dr

dℓn P
dr

1
1

1
1

. (7.8)
ad rad

ad rad

We have seen in Section (4.7.2) that γad = 5/3 for a fully ionized or fully neutral ideal
gas, but that it drops to lower values of γad ≈ 1.2 in H-ionization zones. This makes
these zones more sensitive to convection.

7.2 Convection in a Layer with a μ-gradient: Ledoux Criterion
We have derived the Schwarzschild criterion for convection by considering the rise
of bubbles in a medium of constant chemical composition. We now consider the case
of a chemically stratified star with a mean particle mass μ decreasing radially
outward.

Q (7.3) Why would the mean particle mass decrease with the distance from the center?

Figure 7.1. Schematic representation of convective blobs. (Adapted from Pols 2011.)
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If a bubble (b) rises adiabatically and the surroundings are in radiative
equilibrium, then the condition for convection to occur is

ρ ρ ρ ρ> >d
dr

d
dr

d
dr

d
dr

or
ln ln

. (7.9)
b s b s

With ρ μ=P T /R and ρ μ= P T/ ,R we find that convection occurs if

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

μ μ+ − > + −d P
dr

d
dr

d T
dr

d P
dr

d
dr

d T
dr

ln ln ln ln ln ln
. (7.10)

b b b s s s

Here, we have allowed μ to be distance-dependent, which causes a rising blob to
have a different μ than its surroundings. Since the bubble will remain in pressure
equilibrium with its surroundings, and the chemical composition of the bubble will
not change when it rises, we find the condition for convection:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

μ− > − +d T
dr

d T
dr

d
dr

ln ln ln
. (7.11)

b s s

If convective cells rise adiabatically in a medium that is in radiative equilibrium and
has a μ-gradient, the condition for convection is therefore

μ> +d T
dr

d T
dr

d
dr

ln ln ln
. (7.12)

rad ad

This is the Ledoux criterion for convection, after the Belgian astrophysicist Paul
Ledoux (1914–1988), who introduced it in 1947 (Ledoux 1947).

Note the following.
1. In a homogeneous layer, the Ledoux criterion is the same as the

Schwarzschild criterion.
2. For given adiabatic and radiative temperature gradients in a star, a chemi-

cally stratified zone is more stable against convection than a chemically
homogeneous zone.

Figure 7.2. Schematic picture of the Schwarzschild criterion for convection. Dashed line: radiative (blue) and
adiabatic (red) T-gradients. Solid lines: actual T structure. The region below rs is convective.
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3. Convection is very efficient in chemical mixing, so the chemical stratification
will disappear in a convective zone and the zone will adopt the average of μ.

7.2.1 Semi-convection

We have seen that a layer with a μ-gradient is more stable against convection than a
chemically homogeneous layer. However, detailed calculations show that the zone
between the Schwarzschild criterion and the Ledoux criterion is not completely
stable if there is a μ-gradient. Some type of pulsational instability may develop that
results in chemical mixing. This is called semi-convection. In a semi-convective layer
the energy is transported by radiation but the gas is mixed and the μ-gradient is
erased (see Maeder 2009).

7.3 The Mixing Length: How Far Does a Convective Cell Rise
before It Dissolves?

A rising convective cell will dissolve into its surroundings (i.e., it will lose its identity
as a distinct cell), as the temperature of the gas inside the cell gradually adjusts to the
temperature of its surroundings by the loss of radiation or heat at its boundary. The
distance a hot cell rises or a cold cell descends before it dissolves in its surroundings
is called the mixing length, ℓm. The proper calculation of the mixing length is
complicated because it involves 3D hydrodynamics (Robinson et al. 2003).

As a reasonable guess, we can assume that ml will be on the order of the pressure
scale height inside the star and make a rough estimate of the pressure scale height.
HE requires

ρ ρ μ μ= − = → = −dP
dr

GM
r

P
T

d P
dr

GM
r T

with
ln

. (7.13)r r
2 2R R

If T and Mr/r
2 do not vary too strongly with distance around r, we can approximate

+ ≃ −P r h P r e( ) ( ) , (7.14)h H/ p

where the pressure scale height is

μ μ
= =H

RT r
GM

RT
g

. (7.15)p
r

2

(The scale height of a physical quantity is defined as the length in the radial direction
over which the value of that quantity decreases by a factor of e−1.)

The mixing length for convection is usually written as

α α= × ≃H with 1. (7.16)m pl

The assumption of near-constant T is a rather bad one because there must be a
temperature gradient in a star in order to transfer energy outward. The proper value
of the pressure scale height can only be derived when the structure of the star has
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been calculated; however, for our purposes of estimating the properties of con-
vection, this approximation is sufficient.
NB: Expression (7.15) also applies to the atmospheres of planets.

Q (7.4) Estimate the pressure scale height in the Earth’s atmosphere. Do you need an oxygen mask
when you climb Mount Everest (∼10 km)?

7.4 The Efficiency of Convective Energy Transport
In convective layers, convection transports the stellar luminosity outward. We will
provide a simple estimate to get a “feeling” for this physical process. Consider the
energy transport through a sphere at a radius r inside a convective zone. Hot cells
rise and cooler cells descend through this layer. Due to the conservation of mass,
the amount of mass that moves up at r is equal to the amount that descends (see
Figure 7.3). Let us assume that

– half of the matter moves up and the other half moves down;
– because of mass conservation, the upward velocity (+vc) is equal to the
downward velocity (–vc); and

– the difference in temperature between upward- and downward-moving cells is
Tup − Tdown = ΔT.

In that case, the difference in thermal energy content per cm3 between a rising cell
and a descending cell is Δeth = (3/2)nkΔT

The energy transport, Lc(r), by convection through the shell at r is the difference
between the thermal energy of the rising flow and the descending flow:

π π

π π ρ
μ

π ρ
μ

= −

= ∆ = ∆ = ∆

L r r nkT r nkT

r nk T r
m

k T
r

T

( ) 4 v
3
2

4 v
3
2

6 v 6 ( v )
6

( v ).
(7.17)

c 2
c up

2
c down

2
c

2

H
c

2

c
R

We will show later that in convective layers almost all energy is transported by
convection and only a minor fraction is transported by radiation. This implies that

Figure 7.3. Transport of energy by convection with velocity vc through a sphere with radius r inside the star.
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the convective luminosity is almost equal to the total luminosity at distance r: Lc(r) ≈
L(r) ≡ Lr. Equation (7.17) results in a condition for the value of ∆T vc

π ρ μ∆ ≃ −T L rv ( /6 ) ( / ) . (7.18)rc
2 1R

For an order of magnitude estimate, we can substitute characteristic values for a
typical star, e.g., the Sun.

⎫

⎬
⎪⎪⎪

⎭
⎪⎪⎪

ρ
μ

≃ = ×
≃
≃
=
= ×

∆ · ≃

ʘ
−

−

ʘ
−

−

r R

L

T

0.5 3.5 10 cm

1 g cm
0.5

8.310 erg (K mole)
4 10 erg s

v 10 cm s K (7.19)

10

3

7 1

33 1

c
4 1

R

This value of∆ ·T vc is extremely small—much smaller than we could have expected
intuitively!

(a). We might have expected that ∆T is a “reasonable fraction” of the mean T
at r, e.g., ∆ ≃ ¯ ≃T T0.1 10 K5 . In that case, we find that vc is only 0.1 cm s−1! This
is much smaller than the speed of sound, ≃ −v 10 cm ssound

7 1, which is surprising
because we might have expected that the flow speed would be of the order of the
sound speed.

(b). On the other hand, if we had assumed that the speed of the cells would be
approximately equal to the sound speed, ≃ ≃ −v v 10 cm s ,c sound

7 1 then we would
have found that∆T is only 10−3 K! This is much smaller than the average T ≈10 K6

at r.
(c). From (a) and (b), we can conclude that either the velocity vc of the convective

cells is surprisingly small, the temperature difference between rising and descending
cells is surprisingly small, or both. This last option is what happens in reality, as we
will show below.

Q (7.5) Explain in words the physical reason for ΔT vc being very small.
Hint: think in terms of gas-energy content and compare it with a typical stellar luminosity.

7.5 The Convective Velocity
Above we derived an estimate for the product ΔT vc. Thus, if we can estimate vc, we
know ΔT. We can estimate the convection velocity by considering a toy model in
which we treat a convective cell as a balloon. When a helium-filled balloon is
released, it accelerates upward but quickly reaches a constant velocity when the
upward buoyancy force is equal to the downward drag due to atmospheric friction.

Figure 7.4 shows the model. Assume that a convective cell is cylindrical. The
density in the balloon is ρb and that of the surroundings is ρs. The upward buoyancy
force on the cell is the product of the volume × density difference × gravity = weight
difference × gravity:
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ρ↑ = ∆ =− − −A
GM r

r
F

( )
in [cm ] [cm] [g cm ] [cm s ] [g cm s ]. (7.20)2 3 2 2

2
l

The downward force is the drag experienced by the cell when it rises through the
medium. This force, called the ram force, is equal to the momentum transfer of gas
that is pushed away at the top.

ρ ρ↓ = × = =− − −A AF v v v in [g cm ] [cm s ] [cm ] [g cm s ], (7.21)3 1 2 2 2
s c c s c

2

where ρ vs c is the momentum and Avc is the volume of the medium that is displaced
per second.

The cell reaches a constant upward velocity when F↑ = F↓,

ρ ρ= ∆A A g rv ( ), (7.22)s
2
c l

so the speed of the convective cell is approximately

ρ ρ= ∆g rv ( ) ( / ). (7.23)2
sc l

We have argued above that the cell will be in pressure equilibrium with its
surroundings, so ρ ρ∣∆ ∣ = ∣∆ ∣T T/ /s s . This results in the expression

Δ
≈

T
g r ℓ

T
v ( ) . (7.24)

2
c

Remember that the mixing length l is approximately the pressure scale height
μ=H T g/p R . This implies that vc

2/ΔT μ≈ /R ≈ 1.4 × 108 cm2 s−2 K.
This equation of motion that specifies the value of vc

2/ΔT in combination with the
equation for energy transport (7.18), which specifies the value of ΔT vc, describes the
values of vc and ΔT separately.

7.6 Typical Values of Convective Velocity and the Timescale
To get a “feeling” for the properties of a convective flow, let us estimate the values of
vc and ΔT at a characteristic radius of r = 0.5Rʘ (although the Sun is not convective
at that radius).

Figure 7.4. Balloon analogy of a convection cell for estimating the convection velocity. The cylinder has a top
area A, a length l, and a velocity vc. The properties of the balloon (b) and the surroundings (s) are indicated.
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⎫
⎬⎪
⎭⎪

≃
≈ = ×
≈ ×

∆
≃ ×

ʘ
−

ʘ
−

g R

R

T
T

(0.5 ) 10 cm s

0.1 7 10 cm

2 10 K

v
3.5 10 cm s K. (7.25)p

2
5 2

9

6

c 8 2 2l

Combining this with the estimate in Equation (7.19) yields

⎫⎬⎭
∆ ≃
∆ ≃ × ≃ ⋘ ∼− −

−

−

T

T

v 10 cm Ks

v / 3.5 10 cm s K
v 10 cm s v 10 cm s . (7.26)1 1

2
c

4 1

c
8 2 2 c

4 sound
7

Substitution of this value in Equation (7.23) results in an estimate of ΔT

∆ = → ∆ ≃ → ∆ ≃− −T T K T Tv 10 cm Ks 1 / 10 . (7.27)c
4 1 6

We see that the temperature difference between rising and descending cells is
extremely small!

Using the estimate of vc and the typical distance that a convective cell rises, i.e.,
a pressure scale height, pl , we can estimate the typical rise time of convective cells

≃ ≃ × ≃ × → ∼
−t t

v
7 10 cm
10 cm s

7 10 s week . (7.28)rise
p

rise
c

9

4 1
5

l

These derivations showed that the velocity of convective cells is only a small fraction
of the local speed of sound and that the time for rising and descending cells is on the
order of weeks. This timescale is much smaller than the evolution (Kelvin–
Helmholtz or nuclear) timescale, but significantly longer than the dynamical
timescale, which for the Sun is on the order of an hour (see Section 9).

This implies that, although a convection zone is locally unstable, it is globally in
hydrostatic equilibrium. As a result, we can apply the HE equation throughout a star,
even in the convective layers, when calculating stellar structure.

7.7 The Super-adiabatic Temperature Gradient in Convection Zones
The mean T-gradient of the surroundings in a convection zone must be steeper than
(dT/dr)ad of the convective cells; otherwise, the convection would stop.

Q (7.6) Explain why this is required.

If (dT/dr) describes the mean temperature gradient in a convection zone, then the
Schwarzschild criterion requires ∣dT/dr ∣ > ∣ dT/dr∣ad. The difference between (dT/dr)
and (dT/dr)ad is called the super-adiabatic T-gradient. So

= +dT
dr

dT
dr

dT
dr

. (7.29)
ad sa

We have shown above that the super-adiabatic T-gradient produces a difference of
only ∼1 K over a distance of a pressure scale height. Thus,
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ϵ ϵ⋘ = + ⋘dT
dr

dT
dr

dT
dr

dT
dr

or (1 ), with 1. (7.30)
sa ad ad

When computing stellar models, we can therefore safely adopt ∣ ∣ = ∣ ∣dT dr dT dr/ / ad in a
convection zone.

7.8 Convective Overshooting
The Schwarzschild criterion is derived under the assumption that the buoyancy force
provides the upward force. At the top of the convection zone, the upward force
vanishes. The same applies at the bottom of the convection zone. However, the
moving cells do not suddenly halt there. Because of their inertia, they will overshoot
at the convection boundaries. This is analogous to the jump of a rubber duck bath
toy, filled with air, that is held underwater and then released. If a star has a
convective core, the cells will rise above the boundary set by the Schwarzschild
criterion. If a star has a convective outer layer, the cells will descend lower than the
predicted boundary. The convective overshooting length can be expressed in terms of
the local pressure scale height as

α= . (7.31)os os Pl l

Comparisons between observations and theory in different types of stars suggest that
the overshooting parameter αos ≈ 0.2 (Maeder & Meynet 1989).

Q (7.7) What sorts of observations can be used to estimate the value of αos?

[Historical note: The first observational indications for the occurrence of overshooting in
the cores of massive stars appeared in about 1985. It was discovered that nuclear products
(especially He and N) appear at the surface of massive MS stars before mass loss could
have peeled off enough of the outer layers to reach the deeper layers, where the initially
convective core could have mixed these products upward. The conclusion was that there
must have been some mixing reaching layers higher than the predicted boundary of the
convective core (Lamers 2008)].

There is a fundamental difference between convection and overshooting:
– Convection: energy transport by convection plus chemical mixing.
– Overshooting: only mixing; the main energy transport is by radiation.

7.9 Convection: Where and Why?
The Schwarzschild criterion for convection is (dT/dr)rad > (dT/dr)ad, with

κρ π∼dT
dr

T L r( / ) ( /4 ). (7.32)r
3 2

rad

From this, we can see that there are two main causes for convection and two types of
layers that easily become convective: a high value of the opacity κ or a high-energy
flux Lr/4πr

2.
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1. Layerswhere κ is very large (e.g., layerswhereH is partly ionized; seeFigure 5.1)
are found in the outer layers of cool stars.

– MS stars with a spectral type later than about F0:
– at type G0, the stars have a thin outer convection layer;
– at type M, the stars are almost fully convective.

– Red giants and supergiants: almost fully convective with the exception
of the core.

2. Layers where the energy flux Lr/4πr
2 is very large are found in the central

regions of massive stars because these stars have a high luminosity created by
nuclear fusion in a small core.

– MS stars of ≳ ʘM M1.2 , because H-fusion via the CNO-cycle has a
strong T dependence and therefore occurs in a small central region.

This is shown schematically in Figure 7.5.

Figure 7.6 shows the location (in terms of mass fraction) of convective regions in MS
stars. The figure shows the convective outer layers of stars of M < 1.2Mʘ and the
convective cores of stars of M> 1.2Mʘ. The decrease of the convective envelope
mass with the increasing star mass in low-mass stars is due to the fact that the
ionization zone moves closer to the surface as the mass and the temperature of the
star increases. The increase of the mass fraction of the convective cores with stellar
mass at the beginning of the core H-fusion phase (zero-age main sequence: ZAMS)
is due to the fact that the luminosity increases steeply withM, roughly as L ∼M 4 on
the MS. This rapid increase in L implies that the Schwarzschild criterion for
convection is satisfied in a larger fraction of the mass.

During the main-sequence phase of massive stars the changing chemical compo-
sition affects the extent of the convective core. Model calculations show that the
mass of the convective core decreases during the core-H fusion phase between the
zero-age main sequence, ZAMS, and the end of the core H-fusion phase (terminal-
age main sequence, TAMS), even though the luminosity is slightly increasing (see,
e.g., Maeder & Meynet 1989). This is because the opacity in the cores of a massive
star decreases as the H-abundance decreases and the He abundance increases. We
have seen in section 5.2 that the main opacity in the centers of hot stars is electron
scattering with σe ∼ (1+X); σe decreases in the core due to core H-fusion. A decrease

Figure 7.5. Schematic drawing of envelope convection in cool stars and core convection in massive stars. The
gray regions are in radiative equilibrium.
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of σe implies that the Schwarzschild criterion is satisfied in a smaller fraction of the
mass. This is schematically shown in Figure 7.7.

7.10 Chemical Mixing by Convection and Its Consequences
We have seen that the timescale for the rise and descent of convection cells is much
shorter than the nuclear timescale. This results in fast mixing throughout convection

Figure 7.7. Schematic picture showing the decrease of the mass of the convective core during the main-
sequence phase of a massive star. The boundary of the convective core is where ∣ ∣ = ∣ ∣dT dr dT dr/ /ad rad ∼ σe ∼
(1+X), with X decreasing to 0 when the core runs out of H (i.e., at the TAMS).

Figure 7.6. Occurrence of convection in stars at the beginning of the core H-fusion phase (ZAMS). The mass
of convective envelopes (orange) and convective cores (blue) is expressed as a fraction of the stellar mass, from
m/M = 0 in the core to m/M = 1 at the surface. The vertical lines indicate the stellar mass. (Reproduced from
Kippenhahn & Weigert 1990. © Springer-Verlag Berlin Heidelberg 2012.)
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zones; as a result, a convective region is chemically homogeneous. Figure 7.8 shows
this in a schematic way for stars with convective envelopes and with convective
cores. In the absence of convection, nuclear fusion would create a chemical profile
with the mean atomic mass decreasing outward, e.g., from He (μ= 4/3) to H (μ =½).
However, the presence of convection results in mixing, which erases the μ-gradient in
the convection zone and in the overshooting regions.

Q (7.4) The predicted vertical jumps of the μ-profile shown in figure 7.8 will in reality be slightly
smoothed. Which physical effects could contribute to this smoothing?

We have shown in Section 7.2 that the convection criterion of Ledoux in layers,
which have a μ-gradient, is stricter than the Schwarzschild criterion: a star with a
chemical gradient is more stable against convection. However, as soon as the
Ledoux criterion is fulfilled and convection starts, the chemical gradient is erased
and the star develops a fully convective zone according to the Schwarzschild
criterion.

Convection and overshooting can prolong the lives of stars. Massive stars on the
main sequence have convective cores. Although the nuclear fusion happens in the
very center, the nuclear products are mixed throughout the convective core. One
consequence is that H is brought into the center from all over the convective core.
This results in an increase in the mass fraction of the star that takes part in H-fusion
from about 0.14 for solar mass stars to 0.75 for stars with M > 60Mʘ. This
considerably extends the expected MS lifetimes of massive stars.

7.11 Summary
1. Convection occurs in the layers where energy transport by radiation would

require the T-gradient to be steeper than the adiabatic one:
∣ ∣ > ∣ ∣dT dr dT dr/ /rad ad. This is the Schwarzschild criterion. In those layers,
energy is transported outward by hotter rising cells and cooler descending
cells. Convective regions are chemically mixed.

2. The existence of a μ-gradient suppresses convection, and the Schwarzschild
criterion is replaced by the Ledoux criterion. The region between boundaries

Figure 7.8. Changes in the chemical profile (indicated by X) of a star due to mixing by convection and
overshooting. The profile is shown in the case of no convection (left), convection in the core (center), and
convection in the envelopes (right).
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of the Schwarzschild criterion and the Ledoux criterion is unstable to semi-
convection and is also mixed.

3. The temperature structure of a convective region is described by the
adiabatic T-gradient.

4. The velocity of the convective cells is very small compared to the local speed
of sound and the temperature difference between rising and descending cells
is very small compared to the average local temperature.

5. The characteristic time for the rise and fall of convective cells is on the order
of weeks to months. Although convective layers are locally unstable, the
convective region as a whole is in hydrostatic equilibrium.

6. At the top or bottom of convective zones the moving cells may overshoot
beyond the Schwarzschild boundary. This produces extra mixing in the
layers on top of convective cores or below convective envelopes.

7. Convection occurs when either of the following criteria is met:
– High absorption coefficient. This produces convective envelopes in cool
stars because κ is highest in cool layers that are not fully ionized.

– High value of the flux Lr/4πr
2. This produces convective cores in stars

with M > 1.2Mʘ on the main sequence.
8. The mass of the convective core of a massive star decreases during its main-

sequence phase.

Exercises

7.1 Calculate the properties of the convective envelope of the Sun.
(a) Calculate the thermal energy content of a cm3 of gas in the Sun at

r = 0.9Rʘ, using data from Appendix C.
(b) Calculate the speed of sound at that location.
(c) Calculate g and the pressure scale height
(d) Assume that the temperature difference between the ascending

and descending bubbles is δT of the mean local value, and that the
velocity of the bubbles is δV of the local sound speed. Calculate
the luminosity that would be transported by convection in this
case.

(e) Compare this with the true luminosity, Lr, at 0.9Rʘ.
(f) Derive the values of δV and δT, and of ΔT and vc.

Hint: use Equation (7.24).
7.2 Consider the Ledoux criterion.

(a) Sketch a diagram of outward decreasing μ as a function of r/R.
Adopt some lower limit and some upper limit for a zone that would
be convective according to the Schwarzschild criterion.

(b) Show schematically where the convection zone would be accord-
ing to the Ledoux criterion for convection in a medium with a
μ-gradient.

(c) Show how the μ-profile would be changed by convection in these two
cases.
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7.3 Estimate the duration of the main-sequence phase for stars with convective
cores. During the main-sequence phase of the Sun, which lasts 8 × 109 yr,
the inner 20% of the solar mass takes part in the H-fusion.

(a) Use the mass of the convective cores, shown in Figure 7.6, to
estimate the duration of the main-sequence phase of stars of 4, 12,
20, and 40Mʘ. Use the luminosities from Appendix D.

(b) Compare the results with the lifetime computed from evolutionary
models.

7.4 Sketch the chemical profile of He in a massive star in which the mass of the
convective core decreases during the H-fusion phase. Sketch it at three
epochs: at the beginning of the main-sequence phase (ZAMS), halfway
through the main-sequence phase, and at the end of the main-sequence
phase (TAMS).
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Chapter 8

Nuclear Fusion

Throughout most of their lives stars radiate energy that is produced by nuclear
fusion. There are several subsequent fusion processes that a star can use to generate
energy, starting with the fusion of H into He and ending with Si into Fe. We will
describe the reaction chains for these processes and their energy production. Each
subsequent fusion process requires a higher temperature because of the increasing
charge of the nuclei involved. Not all stars reach the required temperatures because
low-mass stars may not be able to release sufficient potential energy. There is
therefore a minimum stellar mass for every nuclear fusion step. During late stellar
evolution phases, massive isotopes are formed by neutron capture. This produces
specific sequences of stable isotopes that are observed in stellar spectra. We describe
two such sequences: slow neutron capture and rapid neutron capture.

8.1 Reaction Rates and Energy Production
During nuclear fusion two particles (i and j) react, which results in one or two other
particles (k and l ). The particles involved have a charge Z and a mass A.

So the reaction is i + j → k + l,
with nuclear charge conservation Zi + Zj = Zk + Zl,
and baryon number conservation: Ai + Aj = Ak + Al.

The reaction rate, rijkl is expressed by the number of reactions per second per gram.
The energy generation rate by nuclear fusion per second per gram is

ϵ = ⋅r Q , (8.1)ijkl ijkl ijkl

where

= + − − ·Q m m m m c( ) (8.2)ijkl i j k l
2

is the amount of energy produced in one reaction. The term in parentheses is the
mass defect of the reaction, i.e., the mass that has been converted into energy.
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Q corresponds to the difference in binding energy of the nuclei involved in this
reaction and is usually expressed in MeV, with 1 MeV = 1.602 × 10−6 ergs.

Figure 8.1 shows the average binding energy per nucleon as a function of atomic
mass number. The maximum is reached at A ≈ 56 (near Fe). In the rising part of the
curve, fusion produces energy because the total binding energy of the product is larger
than the sum of the binding energies of the fused nuclei. In the descending part of the
curve, fusion requires energy because the total binding energy of the products is smaller
than that of the fused nuclei. In that case, energy can be produced by fission.

Q (8.1) Explain why the cosmic abundance of Li and Be is low.

The mass defect can conveniently be expressed as a fraction of the mass that goes
into the fusion process. This is the mass defect fraction: Δm/m.
For instance,

→ Δ =m mfor H He fusion: / 0.00712; (8.3)

→ Δ =m mfor He C fusion: / 0.00065. (8.4)

The most important isotopes involved in nuclear reactions in stars are listed in
Table 8.1.

8.2 Thermonuclear Reaction Rates and the Gamow Peak
Ions have a positive charge, so they will repulse one another by electric Coulomb
forces. To enable fusion, the particles must overcome this Coulomb barrier. Figure
8.2 shows the potential due to the repulsive Coulomb force that increases toward

Figure 8.1. Average binding energy in MeV per nucleon (proton or neutron) as a function of atomic mass
number. (Reproduced with permission from Rolfs & Rodney 1988. University of Chicago Press ª 1988.)
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smaller distance at r > rn. The maximum potential is Ec = E(rn). At r < rn, the nuclear
forces produce an attraction resulting in a negative potential. An incoming particle
with an energy E < Ec can only reach r < rn by quantummechanical tunneling through
the Coulomb barrier.

The velocity of the particles follows the Maxwell distribution. Only the fastest
particles have a probability of overcoming the Coulomb barrier; however, their
number decreases rapidly with increasing velocity or energy E as

∼ −N E E kT( ) exp ( / ). (8.5)
Quantum mechanical tunneling allows particles with an energy less than that of the
Coulomb barrier to overcome this barrier. Without this effect, the fusion process in
stars would require a much higher T than in reality. The tunneling probability Pt

increases with energy as

Figure 8.2. Schematic picture of the effect of tunneling through the Coulomb barrier. The dashed blue lines
indicate the approach of two particles with energy E’ and E. The blue wiggling lines indicate the tunneling
from a distance rc with a certain energy (gray) into the potential well at distance rn. The potential energy at
r = 0 is –V0. The green line indicates the presence of a possible resonance level. (Adapted from Pols 2011).

Table 8.1. Masses of the Most Important Isotopes Involved in Nuclear Fusion Reactions in Stars, Expressed
in Atomic Mass Units: mu = mC/12

Element Z A M/mu Element Z A M/mu Element Z A M/mu

n 0 1 1.0087 N 7 13 13.0057 Ne 10 22 19.9924
H 1 1 1.0078 7 14 14.0031 Mg 14 24 23.9850

1 2 2.0141 7 15 15.0001 Si 14 28 27.9769
He 2 3 3.0160 O 8 15 15.0031 S 16 32 31.9721

2 4 4.0026 8 16 15.9949 Fe 26 56 55.9349
C 6 12 12.0000 8 17 16.9991 Ni 28 58 57.9353

6 13 13.0034 8 18 17.9992 e �1 0.0005
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∼ −
⎛
⎝⎜

⎞
⎠⎟P E

b

E
( ) exp , (8.6)t

where b is a constant that depends on the reaction. The net result is that the reaction
rate scales with the product of the two functions N(E) and Pt(E) and shows a peak
called the Gamow peak

κ
∼ ∼ − –

⎛
⎝⎜

⎞
⎠⎟r E N E P E

E
T

b

E
( ) ( ) ( ) exp . (8.7)t

It is named after the Russian–American physicist and cosmologist George Gamow
(1904–1968), who described it in 1937 (and predicted the cosmic background
radiation with a temperature of 7 K; Gamow 1937).

Figure 8.3 shows the Gamow peak for the reaction 12C + p →13N + γ. This
reaction has a peak near kT = 30 MeV, corresponding to a temperature of T ≈ 3.5 ×
108 K. The left figure shows the two functions N(E) and Pt(E) and the product r(E).
The right figure shows r(E) on a linear scale for three temperatures. Note the
Gaussian-like shape of R(E) and the extreme sensitivity to temperature.

Because of the strong dependence of the Coulomb barrier on the charge of the
fusing ions, and on the combination of the Maxwell energy distribution and the
tunneling effect, the reaction rate and energy production rate depend very strongly
on temperature. For instance, the temperatures of the fusion reactions in stars are

ε→ ≈ × ∼T TH He (pp-chain) at 1 10 K with , (8.8)7 4

Figure 8.3. Example of the Gamow peak of r(E) for the reaction 12C(p, γ) 13N. The peak is the result of the
product of the two functions N(E) and Pt(E). Left: the function N(E) is shown for T = 2.0 × 107, 2.5 × 107, and
3 ×.0 107 K by green dashed lines. The function Pt(E) is shown as a blue dotted line. The product r(E) is shown
as solid red lines for these same three temperatures. Right: the function r(E) plotted linearly for three values of
T = 2.4, 2.5, and 2.6 × 107 K. (Adapted from Pols 2011.)
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ε→ ≈ × ∼T TH He (CNO-cycle) at 2 10 K with , (8.9)7 12

ε→ α ≈ × ∼T THe C (triple- process) at 1 10 K with . (8.10)8 40

NB: the reaction rates are not really power laws of T, but can be approximated by
partial power laws. The exponents of the T-dependence given above are the
exponents near the T-range of the fusion reactions in stars (Lang 1980).

8.3 Abundance Changes
Before discussing the various nuclear reactions in stars in detail, we discuss the
changes in abundances due to these reactions. The change in abundance per second
of element i due to the reaction i + j → k + l can be expressed as

= −dX dt r A m/ . (8.11)i ijkl i u

If element i is involved in more fusion reactions, some destroying and others creating
i, then the change in abundance should be written as the sum of all possible
destruction reactions (− sign) and all formation reactions (+ sign).

∑ ∑= − + +→ →{ }dX
dt

A m r r . (8.12)
x y

i
i u i x y i

8.4 H → He Fusion
There are two major routes for converting H into He in stars:

– The proton–proton chain, which has three branches.
– The CNO cycle, which actually consists of four cycles: one CN-cycle and
three ON-cycles.

Although the net reactions of these two routes are the same, they have very different
effects on the abundance evolution of stars.

8.4.1 The Proton–Proton Chain: pp Chain

At 5 < T < 15 × 106 K, H is predominantly fused in stars via the pp chain. This chain
has three sub-chains: ppI, ppII, and ppIII. These are shown in Figure 8.4. It starts
with the formation of 3He, which fuses into 4He directly (ppI); however, there is a
small probability that 3He is converted into 4He via 7Be (ppII) and an even smaller
probability that 7Be is converted into 4He via 8B (ppIII). All three chains have the
same net reaction (see the bottom of Figure 8.4).

The ppI chain is the most important one for stellar evolution. For instance, it is
responsible for about 90% of the nuclear energy production in the Sun. The
positrons created in the first step annihilate with free electrons and produce γ
photons: e+ + e− → 2γ. The neutrinos carry off about 2%, 4%, and 28% of the energy
for the ppI, ppII, and ppIII chains, respectively.
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The energy production rate of the pp chain is

ϵ ϵ ρ ϵ= = × ≈− − −X T( /10 K) with 1.1 10 erg cm g s at T 10 K (8.13)pp 0
pp 2 7 4

0
pp 1 3 2 1 7

and the mass defect of the pp chain is Δm/m = 0.00712

Q (8.2) Why is ϵpp ∼ ρ1 and why is ϵ ∼ Xpp
2?

8.4.2 The CNO Cycle

At T > 15 MK, hydrogen is predominantly fused into helium via the multiple cycles
that make up the CNO cycle. These are shown in Figure 8.5. The chain of reactions
of the CN-cycle starts with 12C + H → 13N + γ, and after a number of steps, ends in
12C + 4He, thereby releasing 12C again. Along the way 15N nuclei are formed, from
which the ON-cycle can deviate. 17O is the starting point of ON-cycle II and 18O is
the starting point of ON-cycle III. All of these cycles produce a 4He nucleus and
return to an earlier reaction in the chain.

The CN-cycle and the ON-cycle I are the two dominant cycles for energy
production, with ON-cycle II and ON-cycle III playing only a minor role. This is
because the efficiency of each cycle depends on the production rate and the
abundance of the starting point of that cycle. The abundance of 12C, which is the
starting point of the CN-cycle, is much higher than that of 15O, which is the starting
point of the ON-cycle I. The same arguments apply a fortiori to the starting points of
ON-cycles II (17O) and III (18O).

Q (8.3) What is the net reaction of these four cycles?

The energy production rate of the CNO cycle is

ϵ ϵ ρ

ϵ

=

= × = ×− − −

X X T K

T

( /10 )

with 6.4 10 erg cm g s around 3 10 K
(8.14)CNO 0

CNO
H CN

7 18

0
CNO 4 3 2 1 7

where XH is the mass fraction of H and XCN is the mass fraction of 12C + 14N.

Figure 8.4. Reactions of the ppI, ppII, and ppIII chains for fusing H into He.

Understanding Stellar Evolution

8-6



The mass defect of the CNO cycle, Δm/m = 0.00712, is the same as that of the
pp chain because the net reaction is the same.

Figure 8.6 shows production rates of the pp chain and the CNO cycle as a
function of T for a composition of XH = 0.99 and XCNO = 0.01 and a density of
1 g cm−3. The contributions of the pp chain and the CNO cycle are about equal at
T ≈ 15 × 106 K.

In the center of the Sun at ∼14 × 106 K, the pp chain produces more than 98% of
the energy while the CNO cycle produces less than 2%. Note the steeper temperature
dependence of the CNO cycle (ε ∼ T18) compared to the pp chain (ε ∼ T4).

We have seen in Section 3.2, Equation (3.9), that the central temperature of stars
increases toward higher masses: massive MS stars have a higher Tc than low-mass
stars. In stars of M ⩽ 2Mʘ, the H-fusion occurs mainly via the pp chain, whereas in
stars of M ≳ 2Mʘ the H-fusion occurs mainly via the CNO cycle.

Q (8.4) Energy production by the CNO cycle has a much steeper dependence on T than that of the
pp chain. What does this imply for the mass of the region where H-fusion occurs in massive
stars?

8.4.3 Equilibrium Abundances of the CNO Cycle

Fusion via the CNO cycle is a cyclic process that quickly reaches equilibrium in the
early MS phase. This has two important consequences.

1. The total number of C+N+O ions is conserved because CNO is just a
catalyst for the H → He fusion.

Figure 8.5. Reaction chains of the CN-cycle and the ON-cycles. The positrons annihilate with free electrons to
give e+ + e− → 2γ. The neutrinos carry off a fraction of the energy.
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2. In equilibrium, all steps must proceed at the same reaction rate (i.e., the
number of reactions per gram per second is the same for each step).

So the rate σ∼ ×→ →r ni j i i j, where σ is the cross-section for the reaction, is the same
for all steps; however, some steps have smaller cross-sections so a higher number of
those ions is needed to keep the rate the same as those in the other steps.

Let us define the lifetime τ of a nucleus in this process as

τ ≡ ∣ ∣ =n dn dt n r/ / / , (8.15)i i i i ij

with ni in number per gram and the reaction rate rij in number g−1 s−1. In a cyclic
process in equilibrium all reaction rates are equal, so ni/nj = τi/τj etc. At T ≃ 2 × 107 K,
the equilibrium of the reaction cycle implies that the lifetimes of the isotopes are

τ τ τ τ τ≪ < ≪ ≪
× ∼

( N) ( C) ( C) ( N) (8.16)
15

35 yr

13

1600 yr

12

6600 yr

14

9 10 yr 10 yr.
nuc

5 9

We see that in equilibrium the ratio n(14N)/n(12C) ≃ 140, whereas the initial ‘cosmic’
composition has a ratio of n(14N)/n(12C) ≃ 0.27. So the 14N/12C ratio increases
drastically inside the star due to the CNO cycle.

Q (8.5) Approximately how long does it take for the CN cycle to reach equilibrium?

Figure 8.6. Energy production of the pp chain (red) and the CNO cycle (blue) as a function of T at a density of
1 g cm−3 for H-gas with XCNO = 0.01. The conditions at the centers of the Sun and a star of 2Mʘ are indicated.
(Reproduced from Kippenhahn & Weigert 1990. ª Springer-Verlag Berlin Heidelberg 2012.)
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The two main abundance effects of H → He via the CNO cycle are
1. H decreases and He increases and
2. 12C decreases and 14N increases.

Q (8.6) Which one of these two changes occurs faster?

8.4.4. The NeNa and the MgAl Cycles.

There are many more reactions and reaction chains that occur simultaneously
during the H → He fusion. Most of these are not important for generating energy;
however, some of them are important for changing abundance ratios. The most
important ones, apart from the CN cycle discussed above, are the NeNa cycle and
the MgAl cycle. They are responsible for the NeNa and MgAl anti-correlations that
are observed in a fraction of the stars in globular clusters (Section 17.5).

The NeNa cycle can be expressed as

γ ν γ ν
γ

+ +
a

p p

p p He

Ne ( , ) Na (e , ) Ne ( , ) Na (e , )

Ne ( , ) Na ( , ) Ne.
(8.17 )

20 21 21 22

22 23 204

The terms in parentheses (in, out) indicate what is added to the original nucleus and
what comes out in addition to the resulting nucleus. At T < 3×107 K, the abundance
of 22Ne decreases and the abundance of 23Na increases.

The MgAl cycle proceeds as

γ ν γ ν
γ

+ +
b

p p

p p He

Mg ( , ) Al (e , ) Mg ( , ) Al (e , )

Mg ( , ) Al ( , ) Mg.
(8.17 )

24 25 25 26

26 27 244

AtT> 3 × 107 K, the abundance of 25Mgdecreases and the abundance of 26Al increases.
The bold letters in these reaction rates show that, effectively, four protons are

fused into a He core. These reactions are therefore part of the H-fusion phase.

8.5 He→C Fusion: The Triple-α Process
At T > 108 K, 4He fuses into 12C via the reactions shown in Table 8.2.

This is called the triple-α process. The mass defect of the net reaction is
Δm/m = 0.00065.

The first reaction is an equilibrium reaction that results in a very small fraction of
Be ions. The mean lifetime of 8Be ions is only 3 × 10−16 s! As a result, the formation
of 12C is only possible if the second step occurs on a very short timescale. The second
reaction is possible at T ≃ 108 K because of a resonance in the He + Be reaction: the
cross-section as a function of energy has a peak near that temperature.

Table 8.2. He-Fusion by the Triple-α Process

4He + 4He ⇆ 8Be
4He + 8Be → 12C

Net: 3 4He → 12C + 7.3 MeV.
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Historical note: the British astronomer Fred Hoyle (1915–2001) pointed out in 1954
that the large abundance of C in the Universe could only be explained if such a
resonance existed (Hoyle 1954). This resonance was later found experimentally.

The energy production rate of the triple α− process is

ϵ ρ∼α Y T a. (8.18 )3
3 2 40

Note the very steep T-dependence of this reaction.

Q (8.7) Why is ϵ ρ∼α3
2? Why is ϵ ∼α Y3

3? What would the dependence be if He + He→ Be was
not an equilibrium reaction?

Q (8.8) Would you exist if the 12C nucleus did not have a resonant energy level around 8 MeV?
Explain.

Toward the end of the He-fusion phase, when sufficient 12C has been formed, the
following reaction occurs:

+ → + bC He O 7.16 MeV. (8.18 )12 4 16

The mass defect of this process is Δm/m = 0.00048.

8.6 C-fusion, O-fusion, and Ne-photodisintegration
During late evolutionary stages, i.e., after He-fusion by the triple-α process,
C-fusion, and later O-fusion can provide nuclear energy to a star. This requires
temperatures above 6 × 108 K.

The C+C fusion and the O + O fusion processes have several possible branches.
The most common ones for generating energy in stars are listed in Table 8.3. Note
that the C-fusion and O-fusion reactions produce a series of elements and isotopes
from 16O to 24Mg and from 24Mg to 32S, respectively. The reactions in bold letters
are the dominant source of protons, neutrons, and α-particles.

At about the temperature of O-fusion, T ∼ 1.3 × 109 K, photons are energetic
enough to break up Ne nuclei that were formed in large quantities by C-fusion. This
Ne-photodisintegration process produces He nuclei via 20Ne + γ→16O + 4He. The
released helium nuclei can then be captured by existing Ne nuclei and form Mg via
20Ne + 4He→24Mg + γ. This Ne-photodisintegration process is generally considered
to be part of C-fusion and O-fusion.

Table 8.3. Reactions of C + C Fusion and O + O Fusion

at T > 6 × 108 K at T > 1 × 109 K
γ+ → +

→ +
→ +
→ +
→ +

C C

Mg n

Na p

Ne He

Mg

O 2 He

23

23

20

12 12 24

4

16 4

γ+ → +
→ +
→ +
→ +
→ +

O O

S n
P p

Si He

S

Mg 2 He

31

31

28

16 16 32

4

24 4
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8.7 Photodisintegration and the Formation of Heavy Elements
Above T ≳ 1.5 × 109 K, heavy nuclei can be destroyed by photons. At this T, the
average λ of photons, according toWien’s law (λ ≃ 0.4/T cmK�1), is λ ≈ 3 × 10�10 cm
and the average energy of photons is λ ≃ ≃−hc/ 10 erg 0.4 MeV8 . This destruction of
heavy nuclei creates a mixture of protons, neutrons, He-nuclei (α-particles), and
isotopes of ions such as Si, Mg, Ne, and C.

An example of such a destruction process is

γ α γ α γ α γ α γ α γ α αSi( , ) Mg( , ) Ne( , ) O( , ) C( , ) Be( , ) 2 . (8.19)28 24 20 16 12 8

This process releases a large number of α-particles, which are subsequently captured.
This results in the formation of heavy elements with stable nuclei, of which 56Fe is
the most stable one, by consecutive α-captures. An example of the formation of
heavy elements by α-captures at T ∼ 3 × 109 K is

α γ α γ α γ α γ α γ …Si( , ) S( , ) Ar( , ) Ca( , ) Ti( , ) Ni. (8.20)28 32 36 40 44 56

A 56Ni nucleus is unstable and decays into 56Fe via 56Ni →56Co →56Fe by two steps
of β+ decay, in which a proton is converted into a neutron and emits a positron and a
neutrino (p→ n + e+ + νe) (Maeder 2009). Most of the energy that is created in these
reactions is lost from the star because it is carried off by neutrinos.

8.8 Summary of Major Nuclear Reactions in Stars
We have discussed the various nuclear reactions that play a role in stellar evolution;
however, not every star goes through all of these reactions because each reaction
requires a minimum temperature to be efficient.

Table 8.4 shows the major nuclear reactions in stars, together with the threshold
temperature Tthresh, that is required. The table also lists the products and the amount
of net energy produced per nucleon, corrected for the energy loss by neutrinos, in

Table 8.4. Summary of the Most Important Reaction Rates in Stars

Fuel
(1)

Process
(2)

Tthresh

106 K
(3)

Product
(4)

Enet

MeV/nucl
(5)

Tc

106 K
(6)

Lnet/L
(7)

Duration yr
(8)

H p-p chain 4 He 6.55 – – –

H CNO cycle 15 He 6.25 35 0.94 1.1 × 107

He 3-α fusion 100 C,O 0.61 180 0.96 2.0 × 106

C C-fusion 600 Ne,Mg,Na,O 0.54 810 0.16 2.0 × 103

Ne Ne photdis 900 O,Mg,Si 1600 5.3 × 10−4 0.7
O O-fusion 1000 S,Si,P,Mg 0.30 1900 8.2 × 10−5 2.6
Si Si nucl

equil.
3000 Fe,Ni,Cr,Ti <0.18 3300 5.8 × 10−7 0.05

Notes. photdis = photodisintegration. nucl equil = nuclear equilibrium = photodisintegration + capture of p, n,
and He. Column (5) = energy generated per nucleon (He has 4 nucleons, C has 12 nucleons etc.). Columns (6),
(7), and (8) refer to the evolution of a star of 15Mʘ (Based on Woosley & Janka 2005, and Maeder 2009).
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units of MeV per nucleon. For instance, the pp chain involves four nucleons
(protons). The net reaction produces 26.73 MeV, which implies 6.68 MeV per
nucleon, of which about 2% is lost by neutrinos, leaving a net energy production of
6.55 MeV per nucleon.

The last three columns give the properties of these processes in a star of 15Mʘ.
Column (6) gives the central temperature during each central fusion phase. Column
(7) gives the net fraction of the energy that remains in the star. The rest is lost by
neutrinos leaving the star. Note that during the later phases (i.e., after C-fusion) the
neutrino loss is so large that only a very small fraction of the energy produced by
the reaction is used for the luminosity of the star. Column (8) gives the duration of
the phase for a star of 15Mʘ. Also note the extremely short duration of the last
phases. This is a result of the neutrino loss. The star must produce a certain radiative
luminosity Lrad to remain in thermal and hydrostatic equilibrium, but because only a
very small fraction, Lnet/L, of the energy can be used for this the total amount of
energy that the fusion must produce is higher than Lrad by a factor (Lnet/L)

−1. This
shortens the duration of the phases drastically. The duration would have been a
factor of (Lnet/L)

−1 longer if there had been no neutrino losses.

The reaction rates and energy production for stellar nucleosynthesis have been
compiled by the Lawrence Livermore National Laboratory and can be found at
https://nuclear.llnl.gov.
Formulae for the reaction rates can be found in Lang (1980).

8.9 Formation of Heavy Elements by Neutron Capture
During the Si-fusion phase, photodisintegration creates a mixture of protons,
neutrons, α-particles, and ions. Because neutrons have no charge, they can easily
penetrate and be captured by ions, thus creating neutron-rich isotopes. The net result
depends on the density of the neutrons, on the time between successive neutron
captures by an ion, and on the decay time of unstable nuclei.

8.9.1 Slow Neutron Capture: The s-process

If the neutron capture rate is “relatively slow”, a nucleus can capture neutrons until
an unstable isotope is formed. This isotope will then suffer β-decay (n → p + e+)
until it reaches a stable isotope. This stable isotope can again capture neutrons until
another unstable isotope is formed, which decays, and so on. This process is shown
in Figure 8.7 for a series of neutron captures, starting with an 56Fe nucleus. The
isotope 59Fe is unstable and will decay to 59Co. This nucleus can then start capturing
neutrons again, until another unstable isotope is formed. In this way, a whole series
of stable isotopes of heavy elements can be formed, depending on the stable isotope
of the element that started the process.

Typical s-process (s = slow) elements are zirconium (Zr), strontium (Sr), barium
(Ba), and lead (Pb). Their enhanced abundances in the photospheres of certain AGB
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stars shows that these stars must have gone through a phase that produced a large
neutron flux.

8.9.2 Rapid Neutron Capture in Supernova: The r-process

If the neutron density is very high, the capture rate of neutrons is so fast that
unstable isotopes that are formed have no time to decay between neutron captures.
In this way, super-neutron-rich isotopes will be formed. When the neutron flux stops
(e.g., because the matter is expelled in a supernova explosion), these neutron-rich
isotopes will suffer a series of β-decays until a stable isotope is reached. These final
stable isotopes are called r-process elements.

Typical r-process (r = rapid) elements are europium (Eu), gold (Au), xenon (Xe), and
platinum (Pt). They can only be formed in supernova explosions.

Figure 8.8 shows both the s-process and the r-process schematically in a part of the
isotope diagram. The vertical axis shows the charge (Z) of the isotopes, while the
horizontal axis shows their number of nucleons (N). Stable isotopes are depicted by
dark gray or colored squares, unstable isotopes are depicted by light gray squares.

Starting with 141Pr (praseodymium) in the lower left of the diagram, the path of
slow neutron capture is shown in red. The full part of the line goes through stable
isotopes and the dashed part shows β-decay of an unstable isotope. The blue lines
show the path of rapid neutron capture starting with the same isotope. The full part
of the line shows neutron capture through a series of unstable isotopes. When the
neutron flux stops, a series of rapid β-decays (shown by dotted blue lines) starting
from very neutron-rich isotopes in the lower right of the diagram ends at a stable
isotope. We see that nuclei in this diagram that are shielded in the diagonal direction
by a stable isotope can only be formed by the s-process (e.g., 148Sm, 154Gd). We also
see that nuclei in this diagram that have an unstable isotope on their left and are not
shielded by a stable isotope in the diagonal direction can only be formed by the
r-process (e.g., 148Nd and 150Nd). Some nuclei can be formed by both processes (e.g.,
151Sm and 152Sm).

Figure 8.7. Schematic picture of the s-process of slow neutron capture from 56Fe to 59Co. N is the number of
nucleons and Z is the charge of the nuclei. Isotope 59Fe is unstable. Red symbols indicate the process: “n” for
neutron capture and “β” for beta-decay.
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8.9.3. Proton-rich Elements: p-elements

Some heavy elements have an overabundance of proton-rich isotopes. These are also
formed during supernova explosions. They are not formed by proton capture but are
instead the result of s-process elements that have lost neutrons by the process

γ+ → +−A A nN
Z

N
Z
1 during supernova explosions. Typical p-isotopes are 92Mo

(Molybdenum) and 144Sm (Samarium).

8.10 The Minimum Core Mass for Igniting Fusion Reactions
We have seen in Table 8.4 that each reaction requires a minimum temperature to be
ignited. The central temperature of a star can rise if the star, or rather its core,
contracts. We have derived before (from HE and the ideal gas law, in Section 3.2)
that we can estimate the central temperature of a star as

μ≃T
m

k
GM

R
. (8.21)c

H

In the case of a contracting core that we are considering here (e.g., after H-fusion),
most of the central pressure is due to the mass of the core, as the layers outside the
core have a much lower density and contribute little to the central pressure. We can
therefore estimate the central temperature in this case as

Figure 8.8. Schematic representation of the s- and r-processes of neutron capture and the formation of neutron-
rich isotopes.Unstable isotopes are indicatedby light gray squares and stable isotopes are indicatedbydark (gray,
red, or blue) squares. Full lines indicate paths of neutron capture and dashed lines indicate paths of β-decay.
Depending on the location of an isotope in this diagram and the stability of its neighbors, a stable isotope can be
formed via the r-process, the s-process, or both. Some isotopes cannot be produced by either process.

Understanding Stellar Evolution

8-14



μ
ρ

μ
ρ≃ ≃ → ≈

⎛
⎝⎜

⎞
⎠⎟T

m

k
GM
R

R
M

T
m

k
GMwith . (8.22)c

c c

c
c

c

c
c

c
c c

H

1
3 H 2/3 1/3

This shows that when the core of a star with mass Mc contracts, its central
temperature will increase with its central density as Tc ∼ Mc

2/3 ρc
1/3. Equation

(8.22) might suggest that a core can reach any high Tc by contracting to a small
enough radius and high enough density; however, this is not the case. The core may
become degenerate before it reaches the required ignition temperature Tign. If that
happens, the contraction stops because degenerate stars do not contract, as will be
shown later in Chapter 11.
In order to reach the ignition temperature of the next fusion reaction, the core must
avoid degeneracy.

Degeneracy is prevented if Pideal gas > Pel. degen., which implies

μ
ρ

ρ
μ

μ
μ

ρ
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= > → >
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Figure 8.9 shows this condition schematically in a log ρc versus log Tc diagram. The
arrows indicate the changes in the (ρc,Tc) diagram when cores of different mass
contract with Tc ∼ ρc

1/ according to Equation (8.22). Lines for different core masses
are parallel but displaced by Tc ∼ Mc

2/3. The dashed line shows the relation of
Tc ∼ ρc

2/3 of Equation (8.23) for a degenerate core. The area to the right of the
dashed line indicates electron degenerate gas. The red circles indicate the maximum
temperature that a contracting core of a given mass can reach.

Figure 8.9. Schematic evolution of the central Tc and ρc of contracting cores of stars of various core masses. In
a contracting core Tc ∼ ρc

1/3. The degeneracy limit is given by Tc ∼ ρc
2/3. The contraction stops when the core

becomes degenerate (red circles).
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The figure shows that a star must have a minimum contracting core mass to avoid
degeneracy before Tign of the next fusion reaction is reached. Combining Equations
(8.22) and (8.23), we find that this minimum core mass is given by

μ μ
> ≈

′
⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

M M
K

G
T . (8.24)

c e

core crit
1

5
3 2

3
4

ign

3
4R

Substituting the constants, we find that Mcrit/Mʘ ≈ 1 × (Tign/10
9 K) 3/4 if μe = 2 and

μc = 2. These are the characteristic values of μe and μc of cores during all phases after
H-fusion.

8.11 Fusion Phases of Stars in the (ρc,Tc) Plane
At the end of each nuclear fusion phase, the core of a star contracts to release
potential energy, compensating for the outward transport of energy. When the core
density increases, its temperature also increases. The core contraction stops when it
becomes degenerate. From then on, ρc hardly increases. As there is no more fusion,
the central temperature of degenerate stars slowly decreases due to the loss of energy
by radiation or conduction.

Figure 8.10. Schematic evolutionary tracks of the cores of stars of different mass in the (ρc,Tc) diagram. The
background colors indicate the regions of the different equations of state (as in Figure 4.4). The red lines
indicate the parameters during central fusion phases. The black lines represent the evolution of the central
parameters for stars of 0.1 to 100Mʘ: dashed = pre-main-sequence phase; full = core contraction; big dots =
fusion in the core; dotted = cooling of the degenerate core. (Adapted from Pols 2011.)
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The evolution of stars in the (ρc, Tc) diagram is shown schematically in Figure 8.10.
The different colors indicate regions of the equation of state: white = ideal gas, light
blue = radiation pressure dominates, light green = nonrelativistic degeneracy, and
gray = relativistic degeneracy. The black nearly horizontal lines indicate the
condition where fusion happens in the core. The red lines are the approximate
evolutionary tracks in the (ρc,Tc) diagram for stars of 100, 10, 1, and 0.1Mʘ. The
dashed portion is the pre-main-sequence evolution (i.e., before H-fusion starts),
while the full lines show the (fast) contraction phases of the cores. This contraction
occurs on a Kelvin–Helmholtz timescale. The black dots indicate the (slow) phases
of fusion in the core, which occur on a nuclear timescale. The dotted part of the
tracks, in the degenerate region, shows cooling after fusion has stopped.

Once the center of a star has become degenerate it can no longer contract, so the
density reaches its approximate upper limit (the density can, in fact, still increase
slightly when the degenerate core becomes more massive due to fusion in the shell
surrounding the degenerate core, as we will see later). The downward slope indicates
the cooling of the degenerate core near the end of evolution. These tracks are only
schematic; in reality, the tracks show wiggles near the fusion phases. This is due to
the fact that once a fusion phase starts, stars settle into a new equilibrium
configuration (see Figures 23.3 and 26.2).

Note that
– stars of 0.1Mʘ do not reach H-fusion,
– stars of 1Mʘ barely reach He-fusion, and
– stars of M ⩾ 8Mʘ reach all fusion phases.

8.12 Summary
1. The most important stellar nuclear fusion reactions are listed in Table 8.4
2. Nuclear fusion in stars is possible because of the quantum mechanical

tunneling effect that allows charged nuclei to overcome the Coulomb barrier.
The combination of the energy distribution of the nuclei and the tunneling
effect produces the Gamov-peak at a temperature where fusion is efficient.

3. In stars of M < 1.2Mʘ, the H-fusion occurs via the pp chain. In stars of
M > 1.2Mʘ, the H-fusion occurs via the CNO cycle. During this phase, the
N/C ratio increases from its initial number ratio of N/C ≈ 0.3 to 140.

4. Each successive reaction has a higher Coulomb barrier, due to a higher
charge of the nuclei, so a higher Tc is needed. The core of the star has to
contract to reach this higher central temperature.

5. Each successive reaction has a steeper T-dependence (e.g., ε ∼ T 4 and T 18

for the pp chain and the CNO cycle of H-fusion and ε ∼ T 40 for He-fusion).
This implies that fusion will become more and more concentrated in the
core of the star, i.e., in a region that has less mass. This results in the
chemical stratification of an “onion skin model” with the most massive
products (the latest formed) in the center, surrounded by concentric layers
of less massive elements.
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6. Each successive reaction has a smaller mass defect Δm/m (i.e., it produces
less energy), so the reaction rate has to be higher and the fusion faster (more
reactions per sec per gram) in order to generate the luminosity L needed to
keep the star in hydrostatic and thermal equilibrium. As a result, each
fusion phase has a shorter duration than the previous one.

7. At T > 109 K, neutrinos carry away a large fraction of the energy. This
reduces the net energy production of the star and speeds up the evolution
very drastically.

8. At T > 1.5 × 109 K, heavy elements are destroyed by photodisintegration.
In the resulting mixture of heavy and low-mass nuclei, the Fe-group
elements (Fe, Cr, Ni, Ti) are formed by the capture of α-particles.

9. Heavy elements beyond the Fe-group are formed by neutron capture. The
products depend on the neutron density. Zr, Sr, Ba, and Pb are formed by
slow neutron capture in supernovae and in some AGB stars. Eu, Au, Xe,
and Pt are formed by rapid neutron capture in supernovae.

10. The fusion phase that a star can reach depends on its core mass. The core
mass must be high enough to reach the ignition temperature before
degeneracy sets in. Stars with initial masses less than 0.1Mʘ do not reach
H-fusion. Stars with initial masses greater than 8Mʘ go through all
evolutionary phases.

Exercises
8.1 (a) Calculate the mass defect fractions of the following fusion reactions

4 1H → 4He
3 4He → 12C
12C + 4He → 16O
2 16O → 28Si + 4He
2 28Si → 56Fe

(b) Describe the trend and discuss what this trend implies for stellar
evolution.

8.2 The efficiency of He-fusion has a much steeper T-dependence than
H-fusion.

(a) What does it imply for the mass of the He-fusing core compared to
that of the H-fusing core of a star with a given initial mass?

(b) What is the consequence for the chemical distribution of the star at
the end of the He-fusion phase.

8.3 The lifetimes of the major isotopes involved in the CNO cycle are given in
Equation (8.16).

(a) Calculate the equilibrium ratios of these isotopes in the core of the
star at the start and at the end of the H-fusion phase.

(b) Sketch the variation of the logarithmic isotope number ratios
4He/1H, 12C/1H, 14N/1H,12C/4He, 14N/4He, 13C/12C, and 15N/14N
as a function of time in a single diagram, for a star of about 2Mʘ

fusing H → He at T = 2 × 107 K. Start with the cosmic logarithmic
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abundance ratios by number of (1H, 4He, 12C, 13C, 14N, 15N) =
(0.0, −1.0, −3.4, −5.4, −4.0, −6.4). Discuss the trends.

8.4 Suppose that the He-fusion requires a minimum core mass of about 0.3Mʘ.
What would be the minimum core mass for the next fusion phases?
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Chapter 9

Stellar Timescales

In this chapter, we discuss the different timescales on which a star can change its
structure if the internal conditions are changing. We will show that in almost all
cases a star can regain hydrostatic equilibrium much faster than almost any other
change that may occur (except, of course, in the case of explosions). This is crucial
for our understanding of stellar evolution because it implies that we can describe
stellar evolution by a sequence of hydrostatic equilibrium models with slowly
varying chemical structure and energy production.

9.1 The Dynamical Timescale
Suppose that the gas pressure in part of the star or in the whole star suddenly
vanishes. This is the most drastic possible disturbance of hydrostatic equilibrium
(HE), apart from an explosion. How much time would it take for the star to restore
HE? If the pressure vanishes in all layers simultaneously the star would go into free-
fall due to the force of gravity. In that case, gravity would be the restoring force
for HE.

The free-fall motion of a layer is described by Δ ∼r gt2, where g is the local
acceleration of gravity. This implies that the change in radius occurs on a timescale

∼ Δt r g/ . For an order of magnitude estimate, we adopt Δ ≃r R and ≃g GM R/ 2.
So the free-fall timescale is

ρ
∼ = ≃t R GM R

R
GM

t
G

/( / ) so
1

. (9.1)ff
2

3

ff

Now we consider what happens if the pressure in a layer of the star is suddenly
changed: either increased or decreased. Such a disturbance will result in a sound wave
that travels with the sound speed cs. The sound speed is given by ∼ ¯c kT m/s

2 , where
m̄ is the mean mass of the particles. Remember from the Virial Theorem (Section 3.3)
that the total kinetic energy Ekin ≃ (3/2)k T̄ M/ m̄ = −1/2 Epot ≃ GM2/R. This implies
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that cs
2 ∼ k T̄ /m̄ ≃ GM/R. The time it takes for a sound wave to travel a distance

equal to the radius R of the star is = ¯t R c/ ssound , where c̄s is the mean sound speed. So
the sound speed travel time of a star is on the order of

ρ
≃ ≃ ≃

¯
t

R

GM
R

R
GM G

1
.

(9.2)sound

3

Note that the sound speed travel time is of the same order of magnitude as the free-
fall time. The free-fall and the sound speed travel timescales together are called the
dynamical timescale

τ
ρ

=
¯G

1
(9.3)dyn

because it describes how quickly a star can restore hydrodynamical equilibrium. We
will see later (Section 21) that the pulsation periods of radially pulsating stars also
scale with the dynamical time.

Q (9.1) Note that the free-fall time is about the same as the sound speed crossing time. Explain this
in physical terms.

Q (9.2) Show that the dynamical timescale of the Sun is about an hour.

9.2 The Thermal Timescale or Kelvin–Helmholtz Timescale
When a star ceases nuclear fusion, it keeps radiating because the inside of the star is
hotter than the outside, so energy is leaking out. The question is, how long can a star
keep up its luminosity if nuclear fusion stops and thermal energy is the only energy
source left? This timescale is called the thermal timescale or the Kelvin–Helmholtz
timescale after the discoverers. Lord Kelvin (1824–1907), whose original name was
William Thomson, was an Irish–British mathematical physicist and engineer. He
estimated the age of the Earth based on the cooling time of the Sun in 1864.
Hermann von Helmholtz (1821–1894) was a German physician and physicist who
not only studied the conservation of energy in the 1850s and 1860s but also
contributed to psychology and the theory of vision.

The thermal timescale is defined by τ ≃ E L/th th , where Eth is the total thermal
energy of the star and L is the luminosity. Remember that Eth = − ½Epot according

to the virial theorem, which implies that τ ≃ − ≃ L/
E

L
GM

Rth
pot 2

.
The thermal timescale or the Kelvin–Helmholtz timescale, τKH, is

τ = GM
RL

. (9.4)KH

2

Q (9.3) Show that the Kelvin–Helmholtz timescale of the Sun is about ×3 107 yr.

Understanding Stellar Evolution

9-2



9.3 The Nuclear Timescale
The nuclear timescale is defined as the time a star can radiate by nuclear fusion. It
depends on the nuclear energy available and on the luminosity of the star. The
nuclear energy available at a given evolutionary phase is set by the total mass M of
the star and the fraction fM of the mass that partakes in the nuclear fusion. The
amount of energy that can be created by nuclear fusion of one gram of gas is εn. The
efficiency factor εn = c2 × (Δm/m) is in ergs/gram and Δm/m is the mass defect that
was discussed in Section 8.1, so the amount of energy generated during a nuclear
fusion phase is Enucl ε∼ f MM n. The nuclear timescale is therefore

τ ε∼ ∼E
L

f M L a/ . (9.5 )nnucl
nucl

M

In Section (8.1) we showed that the mass defect is Δm/m = 0.0071 for H-fusion and
Δm/m = 0.00065 for He-fusion. For main-sequence stars, which have core H-fusion,
the mass fraction is about fM ∼ 0.10. For the later phase of core He-fusion, the mass
fraction fM is only slightly smaller. This implies that the nuclear timescales are on the
order of

τ ∼ ‐− Mc L b10 / for core H fusion, (9.5 )nucl
3 2

τ ∼ ‐− Mc L c10 / for core He fusion. (9.5 )nucl
4 2

Let us take the Sun as an example:

⎫⎬⎭ τ
= × = ×
≈

≃ × =
−

⊙M L
f

2 10 gr, 3.8 10 erg s
0.10

so 3 10 sec 10 yr.
M

33 33 1

nucl
17 10

For other stars, we can estimate the nuclear timescale of H-fusion as

τ ≈ ×⊙

⊙

M M
L L

d
/
/

10 yr (9.5 )nucl
10

Q (9.4) The actual MS phase of massive stars with M > 30Mʘ is longer than (M/Mʘ)/(L/Lʘ) ×
1010 yr by a factor of ∼3 to 5. Can you think of a reason for this?

9.4 The Convection Timescale
We have shown in Section 7.6 that the timescale for rising and descending cells in the
convection zone of the Sun is on the order of a week. The longest convective
timescale is reached in AGB stars, which have a very deep, convective, low-density,
and relatively cool envelope. If we adopt L = 103Lʘ, R = 100Rʘ, M = 5Mʘ, a mean
density of 6 × 10�5 g cm−3, and a mean temperature of the convective outer layers of
105 K at r = R/2, we find with Equations (7.23), (7.24), and (7.26) a scale height
ofHp = 3.5Rʘ and a convective velocity of 7 × 104 cm s−1. This implies a rise time of
the convective cells in an AGB star of about 40 days.
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9.5 Comparison of Timescales
The estimates given above show that the dynamical timescale, the convection
timescale, the Kelvin–Helmholtz timescale, and the nuclear timescales are very
different, and that

τ τ τ τ≪ ≪ ≪ . (9.6)dyn conv KH nucl

The values for the Sun are 1 hr ≪ weeks ≪ 3.107 yr ≪ 1010 yr. For a typical AGB
star with H-shell fusion the values are 17 days < 40 days ≪ 8 × 103 yr ≪ 5 × 107 yr.

We see that
- except for explosive phases, stars are always in quasi-hydrostatic equilibrium,
– even the convective zones are in global hydrostatic equilibrium, although they
are locally in turmoil, and

– the contraction phases last about 1% of nuclear phases.

Q (9.5) If the Sun suddenly stopped its nuclear fusion, how long would it take an outside observer
to notice it (if he does not have a neutrino detector available)?

9.6 Summary
1. Stars can restore perturbations of hydrostatic equilibrium on the dynamical

timescale. This timescale is so short compared to other timescales that stars
can be assumed to remain in hydrostatic equilibrium throughout their lives.

2. The Kelvin–Helmholtz timescale describes the duration of the contraction
phase of a star when it (temporarily) runs out of nuclear fusion.

3. The nuclear timescale describes the duration of the nuclear fusion phase.
4. Typical timescales for the Sun are as follows.

Dynamical timescale: 1 hour.
Rising time of convective cells: weeks.
Kelvin–Helmholtz timescale: ×3 107 yr.
Nuclear timescale for H-fusion: 1010 yr.

Exercises
9.1 Calculate dynamical, thermal, and nuclear timescales and their ratios for

different stars.
– MS star of 1 Msun.
– MS star of 60 Msun.
– Red supergiant of 15 Msun.
– White dwarf of 0.6 Msun.
Comment on the consequences of these results.

9.2 If the nuclear fusion in the Sun were to suddenly stop, how long would it
take before an observer would notice? Photon travel time τL? Dynamical
time? Thermal timescale? Nuclear timescale? Give arguments.
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Chapter 10

Calculating Stellar Evolution

In the previous chapters, we have discussed the physical effects that occur in stars:
the properties of the gas; hydrostatic equilibrium and its consequences; energy
generation by nuclear fusion; and energy transport by radiation or convection. Now
we can put these ingredients together and show how they can be used to calculate the
structure of stable stars. We first summarize the equations of stellar structure and
their boundary conditions in the core of a star and at its outer radius. We then
describe how this set of equations can be solved numerically for a given chemical
composition. The evolution of a star is calculated by considering the changes in its
chemical structure due to nuclear fusion and convection.

10.1 Assumptions for Computing Stellar Evolution
The stellar models that we describe here are simple and valid for most evolutionary
phases. They are based on the following assumptions.

1. The star is spherically symmetric, which implies that
– the physical quantities vary only in the radial direction: P(r), ρ(r), T(r),
etc., and

– the effects of rotation and magnetic fields are ignored. (Rotation will be
discussed later in Section 25.)

2. The star is in hydrostatic equilibrium: at each depth, the layers are stable.
3. The star is in thermal equilibrium: the energy generated in the star equals the

energy radiated outward.
4. The energy sources are

– thermonuclear energy,
– gravitational energy, which is important for contracting or expanding
stars, and

– internal energy, which is important for cooling white dwarfs.
5. The energy transport is by

– radiation,
– convection, and
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– conduction, which is important for degenerate stars.
6. The chemical composition is changing.

– Newly formed stars have a homogenous initial composition described by
X = mass fraction of H,
Y = mass fraction of He,
Z = mass fraction of the rest, mainly C, N, and O.

– As the star evolves, its chemical composition changes as a function of
time and location due to nuclear fusion in the core or in shells.

– The chemical composition in certain layers may also change due to
mixing by convection or convective overshooting.

Under these assumptions, the calculation of stellar evolution consists of
(a) computing a series of subsequent hydrostatic equilibrium models,
(b) each with the chemical structure calculated using the nuclear reaction

rates of the previous model,
(c) extrapolating it with a small time step for calculating the new chemical

distribution in the star, and
(d) computing the next model in hydrostatic equilibrium with the new

chemical structure.

This results in a series of subsequent hydrostatic models of the internal structure
of the star as a function of time. The models also give the radius, effective
temperature, and luminosity as a function of time. This can be expressed in
evolutionary tracks in the Hertzsprung–Russell diagram.

10.2 The Equations of Stellar Structure

*The entropy term –T ds/dt in the energy equation expresses the energy gained by contraction (–T ds/dt > 0) or
lost by expansion (–T ds/dt < 0) on a Kelvin–Helmholtz timescale with ρ≡ −

ρ
T ds du dP . If the star is in thermal

equilibrium Tds/dt = 0.
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These structure equations describe either
T, P, L, ρ, m as a function of r (Euler-coordinates)
or
T, P, L, ρ, r as a function of m (Lagrange-coordinates)

The Lagrangian equations can be derived from the Euler equations using
= ·dx

dm
dx
dr

dr
dm

with =
πρ

dr
dm r

1

4 2 .

Q (10.1) Why is it more practical to use m as the free parameter rather than r?
Q (10.2) Which time steps would you use for calculating stellar evolution?

10.3 Boundary Conditions
The equations of stellar structure in Lagrangian coordinates consist of four differ-
ential equations for r(m), P(m), L(m), and T(m). Solving these equations for a star of
mass M requires four boundary conditions:

= =r m a( 0) 0, (10.8 )

= =L m b( 0) 0, (10.8 )

= =P m M c( ) 0, (10.8 )

πσ= = ≡ = ¼T m M T L M r m M d( ) { ( )/4 ( ) } . (10.8 )eff
2

The stellar radius is defined by P(M) = 0, which implies R = r(P = 0).
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10.4 Solving the Structure Equations
Solving the structure equations numerically is not trivial because there are two inner
boundary conditions at r = 0 and two outer boundary conditions at r = R. As a
result, one cannot simply start at the center (m = 0) and integrate outward, or start at
the outer boundary (m =M) and integrate inward. Initially, this problem was solved
by starting from the inside with guessed initial values of Pc and Tc, integrating
outward to m=M, and checking whether T(M) and P(M) satisfy the outer boundary
conditions. If not, the process would be repeated with new values of Pc and Tc until
the outer boundary conditions were satisfied. Martin Schwarzschild (1912–1997),
the son of Karl Schwarzschild, devised a method in 1958 (Schwarzschild 1958),
where he integrated the equations from the core with estimated values of Pc and Tc

and made a separate integration from the outside with estimated values of L and R.
He then tried to find the layer, rfit, where the inner model and the outer model would
fit (i.e., the values of T(rfit), P(rfit), L(rfit), and M(rfit) and their derivatives would be
the same for both models). Merging of the two models would then give a full model
that agreed with all boundary conditions. Unfortunately, this method was cumber-
some because it required many trials for the inner and the outer model before an
acceptable model was found.

A more practical method was introduced by Henyey, Forbes, and Gould in 1964
(Henyey et al. 1964). In this implicit Lagrangian method, the structure equations are
written as a set of linear equations that describe the relation between each of the
parameters at a discrete set of radii r or massm.Here we describe the principle of the
Henyey method. For a more extended description, see Maeder (2009).

Introduce the general parameter yi with i = 1 to 4, and define the parameters y1 =
r, y2 = P, y3 = L, y4 = T (Note that the superscript i does not indicate a power but is
merely an index).

Divide the star into a large number (N) of spherical shells with radii rj with j = 1 to
N. Each parameter at any radius is decribed by yij. For each shell with radius
between rj and rj+1 the differential equations that describe the stellar structure in
Lagrangian coordinates can be written as

=
−

−
=+

+
+ + + +( )dy

dm

y y

m m
f y y y y, , , , (10.9)

i
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where f describes the dependence of the derivatives on the local parameters at mass
j+½. This results in a set of equations of the type

≡
−

−
− =+

+
+ + + +( )E

y y

m m
f y y y y, , , 0. (10.10)j
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4

Suppose that a reasonable first-order model is available. The equations of the next
step can then be written as a small correction to the first model. For instance, in
Lagrangian coordinates (with parameters r, P, L, and T as function of m) the value
of T in the next iteration (T2 = T1 +ΔT) at a given value of m can be written as a
correction
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Δ = Δ + Δ + ΔT dT dr r dT dP P dT dL L( / ) ( / ) ( / ) , (10.11)

with all the terms (dT/dP, etc.) given by the partial derivatives of the right sides of
the structure equations. For instance, in the case of the ideal gas law, dT/dP =μmH/
kρ if radiation pressure can be ignored. The equation can be written as

Δ − Δ + Δ + Δ =T dT dr r dT dP P dT dL L( / ) ( / ) ( / ) 0. (10.12)

Similar expressions exist for the other parameters. A model agrees with the four
structure differential equations at all values of m if all differences Δ are zero at all
values of m (i.e., throughout the star) and for all parameters (r, P, L, T). This set of
linear equations of the type shown in Equation (10.10) can be written as a large
matrix that can be solved with standard mathematical techniques.

The solution of these equations yields the values of yj
i, which are r, P, L, and T, as

a function of m. This defines the model of a star with a given mass and chemical
structure in HE and TE. Using these values of r, P, L, and T one can calculate the
rates of the nuclear processes in each layer and the change in chemical composition
per unit of time, taking a time step Δt and predicting the abundances in each layer at
time t + Δt. These new abundances result in an updated value of the functions f,
which contain, for example, the EoS, the opacity, and the reaction rates at anym. By
starting the process over again, calculating an equilibrium model at the next time
step, and continuing in this manner, this process results in a time series of models
that describe the evolution of a star.

10.4.1 The MESA Code

To facilitate the calculation of stellar evolution models, an open source program
called MESA (“Modules for Experiments in Stellar Astrophysics”) is available to
the community (Paxton et al. 2011). It is a suite of robust and efficient libraries for a
wide range of applications in computational stellar astrophysics. The modules
calculate opacities, nuclear reaction rates, and the equation of state. The one-
dimensional stellar evolution module “MESA star” combines numerical and physics
modules and solves the combined structure and composition equations simulta-
neously. It includes effects such as convection and overshooting, mixing, diffusion,
and gravitational settling, mass loss, and accretion. It allows the calculation of
stellar evolution for both low- and high-mass stars. MESA can be downloaded from
the project’s website at http://mesa.sourceforge.net/.

10.5 Principles of Stellar Evolution Calculations
The predicted stellar evolution of a star is based on the computation of a series of
models in hydrostatic equilibrium and thermal equilibrium with varying chemical
structure. This has two interesting consequences.

1. The structure of a star in HE and TE depends only on the chemical profile as a
function of mass. It is independent of the previous evolution that has led to
this chemical distribution. Stars of the same mass that have evolved in
different ways but happen to end up with the same chemical structure will
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from then on evolve in exactly the same way (this does not hold if magnetic
fields or rotation play a role, as these effects might influence chemical mixing
and hydrostatic equilibrium).

2. Although a star may expand during its evolution, it is always in quasi-
hydrostatic equilibrium. This is because the timescale to reach hydrostatic
equilibrium is much shorter than the evolutionary timescale (except during
explosive phases). In a stellar model, the forces balance one another. If
evolution calculations show that a star is expanding/contacting, one should
not ask “which forces make the star expand/contract?” but “why can the star,
with this changed chemical profile, only be in equilibrium if it is larger/
smaller than before?”.

As an example, we can consider the expansion of stars with a convective envelope.
If changes in the chemical profile imply that the radius of the star must increase in
order to remain in equilibrium, the convection in the envelope will reach deeper
layers. The smaller adiabatic T-gradient, compared to the radiative T-gradient, will
result in an increase in radius. This is shown in Figure 10.1.

10.6 Summary
1. The structure of a star with a given mass and chemical structure in HE and

TE is described by a set of four differential equations. These can be expressed
in Lagrangian coordinates, with m = M(r) as the running parameter.

2. There are four boundary conditions: r = 0 and L = 0 in the center, where m =
0, and P = 0 and L = 4πR2σT4 at the surface, where m = M.

3. Starting with an initial guess model, the corrections to this model can be
described by a large number of linear differential equations. These can be
solved by standard matrix inversion techniques, e.g., the Henyey method, to
yield r(m), P(m), L(m), and T(m).

Figure 10.1. Schematic picture of the increase in radius of a star with a convective envelope (gray). The red line
indicates a model in radiative equilibrium with radius R1. The black lines show models 2 and 3 with different
depths of the convective envelope, rconv, and radii R2 and R3.
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4. The resulting model also describes the nuclear reaction rates as a function of
m and the change in chemical structure.

5. Taking small time steps and calculating the structure at each time step results
in a series of time-dependent models in HE and TE. This series describes the
evolution of a star.

Exercises
10.1 How do we know which one of the two energy transport equations to use?
10.2 How can we calculate the entropy term due to expansion or contraction if

the evolution is calculated by a series of models in hydrostatic equilibrium?
10.3 Computer exercise

Familiarize yourself with the MESA code and calculate a model for the
Sun at t = 4.5 Gyr with the cosmic abundances.
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Chapter 11

Polytropic Stars

In Section 4.8, we showed that under certain physical conditions the equation of
state (EoS) can be written as P ∼ ργ. If a star has such a polytropic EoS, its density
and pressure structure follows from the hydrostatic equilibrium (HE) equation. This
solution of the HE equation does not provide information about the temperature
structure. This is the case for degenerate stars. We also showed that a polytropic EoS
applies to fully convective stars and to stars with a constant ratio Prad/Pgas. In these
stars, the gas also obeys the ideal gas law, P ∼ ρT; as a result, the P and ρ structure,
derived from the HE equation for polytropic gas, also specifies the temperature
structure. This temperature structure then specifies the energy flow through the star
and the stellar luminosity. In this section, we describe the models of polytropic stars.
Polytropic models were historically very important because they were the first stellar
models before the age of computers. They provide insight into the structure of stars
and give scaling laws such as the mass–luminosity relation and the mass–radius
relation.

11.1 The Structure of Polytropic Stars: P = Kργ

If the EoS can be expressed as a polytrope P = Kργ, the pressure is independent of
temperature and thus analytical solutions to the HE equation exist for certain values
of γ.

In this case, the HE can be combined with the mass continuity equation

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎪⎪

⎭
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

ρ ρ

π ρ
ρ

π ρ
= − → = − ⋅

=

= −

r dP
dr

Gm
d
dr

r dP
dr

G
dm
dr

dm
dr

r
r

d
dr

r dP
dr

G

4

1
4 . (11.1)

2 2

2
2

2

Using the polytropic relation P = Kργ → dP/dr = Kγργ−1 dρ/dr, which yields
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π
ρ ρ ρ= − → = −γ γ− −
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r K
d
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4
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. (11.2)
2
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The equation becomes simpler with two substitutions:

γ γ= + → = −n n a1. 1 1/ 1/( 1). (11.3 )

ρ ρ θ θ ρ ρ= = b2. , where ( / ) is a dimensionless variable. (11.3 )c
n

c
n1/

These substitutions transform the HE equation into

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟π

θ θ+ = −
ρ

−
n K
G r

d
dr

r
d
dr

( 1)
4

1
. (11.4)

c
n n

n
( 1)/ 2

2

The term in square brackets is a constant α2, with α in centimeters. So

⎡⎣ ⎤⎦α π ρ= + −n K G( 1) /4 . (11.5)
c

n n( 1)/ 1/2

Q (11.1) Although θ is dimensionless, can you think of what it may describe in physical terms?
Why was the symbol θ chosen?
Hint: suppose the gas has a polytropic EoS and obeys the ideal gas law,

Q (11.2) What is the range of θ?
Q (11.3) What does a model with n = 0 → γ = ∞ describe in physical terms?

What does a model with n = ∞ → γ = 1 describe in physical terms?

For mathematical reasons (and to make the equation look nicer), we may define

αξ ξ α= =r with dimensionless and in centimeters. (11.6)

The HE equation can then be written as

⎛
⎝⎜

⎞
⎠⎟ξ ξ

ξ θ
ξ

θ θ ξ= − → =d
d

d
d

f n
1

( ). (11.7)n
2

2

This is the Lane–Emden equation, named after the American physicist Jonathan
Lane (1819–1880) and the Swiss physicist Robert Emden (1862–1940), who was
married to astronomer Karl Schwarzschild’s sister Klara. Lane introduced the
concept in 1870 and Emden described it in the present form in 1907 in his famous
book “Gas Spheres” (Emden 1907).

This equation describes the density structure θ = f(ξ) or ρ = f(r) of a polytropic
star in a dimensionless form, with only one parameter: n = 1/(γ − 1). There are
analytical solutions for n = 0 or γ =∞ and for n = 1 or γ = 3/2. For any other value of
n, the equation can easily be solved numerically, with ξ = 0 at the center of the star.
The radius of the star is defined as the value of ξ, where ρ = 0, which means that θ = 0.

Figure 11.1 shows the density structure in terms of θn = ρ/ρc versus r/R for n = 3
(γ = 4/3) and n = 3/2 (γ = 5/3).
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Polytropic models were historically important because they could be easily
calculated before the age of computers. Eddington (1882–1944) calculated the first
polytropic model for the Sun and stars, based on the assumption that Prad/Pgas is
about constant (γ = 4/3), and obtained the mass–luminosity relation for stars. He
showed that L ∼ μ4M3 in 1926 (Eddington 1926).

11.2 Stellar Parameters of Polytropic Models
The solution of the Lane–Emden equation yields θ(ξ) with ρ = ρcθ

n and r = ξ/α . The
inner boundary condition at the center of the star is θ = 1 at ξ = 0.

The radius of the star is defined by ρ = 0, so θ(ξ1) = 0, and ξ1 is the value of the
ordinate where θ = 0. This means that

αξ α= ≡R R . (11.8)1 n

The mass of the star is given by

∫ ∫π ρ πα ρ ξ θ ξ= =
ξ

M r dr c d4 4 . (11.9)
R

n

0

2 3

0

1
2

Using Equation (11.7) results in

⎛
⎝⎜

⎞
⎠⎟πα ρ ξ θ

ξ
πα ρ= − ≡

ξ

M
d
d

M a4 4 , (11.10 )c c n
3

1
2

1

3

with

ξ= − θ
ξ ξ

( )M b. (11.10 )
d
dn 1

2

1

Figure 11.1. Density structure of polytropes for n = 3 (γ = 4/3) (red) and n = 1.5 (γ = 5/3) (black). The dashed
lines show the mean density of the two models.
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The mean density and the central density are related by

ρ
π

ρ
ρ ρ¯ = ≡ → = ¯

M
R D

D
3
4

. (11.11)c

n
c n3

The central pressure is given by ρ= +P Kc c
n1 1/ , where K can be eliminated by means of

its dependence on α2 in Equation (11.5) and α can be expressed in terms of M and ρc
via Equation (11.10). These substitutions result in

π ρ= ∼P B GM GM R(4 ) / . (11.12)c n c
1/3 2/3 4/3 2 4

This shows that the basic parameters M, R, Pc, and ρ̄ can all be expressed in one
physical parameter, ρc, plus the constantsMn, Rn, Bn, and Dn that depend only on n.
Table 11.1 shows the dependences and the parameters for several values of n.

With these parameters, the models are fully specified with P(r), ρ(r), and m(r)
known. These models do not provide information on the temperature structure.

11.3 The Mass–Radius Relation of Polytropic Stars
Polytropic stars have a mass–radius relation that depends on n or γ. This follows
from Equation (11.10a), which shows that M ∼ α3ρc. Equation (11.8) shows that
R ∼ α and Equation (11.5) shows that ρ α∼−

c
n n(1 )/ 2. Combining these equations

shows that the mass–radius relation of polytropic stars is

∼ − −R M . (11.13)n n(1 )/(3 )

Table 11.2 shows the properties of polytropic models for specific types of stars.
Remember that for an ideal gas that also obeys a polytropic EoS, such as stars

with a constant ratio Pgas/Prad and fully convective stars, the temperature is T ∼ P/ρ
∼ ρ γ−1. The mass–luminosity ratio of these stars will be discussed in Sections 11.3.5
and 14.3, respectively.

11.3.1 Polytropes with γ = 1 and n = ∞: Isothermal Stars

The solution of the Lane–Emden equation for isothermal stars is not relevant
because they have an infinite radius. Fully isothermal stars therefore cannot exist;
however, these models can still be used to describe parts of a star. For instance, after
the core H-fusion phase, when H in the core is exhausted and H-fusion occurs in a
shell around it, the helium core is almost isothermal. This implies that we can use the
polytropic model of γ = 1 for the helium core and attach a nonisothermal envelope
to describe the properties of these stars.

Table 11.1. Physical Parameters of Polytrope Models.

n γ Rn Mn Dn Bn

1.00 2.00 3.14 3.14 3.290 0.233
1.50 5/3 3.65 2.71 5.991 0.206
3.00 4/3 6.90 2.02 54.18 0.157
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11.3.2 Polytropes with γ = 5/3 and n = 1.5 and Fixed K:
Nonrelativistic Degenerate Stars

Nonrelativistic completely degenerate stars behave as polytropes with γ = 5/3
because the EoS is P = K1(ρ/μe)

5/3 (Equation 4.20), with the value of K1 fixed by
atomic physics. This applies to white dwarfs and neutron stars. Substitution of the
constant K1 in the Lane–Emden equation results in the M-R relation for WDs

μ= − −R M M R0.012 ( /2) if 11and are in solar units. (11.14)e
1/3 5/3

11.3.3 Polytropes with γ = 5/3 and n = 1.5 and Variable K:
Fully Convective Stars

Wehave shown inSection4.8.1 that fully convective stars alsobehaveaspolytropeswith
γ = 5/3. One might then expect that they have anM-R relation similar to white dwarfs;
however, this isnot thecase,because contrary to thecaseofwhitedwarfs thevalueofK in
fully convective stars is not defined by the EoS of the gas but by the mass of the star. In
otherwords,K is constant ina starbutmayvary fromstar to stardependingonthe stellar
mass.Wewill discuss this inSection12.7,whichdealswith fully convectivepre-MSstars,
and in Section 14.3, which deals with fully convective post-MS stars.

11.3.4 Polytropes with γ = 4/3 and n = 3 and Fixed K:
Relativistic Degenerate Stars

A polytrope model with n = 3 (i.e., P = Kρ4/3) and with a fixed constant K has the
curious property that it can exist for only one particular mass. This follows from the
substitution of Equation (11.5) for α into Equation (11.10) forM. This is the case for
extreme relativistic degenerate stars, where the constant K2 is given by Equation
(4.22). The resulting mass is

π π= == =M M K G M4 ( /4 ) with 2.02 (11.15)n n3 2
3/2

3

(see Table 11.1). We will show later that this results in upper limits for the mass of
white dwarfs and neutron stars.

Table 11.2. Properties of Polytropic Stars

n γ Property M–R Relation Consequence

0 ∞ Incompressible R ∼ M1/3 Constant ρ
1 2 P ∼ ρ2 → T ∼ ρ R ∼ M 0 Constant R
1.5 5/3 Nonrelat. degeneracy

Fully convective (ideal gas)
R ∼ M−1/3 Volume ∼1/M

3.0 4/3 Relativ. degeneracy
Constant Pgas/Prad (ideal gas)

R ∼ M∞ M ∼ R0

∞ 1 Isothermal: P ∼ ρ R → ∞ Infinite radius
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11.3.5 Polytropes with γ = 4/3 and n = 3 and Variable K:
Eddington’s Standard Model

We have shown in Section 4.8 that stars in which the ratio 1−β = Prad/P is constant
behave as polytropes with P ∼ aT4/3 and P ∼ ρ T, so P ∼ ρ4/3 (i.e., γ = 4/3 and n = 3).
Sir Arthur Eddington assumed that Prad/P = 1−β is constant in stars and derived the
polytropic model for n = 3 (Eddington 1926). Let us follow his arguments.

Rβ β
β

β
β μ

ρ= = − = − = −
P

a
T P P T

3
3 (1 )

(1 ) (1 )
. (11.16)rad

4
gas

so

R R⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

β
β αμ

ρ β
β αμ

ρ= − → = −
T T

1 3 1 3 (11.17)3
1/3

1/3

and

R R R R⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥μ

ρ
β βμ

β
β αμ

ρ ρ
μ

β
β

= = − ≡ → = −
P

T
K K

a
1 3 3 1

. (11.18)
1/3

4/3 4/3
4

4 4

1/3

Adopting Equation (11.10) for the mass and substituting α from Equation (11.5), we
find

π π= =M M K G4 ( / ) . (11.19)n 3
3/2

This results in

β
β μ

= ×
−

⊙

M
M

18.2
1

. (11.20)
2 2

This shows that for stars with a constant ratio Prad/P the value of β depends on μ
and M.

The predicted ρ, P, and T structure of Eddington’s standard model with a
homogeneous composition of μ = 0.60 and the Standard Solar Model (Guenther
et al. 1992) are compared in Figure 11.2. Note the good agreement over several
orders of magnitude between the two models. The differences in the center are due to
the increased He abundance in the Sun and the differences in the outer layers are due
to the fact that the outer envelope of the Sun is convective.

We now consider the luminosity of Eddington’s standard model.
The condition Prad = (1 − β) P implies that dPrad/dP = (1 − β) = constant. The

gradient of the radiation pressure and the gradient of the gas pressure are described
by Equations (6.10) and (3.3), respectively. Division of these two equations results in

κ
π

β= ≡ −
dp

dP cG
L
M4

1 . (11.21)r

r

rad

gas
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This is assumed to be valid at all depths as well as at the surface, which implies that

π
κ

β β= − = −L
cGM

L
4

(1 ) (1 ), (11.22)E

with (1 − β) ∼ M2μ4β4 (Equation 11.20). Adopting κ = σe = 0.20(1 + X) (Equation
5.6) and inserting the constants results in

⎛
⎝⎜

⎞
⎠⎟β μ= ×

+⊙ ⊙

L
L X

M
M

6.5 10
1

. (11.23)
4

4 4
3

This agrees with the dependence of L ∼ μ4M3 that we already derived in Section 6.2
on simple scaling arguments. Table 11.3 shows ratio Prad/Pgas = (1−β)/β, the value
of K, the mass (Equation 11.20), and the luminosity (Equation 11.23) of H-rich MS
stars with X = 0.70 and μ = 0.60 and He-rich stars with X = 0 and μ = 4/3 for various
values of β. The table shows that in the most massive stars observed, M ≈ 150Mʘ,
the radiation pressure is about equal to the gas pressure. It also shows that radiation
pressure is much higher in a He-rich star than in a H-rich star of the same mass. This

Figure 11.2. Comparison between the structure of the Sun predicted by the Standard Solar Model and the
homogeneous Eddington’s standard model (Courtesy of Chris Flynn).
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is due to the fact that the luminosity of stars in HE and RE scales approximately as
L ∼ μ4 (Equation (6.7)).

The importance of Eddington’s approximation is that it allowed the calculation of
the first stellar model and showed that parameters such as M, R, and L are coupled,
with L depending on the composition via μ and β.

11.4 Summary
1. The density, pressure, and mass structure of stars with a polytropic EoS of

the type P = Kργ for any value of γ or n = 1/(γ − 1) is fixed. The mass–radius
relation depends on n as listed in Table 11.2.

2. For degenerate stars, the value of K is fixed by atomic constants and so the
M-R relation is fixed. Nonrelativistic degenerate stars have R ∼ M−1/3, with
the constant given in Equation (11.14). Fully relativistic degenerate stars
exist for only one value of mass, given in Equation (11.15).

3. Fully convective stars have a polytropic EoS with γ = 5/3 or n = 1.5. For
these stars, the constant K depends on the stellar parameters: M and R. Stars
with a constant ratio Prad/P = 1 − β have a polytropic EoS with γ = 4/3 or
n = 3. For these stars, the constant K is set by the value of β.

4. In nondegenerate stars, the gas also obeys the ideal gas law P ∼ ρT, so the
pressure and density structure of a polytropic model also determine the
temperature structure and the energy flow.

5. A model with a constant ratio Prad/P is called Eddington’s standard model.
The masses and luminosities of stars with different values of β are listed in
Table 11.3. It shows that L ∼ β4μ4M3. Low-mass He-rich stars are about 25
times more luminous than H-rich stars of the same mass.

Exercises
11.1 Explain in simple physical terms why a star with γ = 4/3 has a more

concentrated density structure than a star with γ = 5/3.
11.2 Suppose that zero-age main-sequence stars are described by the Eddington

standard model with electron scattering as the dominant opacity.

Table 11.3. Parameters for Eddington’s Standard Models as a Function of β for Homogeneous H-rich and
He-rich Stars.

Properties H-rich He-rich

β Prad/Pgas K M/Mʘ L/Lʘ K M/Mʘ L/Lʘ

0.999 0.001 5.2 (14) 1.6 6.1 (1) 1.8 (14) 0.3 1.2 (1)
0.99 0.010 1.2 (15) 5.2 2.0 (3) 4.0 (14) 1.1 6.9 (2)
0.95 0.053 2.1 (15) 12.6 2.5 (4) 7.2 (14) 2.6 8.3 (3)
0.85 0.176 3.5 (15) 27.3 1.6 (5) 1.2 (15) 5.5 5.4 (4)
0.50 1.000 1.1 (16) 143.9 2.8 (6) 3.6 (15) 29.1 9.5 (5)

Note. The values in parentheses are the powers of 10. The value of K is in cgs units.
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(a) What would be the mean values of β and Prad/Pgas for stars of 1 and
60Mʘ?

(b) What is the predicted luminosity of these stars?
(c) Compare this with the data in Appendix D and comment on the

comparison.
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Chapter 12

Star Formation

In this chapter, we discuss the process of star formation. Stars form out of cold
molecular interstellar clouds when the inward gravitational force is stronger than the
outward force due to gas pressure and magnetic pressure. This leads to an initial
collapse on a free-fall timescale and the subsequent fragmentation of the cloud into
clumps. The released potential energy is partly used to dissociate the molecules and
partly lost by infrared radiation. When the molecules are dissociated and the gas is
subsequently ionized, the free-fall is halted and the contraction of the clumps
proceeds on the much longer Kelvin–Helmholtz timescale. Initially, the energy is
transported mainly by convection but as the internal temperature increases,
radiation takes over and the star becomes a pre-main-sequence star that evolves
toward the main sequence. After a short phase of Li- and D-fusion a star like the Sun
settles on the main sequence, where H-fusion is the energy source. Stars with a mass
below 0.08Mʘ do not reach H-fusion and become brown dwarfs. During a
significant fraction of this evolution, the star is surrounded by an accretion disk,
which results in characteristic spectral features.

The fragmentation of a cloud results in the formation of stars over a large mass
range from about 0.01 to 100Mʘ. We discuss the initial mass function, which is the
number distribution of stars over this mass range. At the end of this section, we
briefly discuss star formation in the early universe and the formation of Population
II and III stars.

12.1 The Interstellar Medium
The interstellar medium consists of gas in different phases (i.e., with different
temperatures and densities). The most important phases are listed in Table 12.1.

The mean value of the pressure factor (nT = P/k) in the galactic disk is nT ≈ 3 ×
103 Kcm−3. Note that most of the components are in equilibrium with the mean
pressure in the galactic disk, with the exception of the molecular clouds. The high
pressure in the molecular clouds might suggest that they will expand into the lower
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pressure environment; however, we will show that this is not the case because it is
prevented by their self-gravity.

12.2 The Jeans Mass for Gravitational Contraction
To understand star formation, we have to study the conditions necessary for
interstellar clouds to contract. Consider for simplicity a spherical homogeneous
cloud of mass M, radius R, temperature T, and density ρ (see Figure 12.1). The
easiest way to test if such a cloud is stable or contracting is by testing the virial
equilibrium. If the cloud is in hydrostatic equilibrium (i.e., neither expanding nor
contracting), the Virial Theorem (Equation (3.14)) requires Ekin = −½Epot with

μ=E kT M m(3/2) ( / ) (12.1)kin H

and

∫=− = −E
Gm

r
dm

GM
R

3
5

, (12.2)
M

r
rpot

0

2

where we used r = (m M/ )r
1/3 for a constant density medium. If −½Epot > Ekin, then

gravity wins and the cloud will contract. This is the case if
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> → > ≡kT
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, (12.3)J
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2

H

whereMJ is the Jeans mass, named after the British physicist Sir James Jeans (1877–
1946) who described it in 1904. Since we adopted a constant density ρ = μnmH, we
can also expressMJ in terms of T and n. For this purpose, we eliminate the radius R
by the substitution of
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Table 12.1. Mean Properties of Phases of the Interstellar Medium in the Galactic Disk (Cox 1990)

Component T (K) n (cm−3) nT (Kcm−3)

Molecular clouds 10–20 103–104 104–105

Cold neutral gas 50–100 20–50 103–104

Warm neutral gas 103−104 0.2–0.5 103

Warm ionized gas 104 0.1–1 103−104

Hot gas 106–107 10−2–10−4 103−104
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or quantitatively

⎛
⎝⎜

⎞
⎠⎟μ

≈ ʘM
T

n
M100 , (12.6)J

3

4

1/2

with T in K. A higher temperature corresponds to a largerMJ, meaning that warmer
clouds must be more massive in order to collapse. Stars that formed from
contracting clouds in the early universe, when temperatures were much higher
than at present, must have been more massive than stars forming today. This will
briefly be discussed later in Section 12.13.

Q (12.1) What is the typical Jeans mass of a cold cloud, consisting mainly of H2 molecules, with
a density of n = 103 cm−3 and T = 10 K?

Giant molecular clouds in the Galactic disk, consisting largely of H2 molecules,
have a temperature of T ∼ 10 K, a typical density of n ∼ 103 cm−3, a mass of the
order of 106 to 107Mʘ, and a radius of about 30 pc. They are the major regions of
star formation.

12.3 The Collapse of Molecular Clouds
A cloud of a given mass will contract and start forming stars if it exceeds the Jeans
mass, which depends on density as MJ ∼ n−1/2 (Equation 12.6). The cloud
contraction and star formation are triggered by compression due to shocks, which
increases the density. The three major triggering mechanisms are as follows.

1. Clouds passing the density wave of a spiral arm in a spiral galaxy. This
explains why star formation mainly occurs in the spiral arms.

2. Compression of clouds by a shockwave generated in a nearby supernova
explosion.

3. Cloud–cloud collisions in colliding or merging galaxies. This explains the
starbursts observed in merging galaxies.

Figure 12.1 Jeans mass of a spherical homogeneous cloud. The cloud contracts if M > MJ.
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Figure 12.2 shows the three mechanisms for triggering star formation.
When a cloud has a mass higher than the Jeans mass, it will collapse. This will

occur approximately on a free-fall timescale (Equation (9.1)), which is

τ ρ μ≈ ≈ ×− −G n( ) 1 10 ( ) yr (12.7)
ff

1
2 8 1

2

or about 106 yr if μn ∼ 104 cm−3. If clouds had no cooling mechanism, they would
contract adiabatically with temperature increasing as ρ∼T 2/3 (Equation (4.33)).
Because the Jeans mass is ρ∼M T( / )J

3 1/2, its value would increase as the density
increases. At some point, the Jeans mass would reach the cloud mass: i.e., the cloud
would be in hydrostatic equilibrium and the contraction would stop. Fortunately,
however, clouds do have a cooling mechanism; if they did not, star formation would
be extremely inefficient and we would not exist!

Clouds cool by radiative losses. For this to be effective, they have to emit IR
photons; massive clouds are optically thick for UV and visual photons but optically
thin for photons at longer wavelengths. The main cooling agents of molecular clouds
are emission by molecules and emission by dust.

Cooling by molecules:

Collisions between molecules in high-density gas result in collisional excitation to
higher rotation or vibration levels. An excited molecule can de-excite to a lower
rotation or vibration level by emitting a photon (photo de-excitation). The dominant
transitions are in the IR or submillimeter range. These photons can leave the cloud
because the cloud is optically thin at IR wavelengths. The net effect is that the kinetic
energy of molecules is transferred into excitation, which results via photo de-
excitation in IR and submillimeter photons that escape the cloud, making this a
cooling mechanism.

Cooling by dust:

If the density in a cloud is high and the kinetic temperature is low enough (T <
1000 K), dust may form. Collisions of dust particles with molecules will heat dust

Figure 12.2 Three triggering mechanisms for star formation: merging galaxies, shocks from supernovae ejecta,
and density waves in the disks of spiral galaxies. (Courtesy of NASA.1)

1 http://www.spacetelescope.org/images/heic0206b/http://chandra.harvard.edu/photo/2005/tycho/
http://beltoforion.de/article.php?a=spiral_galaxy_renderer&hl=en
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grains. The same occurs if photons (UV, optical, or near-IR) are absorbed by
dust. Dust grains emit almost like blackbodies with a radiation temperature less
than ∼ 1000 K. This results in a large IR flux that leaves the cloud. Molecular
clouds are therefore very strong IR emitters! The net effect, once again, is that the
kinetic energy of molecules and optical photons is converted into IR radiation by
dust. This radiation then escapes the cloud, making this another cooling mechanism.

12.4 Fragmentation of Molecular Clouds
The cooling mechanisms prevent the adiabatic heating of a cloud when it collapses.
The potential energy gained by the contractions is immediately emitted, so the
collapse proceeds approximately isothermally. The increasing density of isothermal
clouds implies that the Jeans mass decreases so that substructures of the cloud can
start to contract. This results in a fragmentation of the original cloud, which splits up
into sub-clouds that may split up again. This fragmentation is helped by the fact that
molecular clouds already have a clumpy structure to begin with. This structure is
probably due to magnetic effects (McKee & Ostriker 2007).

The fragmentation continues on faster and faster timescales, because the free-fall
timescale decreases as ∼n−1/2 as the fragments get denser (Equation (9.1)).
Eventually, the density in the fragments will become so high that they become
optically thick for IR radiation. When that happens, the cooling mechanism is
switched off and the collapse continues adiabatically. This results in a T-rise and a
subsequent increase of the Jeans mass to the actual mass of the fragments. At this
point the contraction stops and the fragments reach hydrostatic equilibrium.
Observers call these fragments clumps.

Clumps will eventually evolve into stars. The mass distribution of the clumps sets
the initial mass function (IMF) of the resulting stars. The IMF describes the number
distribution of the stars as a function of their mass. Observations show that the IMF
of the clumps has the same shape as the IMF of the stars (Elmegreen 2002; the stellar
IMF will be discussed in Section 12.12).

Figure 12.3 Schematic figure of the fragmentation of a collapsing molecular cloud. As the cloud contracts
almost isothermally, the Jeans mass decreases and fragments of the cloud start to contract, giving rise to a
clumpy structure in the cloud. The clumps evolve into stars.
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Not all of the mass in a molecular cloud contributes to the formation of stars. In
general, it is estimated that only about 10% of the mass of the initial cloud ends up in
stars, although this fraction may be higher in starburst galaxies (Kruijssen 2011).
The rest remains in the form of gas that is ejected later by the stellar winds of massive
stars and by supernova explosions.

Figure 12.3 shows a sketch of the process of fragmentation and star formation in a
collapsing cloud. It shows that large molecular clouds form groups of stars, rather than
one individual star. The groups may be gravitationally bound and evolve into a star
cluster or be unbound and evolve into an association. An animation of this process,
based on a numerical simulation by Matthew Bates, can be found on the web.2

12.5 The Minimum Mass of Stars
The minimum mass of stars is set by the minimum mass, Mmin, of the fragments or
clumps that can collapse and form stars. A clump collapses if its mass is smaller than
the Jeans mass. Since we are looking for the minimum mass, we adopt Mmin = MJ,
with MJ inversely proportional to the density. The key question is, can a small clump
cool by radiation? The smaller theMJ, the higher the density and the higher the optical
depth of the clump. A combination of Equations (12.3) and (12.6) shows that for a
given temperature the optical depth, τ ∼ n × R, increases with decreasingMJ. When τ
is so large that the clump is optically thick for IR radiation, photons can only escape
from the boundary of the clump. This reduces the cooling efficiency drastically.

We have seen above that the collapse requires the presence of a cooling
mechanism, viz. the ability to radiate the released potential energy. This condition
can be expressed by comparing the amount of potential energy that is released per
second, �dEpot/dt, with the maximum energy that can be radiated per second, Lmax.
Efficient cooling requires that

> −L dE dt/ . (12.8)max pot

If a cloud is optically thick, then the radiation can only leave the clump via the
surface, so Lmax = 4πR2σT4. The temperature of the dense clumps is about T ~ 10 K.
The release of potential energy is

τ τ ρ− ∼ ≈ −(dE dt GM R G/ / )/ with ( ) . (12.9)pot
2

ff ff
1/2

Substituting this expression into condition (12.8) and using ρ ≈ M/R3 results in an
expression of the typeM5/2 < CR9/2T4, where C is a constant. The clump collapsed, so
its mass must have been higher than the Jeans mass, given by Equation (12.3). For a
given T, the Jeans mass MJ is proportional to R. Substituting the constants involved,
we derive an estimate of the minimum mass of a clump that satisfies condition (12.8)

∼ −
⊙M M10 . (12.10)min

2

2 https://www.youtube.com/watch?v=3z9ZKAkbMhY
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This is the minimum star mass. If the mass of the clump is smaller, it cannot cool
efficiently. Objects with lower mass, e.g., Jupiter-like planets, cannot have formed from
contracting clumps in star-forming clouds. They must have been formed by the
accumulation and merging of rocky and icy clumps in the original circumstellar disks.

12.6 The End of the Free-fall Phase
The free-fall collapse of a clump that exceeds the minimum mass of ∼10−2 Mʘ ends
when the cooling mechanism stops working and the contraction results in rapid
heating that brings the clump into hydrostatic equilibrium. At the end of free-fall,
the center of a clump reaches equilibrium first, while the surrounding gas keeps
falling onto the core. From now on, the clump is considered a protostar. Up to this
point, the temperature was so low and the density so high that hydrogen was
molecular and the cooling mechanism was active. This ends when H2 is dissociated
and most of the H is subsequently ionized. We can estimate the size of a clump when
all H2 is dissociated and H is ionized by comparing the energy gained in the collapse
with that needed for the dissociation and ionization.

The energy needed for dissociation of an H2 molecule is =x 4.5 eVH2 , and the
ionization energy of an H atom is =x 13.6 eVH , with 1 eV = 1.602 10−12 ergs. The
total energy needed for dissociation and ionization of a cloud consisting of H2

molecules with composition X = 0.7 and Y = 0.30 is

⎛
⎝⎜

⎞
⎠⎟= + = × ≈ ×

⊙ ⊙
E

MX
m

x x
M
M

M
M

{0.5 } 1.3 10 eV 2 10 ergs. (12.11)dis
H

H2 H
58 46

This energy is provided by the contraction in the form of potential energy

⎧⎨⎩
⎫⎬⎭Δ ≈ − ≈ ≈ × ⊙

⊙
E AGM

R R
A

GM
R

A
M M
R R

1 1
4 10

( / )
/

ergs. (12.12)pot
2

end begin

2

end

48
2

end

The constant A is 3/5 for a constant density cloud (Equation (12.2)), but during the
collapse the protostar will become centrally concentrated so the factor A = 3/5 is a
lower limit. Let us assume for simplicity that ≈A 2.

In fact, the collapsing cloud loses most of the gained energy in the form of far-IR
photons. Only a fraction f < 1 of ΔEpot is used for dissociation and ionization. If the
clump was contracting quasi-hydrostatically, then f would have been 0.5 according
to the virial theorem. In reality it is smaller; detailed calculations show that f ≈ 1/3
(McLaughlin & Pudritz 1997). If we equate the energies needed for dissociation and
ionization, E ,dis with Δf Epot (Equation (12.12)), we find that the protostar is ionized
when it reaches a radius of the order of

≈⊙ ⊙R R M M/ 100 / . (12.13)

We see that a protostar of 1Mʘ has a radius of ∼100Rʘ at the end of the fast
contraction and a star of 0.5Mʘ has a radius of ∼50Rʘ. We will show later that the
effective temperature of the stars when they reach equilibrium is ∼3000 K, so the
luminosities are ∼103 and ∼2 × 102 Lʘ, respectively, for protostars of 1 and 0.5 Mʘ.
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We can estimate the mean temperature inside the star by applying the virial
theorem because, at the end of the collapse, the star has reached HE

μ
μ¯ = → ¯ ≈ ⋅M

m
kT

A GM
R

T
A m

k
GM

R
3
2 2 3

, (12.14)
H

2
H

with ≈ −
⊙ ⊙M R M R/ 10 /2 and μ ≈ 1/2. This gives ≈ ×T 7 10 K4 , so fusion cannot

yet start at the end of the free-fall phase.
The mean density of a protostar of ⊙M1 and ⊙R100 is ρ ≈ − −10 g cm6 3. At such

low T and density, the absorption coefficient is very high: κ ≈ 102 to 103 cm2g−1 (see
Figure 5.1). This means that the energy transport by radiation would be very
inefficient and would require a high value of ∣ ∣dT dr/ rad (Section 7.1), so the star is
almost completely convective according to the Schwarzschild criterion.

At the end of the free-fall phase, when the protostar has become ionized, it will be in
hydrostatic equilibrium and fully convective with ∼Θ ʘR R M M100/ / .

12.7 The Contraction of a Convective Protostar: The Descent along
the Hayashi Track

When the dissociation and ionization of the star is complete, the star is in hydrostatic
equilibrium. The star does not have nuclear fusion yet, but it has a temperature
gradient so it radiates. The star must therefore contract to cover this energy loss.

We have argued that at this phase the star is fully convective. We will show in
Section 14.3 that fully convective stars occupy a nearly vertical strip in the HRD at

≈T 3000 Keff . This is called theHayashi line after the Japanese astronomer Chusiro
Hayashi (1920–2010), who derived it in 1961 for red giants (Hayashi 1961) and in
1966 for gravitationally contracting stars (Hayashi 1966). Fully convective stars will
evolve almost vertically upward along the Hayashi line if they expand (because

∼L T Reff
4 2 with ≈T constanteff ), and downward if they contract. Protostars are

contracting, so their luminosity decreases. This part of their evolutionary path in the
HRD is called theHayashi track. The tracks are shown in Figure 12.4. Note that the
lines are approximately vertical at Teff ≈ 3000 K, but deviate to lower Teff at high
luminosity. At the lowest points of the tracks the protostars go from convective
equilibrium into radiative equilibrium, as we will see later.

During the descent along the Hayashi track the temperature and density in the
star rises. When it reaches a mean T of a few times 106 K the opacity drops
drastically (see the curve for log ρ ≈ 0 in Figure 5.1). This implies that the
Schwarzschild criterion for convection is no longer satisfied, so the energy can
now be transported by radiation. Because the protostar is no longer convective, the
downward evolution along the Hayashi track stops.

We can estimate the radius of the protostar at the end of the Hayashi track by
assuming that the mean gas temperature should be of the order of a few times 106 K,
say 3 × 106 K, to be in the range of κ σ≈ ≈ −0.3 cm ge

2 1 (see Figure 5.1). During the
convective contraction, when T ∼ M/R (Equation (12.14)), the mean temperature
increased from about 7 × 104 K to 3 × 106 K, which implies an increase by a factor of
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∼50, so the radius of a 1Mʘ protostar has gone down from ∼100Rʘ to ∼2.0Rʘ. At
this radius, the luminosity of a convective star with Teff ≈ 3000 K is

π σ= ≈ ⊙L R T L4 0.52
eff
4 for a 1Mʘ protostar. A more massive protostar starts

and ends the contraction with a larger radius and higher luminosity than a protostar
of 1Mʘ.

We can use these values to estimate the duration of the Hayashi phase of a 1 Mʘ

protostar. Because the protostar is in HE, the contraction occurs on the Kelvin–
Helmholtz timescale

τ τ≈ ≈
− Δ

≈ ¯
E

L
AGM

LR

(0.5) 0.5
, (12.15)Hayashi KH

pot
2

end

with A ≈ 2. Because the radius and luminosity decrease drastically during the
descent along the Hayashi track, we adopt the logarithmic mean radius of R̄ ≈
(RtopRbottom)

1/2 ≈ 15Rʘ and the resulting mean luminosity L = 4πσTeff
4 R 2 ≈ 15Lʘ

as characteristic values in Equation (12.15). This results in an estimate of
τ ≈ ×1 10Hayashi

6 yr for a 1Mʘ protostar.
Equation (12.15) shows that τ ∼ M LR/Hayashi

2 . This reduces to τ ∼ M R/Hayashi
2 3

because Teff ≈ constant on the Hayashi track, with R ∼ M at the end of the free-fall
phase and the beginning of the descent along the Hayashi track, so τ ∼ M1/Hayashi .

Figure 12.4 Hayashi tracks (full lines) for protostars of 0.25 <M /Mʘ < 4 for X = 0.70, Y = 0.28, and Z = 0.02.
The gray band indicates the region of the Hayashi line for fully convective stars. The light gray dashed lines are
lines of constant radius. (Reproduced from Kippenhahn & Weigert 1990, with permission. © ESO.)
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The descent along the Hayashi track of a protostar of ʘM takes about 1 million years.
The more massive the protostar, the shorter the timescale: τHayashi ∼ 1/M.

12.8 The Contraction of a Radiative Pre-main- sequence Star:
From the Hayashi Track to the Main Sequence

At the end of the Hayashi phase of a star, when ¯∼T 106 K, the convection gradually
stops and the protostar goes into radiative equilibrium. The protostar in radiative
equilibrium has not yet started nuclear fusion, so it will keep contracting to cover the
loss of energyby radiation.Because it is in radiative andhydrostatic equilibrium, itwill
roughly obey themass–luminosity relation (Section 6.2). Thismeans that its evolution
track will now be approximately horizontal as the star moves toward the main
sequence. This phase is called the pre-main-sequence phase, abbreviated as PMSphase.

Q (12.2) Why does the convection stop when ¯∼T 106 K?

We can estimate the duration of this PMS contraction phase in the same way as
before, by comparing the released potential energy with the luminosity using the
virial theorem. During the PMS contraction, the star keeps approximately the same
luminosity as it had at the end of the Hayashi contraction phase. At the end of the
PMS phase, when H-fusion starts on the main sequence, the radius is approximately
the main-sequence radius. We will show later that the radius on the MS is

≈⊙ ⊙R R M M/ ( / ) . (12.16)MS
0.7

So
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pot
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7 2.5

where we used A ≈ 2, R ∼ M0.7, and L = 0.5 ⊙L for a protostar of 1Mʘ and
L ∼ (M/Mʘ)

3.8 as observed for MS stars (Section 2.5). The PMS phase of a star of
1Mʘ is about 6 × 107 yr, whereas the Hayashi phase lasts 1 × 106 yr. We see that the
PMS phase of stars lasts considerably longer than the Hayashi phase.

The duration of the pre-main-sequence phase for stars of solar metallicity is listed
in Table 12.2.

Q (12.3) Why is the phase of the Hayashi track much shorter than the PMS phase?

Figure 12.5 (left) shows the predicted evolution tracks of PMS stars in the L–Teff

diagram. Notice that the tracks for radiative contraction are not exactly horizontal
in the HRD; instead, L increases by about a factor of 3. This is partly due to the
decrease of κ as the star contracts and gets hotter (remember that L ∼ M3/κ) and
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partly due to the continuous increase of the mass via the accretion disk. The
luminosity increase explains why our simple calculation overestimated τPMS. The
dashed line marks the disappearance of the convective envelope shortly after the star
left the Hayashi track. The dotted line marks the appearance of a convective core
just before the star reaches the MS. When a star reaches the MS and starts H-fusion
it adjusts its radius, luminosity, and Teff slightly to the new structure. This produces
the little curl at the end of the PMS track.

Because the timescales for evolution on the Hayashi track and the PMS track both
decreasewith increasingmass, stars with the same age butwith differentmasseswill lie

Figure 12.5 Left: calculated PMS tracks for stars in the range of 0.8 to 60Mʘ. The dots show the location of the
ignition of D-fusion. The dashed line marks the disappearance of the convective envelope and the dotted line
marks the appearance of a convective core (figure is from Hayashi 1966). Right: the observed color–magnitude
diagramof the young clusterNGC2664.Thedotted lines are the isochronesof 3 (upper) and5Myr (lower). (From
Turner 2012 Copyright © 2012 by JohnWiley & Sons, Inc. Reprinted by permission of JohnWiley & Sons, Inc.)

Table 12.2 The PMS Contraction Time (in yr) for Solar Metallicity Stars

Mʘ τPMS (estimated) τPMS (model)

1 6 × 107 2.9 × 107

3 4 × 106 7.2 × 106

9 3 × 105 2.9 × 105

25 2 × 104 7.1 × 104

60 2 × 103 2.8 × 104

Note. The last column shows the results of detailed models (Bernasconi & Maeder 1996).
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alongan isochrone that crosses the tracks fromupper left to lower right.The rightpanel
ofFigure12.5 shows theobservedcolor–magnitudediagramof theyoungclusterNGC
2664 with an age of about 4 Myr. The stars are located between the predicted
isochrones of 3 and 5 Myr, shown as upper and lower dotted lines, respectively.

12.9 T Tauri Stars and Herbig Ae-Be Stars
Low-mass stars ( ≤ ΘM 2M ) on the radiative contraction track are called T Tauri
stars. They are pre-main-sequence stars of types F, G, and K with strong emission
lines formed in an accretion disk around these stars.

Higher-mass stars (M ⩾ 2Mʘ) on the radiative contraction track are calledHerbig
Ae-Be stars. They are pre-main-sequence stars of types B and A with strong emission
lines formed in an accretion disk around these stars

T Tauri stars are divided into four classes that can be distinguished observatio-
nally by their spectral energy distribution. These classes correspond to sequential
evolutionary phases. They are shown in Figure 12.6.

– Class 0 corresponds to the youngest phase of ∼104 yr when the star is still
accreting almost spherically. The spectral energy distribution is that of a thick
cold sphere that radiates mainly in the infrared.

– Class I objects, with an age of ∼105 yr, are embedded in a thick accreting disk
(with jets) that produces a strong infrared excess.

– Class II objects, with an age of ∼106 yr, have a less optically thick accretion
disk and the radiation from the central star becomes visible. Class II stars are
on the radiative PMS track.

– Class III objects, showing weak emission lines and a small infrared excess,
have an optically thin accretion disk and are close to the main sequence.

12.10 The Destruction of Lithium and Deuterium
At a temperature of about 106 K, the small fraction of initial deuterium, formed in
the Big Bang, is destroyed by the reaction

+ γ→ + +H H He 5.5 MeV. (12.18)2 1 3

This occurs when the star is approximately on the 105 yr isochrones in the HRD.
Sometime later, at a core temperature of about 2.5 × 106 K (i.e., when the star is near
the 106 yr isochrones), Li is destroyed by the reaction chain

γ ν γ → +−p pLi ( , ) Be (e , ) Li ( , ) Be 2 He energy. (12.19)6 7 7 8 4

The stellar surface abundance of Li and D provides an important diagnostic tool for
studying the formation of low-mass stars. This is because Li is only depleted at
the stellar surface if the convective envelope was deep enough to include the
Li-destruction zone at 2.5 × 106 K. Models show that this is only the case in
PMS stars of M < 1.4 ⊙M . At higher mass, the Li-destruction occurs when the star is
no longer on the Hayashi track, so convection does not affect the surface
composition of Li. This is shown in the calculated pre-main-sequence evolution
tracks of Figure 12.7.
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12.11 Stars That Do Not Reach H-fusion:
Brown Dwarfs with M < 0.08 M⊙

Hydrogen fusion requires a minimum Tc of about 6 × 106 K. We have shown in
Section 8.10 that this requires some minimum mass. This minimum mass is 0.08Mʘ.
If the mass is lower, the core becomes degenerate and the contraction stops before
the required Tc is reached. Stars with M < 0.08M⊙ therefore do not reach H-fusion.
They are called brown dwarfs. These stars get their energy from Li burning (between
0.06–0.08Mʘ) and D-fusion (from 0.06Mʘ down to ∼0.01Mʘ).

12.12 The Stellar Initial Mass Function
The initial mass function (IMF) describes the number distribution of stars of different
masses between about 0.1 and 100Mʘ. The IMF has been derived from observations
of star clusters of different ages and from field stars. If clusters are used, the drifting
of low-mass stars out of the clusters has to be taken into account. If field stars

Figure 12.6 Four classes of T Tauri stars. Right: a sketch of the geometrical model. Left: the associated energy
distributions. The gray area indicates the stellar flux, which is partly obscured in class 0 and class I objects, and
the dotted line indicates the contribution by the disk. (Reproduced from Bouvier & Zahn 2002, with
permission. © EAS, EDP Sciences, 2002.)
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are used, the number of stars in any magnitude limited sample must first be corrected
for four effects:

– the distance to the stars that are observed, which depends on their absolute
magnitude and the magnitude limit of the sample,

– the conversion of absolute magnitude to stellar mass,
– the evolutionary effect for late mass-losing stages of evolution (to convert the
present mass into the initial mass), and

– the lifetime effect, to correct the number of stars in a certain evolutionary
phase for the duration of that phase.

In this way, the observed distribution of the stars as a function of apparent
magnitude, spectral type, and evolutionary phase has been converted into an initial
mass function.

The Austrian–American astronomer Ed Salpeter (1924–2008) derived the first
stellar IMF in 1955 (Salpeter 1955) and found that

∼ −N m dm m( ) . (12.20)2.35

This is called the Salpeter IMF. Later studies, based on better data, showed that the
IMF cannot be represented by one single power law but has a more complex shape.
The best known modern IMFs are those of Kroupa (2001) and Chabrier (2003).

Figure 12.7 Pre-main-sequence evolution tracks of stars of 0.3 < M < 2.5Mʘ. The dotted lines are isochrones
with the ages indicated; from 105 yr (right isochrones) to 107 yr (left isochrones). The blue band is the location
of the stars, where D is destroyed and the red band is the location where Li is destroyed. (Reproduced from
D’Antona & Mazzitelli 1994.)
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Kroupa IMF
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with the ratios between C1, C2, and C3 chosen in such a way that the three
power laws fit at the connecting points of 0.08 and 0.5Mʘ, so C2 = 2C1 and
C3 = 25C1.
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with the constants D1 and D2 adjusted to match the two mass ranges, so D2 =
3.539 D1.

These three IMFs are plotted in Figure 12.8. It shows that all three IMFs agree at
m > 1Mʘ, and that the Chabrier IMF and Kroupa IMF are very similar at
m < 1Mʘ, but that the Salpeter IMF predicts many more low-mass stars than the
more recent ones.

Figure 12.8 Initial mass functions of Salpeter (purple; Salpeter 1955), Kroupa (blue; Kroupa 2001), and
Chabrier (orange; Chabrier 2003), normalized to m = 1Mʘ.
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The shape of the IMF implies that the relative contributions to the number of
stars and to their total mass is very different for different mass intervals. This is
shown in Table 12.3.

12.13 Star Formation in the Early Universe
We have seen above that cooling plays a crucial role in star formation.

– The equilibrium between heating and cooling determines the temperatures of
star-forming clouds.

– The temperature and density of these clouds determine the Jeans mass, which
is the minimum mass of a cloud that can collapse and fragment into clumps.

– The minimum mass of stars that can be formed out of clumps depends on the
ratio between the cooling time and the free-fall time: a clump must be able to
radiate the potential energy gained during the collapse (Section 12.4).

The main cooling process in the Galactic disk is by molecules and by dust. In the
very early universe, the metallicity, Z, was practically zero, because the interstellar
medium was not yet enriched by the nuclear products from previous generations of
stars. This implies that there was no dust and there were no molecules except H2. So
H2 was the only molecule available for cooling.

Figure 12.9 shows the effect of cooling on star formation in the early universe.
The left panel shows the equilibrium temperature of clouds at Z = 0 as a function of
density n in a cold dark-matter-dominated universe at redshift z = 31 (Bromm 2002;
Bromm & Larson 2004). The figure shows two distinct branches. At densities n < 1
cm−3, the H2 fraction is very small, viz. < 10−5, and the cooling of contracting
clouds is very inefficient. Therefore, T rises almost adiabatically as the cloud
contracts so T ∼ n2/3 (Equation (4.33)) until it reaches a virial temperature of about
5000 K. At n > 1 cm�3, the molecular fraction increases and cooling by H2 becomes
important. This results in an almost isobaric decrease of T at increasing n, i.e.,
T ∼ n�1. When the gas is cooler than about 500 K, collisions are no longer efficient
to excite the H2 molecules to their lowest excited rotational energy level of E/k ≈ 500
K, so the cooling by radiative de-excitation stops. However, particles in the tail of

Table 12.3. The Relative Contributions to the Total Mass, to the Total Number of Stars, and the Mean Mass
per Star in Three Mass Bins for a Kroupa IMF

Mass Range 0.01–0.1Mʘ 0.1–1.0Mʘ 1–100Mʘ 0.01–100Mʘ

N/Ntot 0.446 0.493 0.061 1.000
M/Mtot 0.059 0.414 0.527 1.000

ʘm M/ 0.051 0.315 3.253 0.376

Notes. The table shows the following. (1) Stars withM > 1Mʘ contribute more than 50% to the total mass, but
only 6% to the total number of stars. (2) The lowest-mass stars with M < 0.1Mʘ contribute only 6% to the
total mass, but as much as 44% to the total number of stars. However, these stars are difficult to detect due to
their very low luminosity. (3) The mean stellar mass in the mass range of 0.01 to 100Mʘ is only 0.376Mʘ.
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the Maxwell distribution can still excite H2 to its lowest excited level and cool the gas
down to about 300 K.

For every value of T and n, the Jeans mass can be calculated (Equations (12.5)
and (12.6)). The result is shown in the right panel of Figure 12.6. The Jeans mass of a
quasi-hydrostatic clump of T ∼ 300 to 500 K and n ∼ 104 cm�3 and μ = 2 is about
200 to 1000Mʘ, so star formation in the early universe, when Z<10−6, must have
resulted in considerably more massive stars than present star formation in the
Galactic disk. These predicted very massive stars with very low metallicity are called
population III stars. The metal poor stars with Z ∼ 10�4 to 10�5 in old globular
clusters are called population II stars. The metal-rich stars with Z ∼ 10�2 in the
Galactic disk are called population I stars.

12.14 Summary
1. We summarize the important phases in the process of star formation, with

the characteristic timescales and characteristic stellar parameters for a star of
1Mʘ.

Collapse of cloud = free fall phase τff ∼ 105 yr:
Cooling by molecules and dust IR radiation.
T̄ is low (about 10 K) and is about constant
Fragmentation of cloud into clumps.
Start: when cloud mass exceeds Jeans mass.
End: when H2 is dissociated and H is ionized.
Characteristic parameters: T̄ ∼ 105 K, R/Rʘ ∼ 120 M/Mʘ.

Protostar = pseudo-hydrostatic contraction τKH ∼ 1 × 106 yr:
Fully convective because of low T̄ and high κ.
Teff ≈ 3000 K ≈ constant.
Hayashi track: approximately vertical track downward in HRD.
Start: when the collapsing cloud is dissociated.

Figure 12.9 Conditions of zero-metallicity clouds in the early universe at redshift z ∼ 30. Left: the equilibrium
temperature as a function of density. Right: the resulting Jeans mass. (Figure is based on Bromm 2002 and
Bromm & Larson 2004.)
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Characteristic parameters: R ≈ 120Rʘ, Teff ≈ 3000 K, L ≈ 103Lʘ.
End: when T̄ ∼ 106 K → low κ → radiative equilibrium.
Characteristic Parameters: R ≈ 2.5Rʘ, Teff ≈ 3000 K, L ≈ 0.5Lʘ.

Pre-main sequence = pseudo-hydrostatic contraction τKH ∼ 7 × 106 yr:
Radiative equilibrium because of high T̄ → low κ.
L about constant.
Approximately horizontal track leftward in HRD.
Short phases of D-fusion and Li-fusion.
Start: when the protostar reaches radiative equilibrium ( T̄ ∼ 106 K).
Characteristic parameters: R ≈ 2.5Rʘ, Teff ≈ 3000 K, L ≈ 0.5 Lʘ.
End: when H-fusion starts = on main sequence.
Characteristic parameters: R ≈ 1Rʘ, Teff ≈ 6000 K, L ≈ 1Lʘ.

2. Fragmentation of collapsing clouds in the Galactic disk results in the formation
of stars in the range of about 0.01 to 100Mʘ. The lower boundary is set by the
limit where the potential energy gained by contraction cannot be lost by
radiation because the cloud is optically thick for IR radiation. The upper
boundary is set by the Eddington limit for radiation pressure (Section 6.3).

3. Stars with M < 0.08Mʘ do not reach H-fusion and remain brown dwarfs.
4. The initial mass function shows that more than half of the stars have

M < 0.1Mʘ and that the mean mass is about 0.4 Mʘ. Stars more massive
than 1 Mʘ contribute half of the total mass but only 6% of the total number
of stars.

5. In the early universe, when cooling was inefficient due to the lack of dust and
molecules (except H2), only massive stars with M ∼ 102 to 103Mʘ could be
formed.

Exercises.
12.1 Assume that the different components of the ISM are in pressure

equilibrium.
(a) What would be the Jeans mass of clouds forming out of each of the

following?
– cold neutral gas;
– warm neutral gas;
– warm ionized gas.

(b) How is it possible that molecular clouds are not in pressure
equilibrium with their surroundings?

(c) Giant molecular clouds have masses of the order of 105Mʘ. Show
that they are forming stars.

12.2
(a) Estimate the radii at the beginning and end of the Hayashi

contraction phase and at the beginning and end of the pre-main-
sequence contraction for stars of 0.1, 0.3, 1.0, 3, 10, 30, and 100 Mʘ.
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(b) Estimate the duration of the Hayashi contraction phase and of the pre-
main-sequence contraction for stars of 0.1, 0.3, 1.0, 3, 10, 30, and
100Mʘ.

12.3 Explain the difference in the Li surface abundance of stars on the main
sequence that had Li destruction during the Hayashi contraction phase or
during the pre-main-sequence contraction phase.
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Chapter 13

H-fusion in the Core: The Main-sequence Phase

When a star starts fusing H in its center, it is located on the zero-age main sequence
in the HRD. The luminosity, temperature, and radius depend on the mass in a
specific way, which is described by the properties of stars that are chemically
homogeneous. We will show that these properties can be derived by means of
homology relations for stars that have similar density structures. Homology
relations also illustrate how the properties of stars depend on their initial chemical
compositions. This is important for understanding the differences between old
metal-poor stars and younger metal-rich stars. We discuss the evolution of the stars
in the HRD during the core H-fusion phase, from the beginning at the zero-age main
sequence (ZAMS) to the terminal age of the main sequence (TAMS). We will show
that the stars increase in luminosity and radius.

13.1 The Zero-age Main Sequence (ZAMS): Homology Relations
When a PMS star arrives on the main sequence at the start of the core H-fusion, it is
still chemically homogeneous, apart from minor changes due to D-fusion. The
location of homogeneous stars in the HRD is called the zero-age main sequence,
ZAMS. The properties of stars on the ZAMS can be understood on the basis of
homology considerations because they all have the same chemical composition
throughout the star. Homologous stars are those that have the same scaled density
structure. So two stars, 1 and 2, are homologous if
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c c1 2

The values of ρc and R can be different for both stars but the structure of ρ/ρc as
function r/R is the same. Because of hydrostatic equilibrium, the same homology
then also applies for P/Pc. If the equation of state is that of an ideal gas (i.e.,
radiation pressure can be ignored), the T/Tc - structure is also homologous, so
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Homologous stars differ only by their scaling factors ρc, Tc, Pc and M, R, L.
Homology enables the predictions of trends in stellar properties. If we know R, L,
and Teff for a star of massM (for instance, from a stellar model or from an observed
double-lined spectroscopic binary), we can predict R, L, and Teff of other stars with a
similar structure but different M.

We already encountered homologous stars when we discussed polytropic stars in
Chapter 11; however, that was for a specific EoS. Here, we discuss more general
homology relations.

13.1.1 The Mass–Luminosity Relation for ZAMS Stars

We already derived, in Section 6.2, the scaling relations for the central temperature
and luminosity of stars in radiative equilibrium

μ μ
κ

∼ ∼T
M
R

L
M

and . (13.3)c

4 3

We now consider the mass luminosity relation more closely for ZAMS stars.
For massive stars, M > 2M⊙, electron scattering with σe ∼ (1 + X) is the dominant

opacity, so

μ∼ + → ∼L M X L M/(1 ) , (13.4)4 3 3

where the last equation is for ZAMS stars that have the same composition. The
electron density is almost independent of the metallicity, Z, but strongly dependent
on the He abundance. Ignoring the small fraction of Z, we can approximate (1 + X) =
(2−Y) and μ = (2 � 5Y/4)−1, so

∼ –   −    − −L M Y Y(2 ) (2 1.25 ) (13.5)3 1 4

for massive ZAMS stars. This is important for understanding the brightening of
massive stars during the H-fusion phase, when the He content gradually increases.
An increase in He abundance from Y = 0.25 to 0.35 results in an increase in L by a
factor of 1.5 and an increase from Y = 0.25 to Y = 0.50 increases L by a factor of 2.8.
A homogeneous He star, Y = 1, is brighter by about a factor of 50 compared to a
star with Y = 0.25.

For lower-mass stars, 0.5 < M < 2M⊙, the main opacity source is free–free and
bound–free absorption, which is described by Kramers’ law: κ ρ∼ + −X Z T(1 ) 7/2

(Equation (5.8)).
Substitution of ρ ∼ M R/ 3 and μ∼T M R/ transforms Equation (13.4) into

μ  ∼  L M ZR/ . (13.6)7.5 5.5 0.5

We will see below that ∼R Mx with ≃x 0.8, so we predict for low-mass ZAMS stars
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μ  ∼   → ∼L M Z L M/ , (13.7)7.5 5.1 5.1

where the last equation is for ZAMS stars that have the same composition.
Figure 13.1 shows the M-L relation from detailed models for a composition of

X = 0.72, Y = 0.266, and Z = 0.014. The figure shows that L ∼ M3 is a good
approximation in the mass range of 2 < M < 30M⊙ and L ∼ M 5.1 is a good
approximation for 0.7 < M < 2M⊙. At M > 30M⊙ the M-L relation becomes flatter
because of the increasing contribution of radiation pressure to the EoS and the
increasing mass fraction of the convective core. At M < 0.7M⊙ the M-L relation
becomes flatter because of an increasing mass fraction of the convective envelope
(see Figure 7.6).

13.1.2 The Mass–Radius Relation for ZAMS Stars

The mass–radius (M-R) relation can be derived from the M-L relation if we can
derive an expression for L. Since all ZAMS stars have H-fusion, we can derive a
homology relation based on the nuclear energy production.

The energy production per gram per second is ϵ ρ∼ T v, with ≃v 4 for the pp-
chain and ≃v 18 for the CNO cycle (Section 8.4). The nuclear luminosity is given by

∫ ϵρ π ϵ ϵ ρ=   ∼   ∼  L r dr M T4 with . (13.8)
R

v

0

2

Figure 13.1. PredictedM-L,M-R, andM-Teff relations for ZAMS stars of X = 0.72 and Z = 0.014. The slopes
of the M-L relation in the range of 0.7 < M < 2M⊙ and 2 < M < 30M⊙, derived from homology relations, is
shown by dotted lines. (Based on data from Ekström et al. 2012 and Pols 2011.)
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Using Equation (13.3) for the scaling of T, we find

ϵ ρ μ μ∼ ∼ ∼ ∼ + +L M M T M M R M R M R( / ) / / . (13.9)v v v v v v v3 2 3

Comparing the above expression for L with μ κ∼L M /4 3 (Equation (13.3)) for stars
in radiative equilibrium, we get

μ μ
κ

∼
+

+
M
R

M
. (13.10)
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4 3

This yields an expression for R

μ κ  ∼    
−
+ +

−
+R M . (13.11)v
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3

1
3

For massive ZAMS stars, where κ ∼ + X1/(1 ) and the H-fusion happens via the
CNO cycle, ≃v 18 and κ = σe, so we find

μ  ∼   + → ∼   R M X R M(1 ) , (13.12)0.810.81 2/3 0.05

where the last equation is for ZAMS stars with the same composition.
For lower-mass ZAMS stars, where κ ∼ + X1/(1 ) and the H-fusion happens

via the pp-chain, ≃v 4 and κ = σe, so we find

μ  ∼   + → ∼   R M X R M(1 ) , (13.13)0.430.43 0 0.13

where the last equation is for ZAMS stars with the same composition.
We see that the M-R relation of ZAMS stars can be approximated by R ∼ Mx,

with the predicted value of x decreasing from 0.8 to 0.4 toward lower-mass stars.
The middle panel of Figure 13.1 shows the M-R relation derived from detailed
models. Contrary to our simple prediction, the exponent x is larger at lower mass
than at higher mass. This is due to the increasing role of the convective envelope
toward lower-mass stars (see Figure 7.6) and the transition from κ = σe to κ = κbf
toward cooler stars.

13.1.3 The Mass–Temperature Relation for ZAMS Stars

The most interesting homology relation for ZAMS stars is the relation between M
and Teff because Teff is one of the parameters in the HR-diagram. We can find the
homology relation for Teff by combining the predictedM-L andM-R relations using

∼T L R[ / ]eff
2 1/4. We have shown that L ∼Mα with α ⩾ 3 and that R ∼Mx with x < 1.

This immediately tells us that Teff increases with increasing M and L. This is the
reason that, in the HRD, the ZAMS runs from upper left to lower right.

For massive ZAMS stars with κ = σe and ν = 18, we find

μ  ∼       + → ∼   → ∼−T M X T L L T(1 ) . (13.14)eff
0.12

eff
8.5

eff
0.35 0.83 0.5

For lower-mass ZAMS stars with κ = σe and ν = 4, we find

μ  ∼       + → ∼   → ∼−T M X T L L T(1 ) . (13.15)eff
0.18

eff
5.5

eff
0.54 1 0.32
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We see that Teff decreases with decreasing M and L. We also see that the decrease is
a stronger function of M for lower-mass stars than for higher-mass stars; this is why
the ZAMS in the HR diagram is steeper for massive stars than for lower-mass stars.
These relations cannot be applied for stars with M < 1M⊙ because these stars are
partly convective. We will show later (Section 14.3) that stars with very deep
convective envelopes approach an almost constant value of Teff ≈ 3000 K (see Figure
13.1). This results in a steepening of the ZAMS in the HRD at low temperatures.
Figure 13.2 shows the location of the ZAMS in the HRD derived from detailed stellar
models with X = 0.72, Y = 0.266, and Z = 0.014.

13.2 The Influence of Abundances on the ZAMS
The dependence on metallicity Z. The results above show that for massive ZAMS
stars Teff is rather insensitive to metallicity (Z), but for intermediate mass ZAMS
stars a lower Z implies a higher Teff and a larger L.
The dependence on helium abundance Y. The dependence of Teff and L on X and μ
implies that Teff and L both increase for ZAMS stars with increasing He abundance.
Figure 13.3 shows this effect schematically. The ZAMS of low-metallicity stars and
the ZAMS of stars with higher initial He abundance are to the left and slightly

Figure 13.2. Location of the ZAMS in the HRD for stars of X = 0.72, Y = 0.266, and Z = 0.014. The masses of
some stars are indicated. (Based on data from Ekström et al. 2012 and Pols 2011.)
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upward compared to the ZAMS for solar metallicity stars. This is important for
understanding the observed HRDs or CMDs of Galactic globular clusters, which
often show multiple main sequences.

Q (13.1) Explain in simple physical terms why both Teff and L increase with decreasing
metallicity.

Q (13.2) Explain in simple physical terms why both Teff and L increase with increasing He
abundance.

The left panel of Figure 13.4 shows the effect of a decreased metallicity on the
location of the ZAMS, based on detailed models. The right panel shows the effect of
an increased He abundance, based on the homology relations derived above. In all
cases, a star moves to the left and upward in the HRD when the metallicity is
decreased or the He abundance is increased.

13.2.1 The ZAMS for Helium Stars

Figure 13.5 shows the ZAMS of He-stars, compared with those of H-rich stars, as an
extreme example of the effect of the He abundance on the location of the ZAMS.
This is an interesting comparison because we will show later that Horizontal Branch
stars are almost pure He-stars. Note that, when comparing stars of the same mass,
the He-rich stars are much brighter (by about a factor of 30 to 100) and much hotter
(by about a factor of 4 to 10) than H-rich stars of the same mass. The higher
luminosity is due to the μ-effect (L ∼ μ4 or L ∼ μ7.5 in Equations (13.3) and (13.6)).
The higher temperature is due to the higher L and smaller R by about a factor of 5.
This radius decrease is not properly predicted by the homology relations because the
internal structure of He-stars differs drastically from that of H-stars. This is due to
several effects. The extreme temperature sensitivity of He-fusion (ε ∼ T30) results in
a larger convective core in He-stars than in H-stars. At the same time, the higher
luminosity results in a higher ratio of Prad/P. This also contributes to the failure of
the homology comparison between He-stars and H-stars.

Figure 13.3. Schematic representation of the effect of the initial He and metal abundance on the location of the
ZAMS in the HRD.
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The results show that we can expect Horizontal Branch stars, which are low-mass
(M ≈ 0.8M⊙), almost pure He-stars at the beginning of this phase, to be much hotter
and brighter than normal MS stars of the same mass (see Figure 2.7).

13.3 Evolution during the Main-sequence Phase
The main-sequence phase is the longest phase in the evolution of a star. During this
phase the star changes slightly because its internal chemical composition is changing.
The changes in the chemical composition of the star depend on the presence or
absence of convection in the core. A star without a convective core creates a
chemical gradient from the very center throughout the region where H-fusion
occurs. A star with a convective core has a chemically homogeneous core that
becomes more He-rich over time. This has an effect on the way the star reacts when
H-fusion in the core comes to an end.

13.3.1 Nuclear Fusion as a Thermostat

During core H-fusion, the temperature in the core changes very little because the
energy production by fusion is a strong function of T, with ϵ ∼ T 4 for the pp-chain in
low-mass stars and ϵ∼T 18 for the CNO cycle in more massiveMS stars. Even a small
change in T would result in a large change in ϵ and L, which is not allowed by the HE
requirement.Nuclear fusion therefore acts like a thermostat in the center of a star: the
stronger the temperature dependence of ϵ, the more accurate the thermostat.

Figure 13.4. Left: the location of the ZAMS in the HRD for stars with solar metallicity, Z = 0.014 (full line),
and Z = 0.002 (dotted line). Right: the effect of an increase in He abundance from Y = 0.27 (full line) to 0.37
(dotted line). (Figure based on data from Ekström et al. 2012.)
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13.3.2 Changes in L and R during the MS phase

The nearly constant temperature in the star implies that the total thermal energy,
Eth, remains about constant. If Tc remains about constant during the MS phase but
μc increases because of the increasing He content in the center, then Pc/ρc ∼ Tc/μc
must decrease. The ρc must therefore increase faster than Pc as more and more H is
converted into He in the core. The density can only increase if the core shrinks.

If Eth remains about constant, the virial theorem requires that the total potential
energy of the star also remains about constant. Since the |Epot| of the core increases by
core contraction, |Epot| of the envelope must decrease so the envelope must expand.
Thus, asμ increases in the center, the radius of a starmust increase.Table 13.1 shows the
changes inTc,Pc,ρc, andμcat thebeginning, themiddle, and the endof theMSphaseof
a star of 1M⊙. It shows that Pc and ρc increase by factors of 5 and 8, respectively,
between the beginning and end of core H-fusion, whereas Tc increases by only 14%.

The luminosity of a star increases during the MS phase due to the increase in the
average value of μ inside the star (L ∼ μ4). The change in Teff during core H-fusion
depends on the changes in L and R and cannot be derived from simple physical

Figure 13.5. The ZAMS of H-rich stars of X ¼ 0.70, Y ¼ 0.28, Z ¼ 0.02 (red) compared with that of He-rich
MS stars of X ¼ 0, Y ¼ 0.98, Z ¼ 0.02 (blue). Lines of equal radius are indicated by dashed lines.
(Reproduced from Maeder 2009. © Springer-Verlag Berlin Heidelberg 2012.)
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arguments. The homology relations that we used to derive the properties of ZAMS
stars do not apply to stars with a changing chemical profile. In general, the HE
condition, together with the radiative equilibrium condition, determine the structure
of the star with a given chemical profile, therefore they determine L and R. The
effective temperature has to adjust to L and R because Teff ∼ (L/R2)1/4, so there is no
direct correlation between changes in Tc and Teff.

Figure 13.6 shows evolutionary tracks of stars between the ZAMS and TAMS,
which marks the end of the core H-fusion. Note that all stars increase in brightness
during the MS phase due to the μ4-effect. Also note that the radius of all stars
increases during the MS phase as explained above. The radius increases strongest in
massive stars because the severe sensitivity of ε ∼ T18 results in a very strong
thermostat effect.

Figure 13.6. Evolutionary tracks of stars between 0.5 and 6M⊙ during the core H-fusion phase. The ZAMS is
indicated by a red line, while the TAMS is indicated by a blue line. The dots indicate the end of core H-fusion.
(From Salaris & Cassisi 2005. Copyright © 2005 by John Wiley & Sons, Inc. Reprinted by permission of John
Wiley & Sons, Inc.)

Table 13.1. The Parameters of a 1M⊙ Model at Three Different MS Ages (Data are from Schaller et al. 1992)

Age Phase L/L⊙ R/R⊙ Teff Tc Pc ρc Xc Yc Zc μc

0 Gyr ZAMS 0.69 0.66 6540 13.6 1.24 78 0.680 0.301 0.02 0.71
4.5 Gyr Now 1.00 1.00 5820 15.9 2.36 157 0.302 0.677 0.02 0.88
9.4 Gyr TAMS 1.55 1.25 5820 18.7 6.73 572 0.000 0.980 0.02 1.32

Note. Units of Teff are in K, Tc are in MK, Pc are in 1017 dyn cm�2, and ρc are in g cm�3.
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The combination of the changes in L and R results in a decrease in Teff for stars
withM > 1.2M⊙ and an increase in Teff for lower-mass stars. (The exact values of Teff

and R depend on the details of the convection theory used in the computations.) Note
the short blue loop at the end of the MS tracks for stars more massive than about 1.2
M⊙ and the lack of this loop for lower-mass stars. This is due to differences in the
chemical profiles at the end of the MS phase, as will be explained in Section 13.4.

13.3.3 The Role of Convective Cores in Stars with M > 1.2M⊙

In stars with M >1.2M⊙, H is fused via the CNO cycle, which is very sensitive to T.
The nuclear energy is therefore generated in a very small central volume. This means
that the energy flux is very high in and around the core of these stars. If that energy
had been transported by radiation, it would have required a steep temperature
gradient with |dT/dr|rad > |dT/dr|ad, so the Schwarzschild criterion implies that the
core is convective. In Section 7.9, we showed that a high value of L/4πr2 was one of
the reasons for convection.

MS stars with M > 1.2M⊙ have a convective core.
MS stars with M < 1.2M⊙ have a radiative core.

N.B. The convective region in the center of stars with M ≳ 2M⊙ is larger than the
region where most of the energy is generated by nuclear fusion (see Figure 7.6.). In
these stars, the fusion occurs in the center of the convective core because of the
extreme sensitivity of the reaction rate to the temperature, ϵ ∼ T 18. The mass
fraction of the convective core of ZAMS stars with M ≳ 1.2M⊙ increases with
increasing mass because the condition of a high value of L/4πr2 is reached in a larger
fraction of the stellar mass.

Figure 13.7. Evolution of the H-profile during the MS evolution of a low-mass star of 1M⊙ without a
convective core (left) and a star of 5M⊙ with a convective core (right) during several phases. In the right figure,
the central composition is indicated during these phases. The gray horizontal line is the H-profile of the ZAMS.
The deepest line is the profile at the TAMS. (From Salaris & Cassisi 2005. Copyright © 2005 by John Wiley &
Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)
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During the MS evolution the mass fraction of the convective cores of massive stars
shrinks. This is the result of two effects. At the boundary, rconv, of the convective core,Y
increases inside rconv but remains unchanged outside, so a μ-gradient develops.
According to the Ledoux criterion, this makes these layers more stable against
convection (see Section 7.2). At the same time, the absorption coefficient κ = σe ∼ (1 +
X) decreases inside the convective core, so |dT/dr|rad decreases because −dT/dr ∼ κ
(Equation(6.1)).Thisalsomakes these layersmore stableagainst convection.Wewill see
later, in Section 24.3, that the decrease of the mass of the convective core has a strong
effect on the changing surface abundances in massive stars during the MS phase.

Convection in the core of a star has three effects:
1. Convection brings freshH from all over the convective region into the center, so

moreH can be fused. This extends theMS lifetime of stars with convective cores.
2. As anMS low-mass star ofM < 1.2M⊙ ages, its chemical profile becomes more

peaked (higherY) toward thecenter,whereas inmoremassive stars it remainsflat
in the convective core due to mixing, withY increasing with time.

3. The decrease in the mass of the convective core during the MS phase in
massive stars implies that the chemical profile is flat in the center with
increasing Y in a decreasing fraction of the mass.

These effects result in an evolution of the chemical profile that is very different for stars
withM smaller or larger than 1.2M⊙. Figure 13.5 shows the evolutionof theH-profile of
a star of 1M⊙ and a star of 5M⊙ duringMS evolution. In low-mass stars, the H-profile
gets gradually steeper. In stars with a convective core, the profile remains flat, but gets
deeper with time. The extent of the horizontal parts indicates the extension of the
convective core. Note that this decreases drastically with time, as explained above.

13.3.4 The MS Evolution of the Sun

During the MS phase, while H-fusion continues, the structure of a star gradually
changes. It is interesting to study these changes in the Sun.

Table 13.1 shows the changes in the stellar parameters for a solar model of Z =
0.02 between t = 0 (ZAMS), 4.5 Gyr (now), and t = 9.4 Gyr (TAMS) when core
H-fusion ends. We see that

– L and R increase but Teff decreases, and
– Tc, Pc, and ρc increase, with ρc increasing the most and Tc increasing the least.

Figures 13.8a and 13.8b showdifferences in structure in terms ofR(m),T(m),P(m),L
(m), andX(m) for the solar model between t = 4.5 Gyr (now) and 9.2 Gyr (≈TAMS).

Q (13.3) Study the relation between X and L. Indicate the region where 70% of the luminosity is
generated and explain this.

Q (13.4) Compare the run of r(m) in both models and explain the difference. Indicate the size of
the region that contains the inner 10% of the mass and the outer 2% of the mass.
Explain the difference.
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13.4 The End of the MS Phase: The TAMS
When H-fusion stops in the core, the core must contract to compensate for the
radiative losses. As noted previously, this phase is called the terminal age of the main
sequence (TAMS).

In stars of M ≳ 1.2M⊙, the whole core contracts because H is exhausted in the
whole core due to convection (see Figure 13.7). The core gets hotter so Eth increases.
Virial equilibrium requires that the star contracts, which produces a small leftward
loop in the HRD at the end of the H-fusion phase (see Figure 13.6). This contraction
ends when the region around the He-core has reached a sufficiently high T and ρ to
start H-fusion in a shell around the He core.

In stars of M ≲ 1.2M⊙, the contraction is more gradual because the chemical
profile allows H-fusion to move gradually outward. Meanwhile, the core contracts
(just like in stars with M > 1.2M⊙), but this slower contraction does not result in a
decrease of the stellar radius, so these stars do not make a leftward loop in the HRD.

13.5 The MS Lifetime
The duration of the core H-fusion phase, τ(H), depends on the mass of the star and
its luminosity during the MS phase. If the same mass fraction of all stars took part in
H-fusion, stellar lifetimes would be proportional to M/L with L ∼ M3.8 so we might
expect τ(H) ∼ M�2.8. Instead, the mass fraction that is used in core H-fusion
increases with mass because of two effects.

(a) The central temperature increases with the stellar mass (Equation (3.9)), so
H-fusion is possible in a larger mass fraction of the star.

(b) In stars with M > 1.2M⊙, core convection brings material into the region
where fusion occurs.

Figure 13.9 shows the duration of the core H-fusion phase as a function of mass
for stars with solar abundance, Z = 0.014, and with low metallicity, Z = 0.002. Note

Figure 13.8. Internal structure of a 1M⊙ star at t = 4.5 Gyr (left) and t = 9.2 Gyr (right). The lines show the
run of X (red), L(m)/L (gray), T(m)/Tc (green), P(m)/Pc (purple), and r(m)/R (orange). (Reproduced from
Iben 1967.)
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that the lower metallicity stars have a shorter main-sequence lifetime. This is due to
their higher luminosity, as explained in Section 13.2.

The relation between τ(H) and mass for the models of Z = 0.014 can be
approximated to better than 10% accuracy by

τ = − + + −H x x x xlog ( )/yr 9.9551 3.3674 0.4794 0.3676 0.1013 , (13.16)2 3 4

where x = log(M/M⊙).

13.6 Summary
1. At the start of the core H-fusion phase, stars occupy a narrow strip in the

HRD called the ZAMS. The location of the ZAMS depends on the initial
chemical composition and can be explained by homology relations.

2. The ZAMS of stars with lower metal abundance or higher He abundance is
shifted to the left and upward in the HRD.

3. He-rich and H-poor ZAMS stars are about 30 to 100 times brighter and Teff

is about 4 to 10 times higher than H-rich ZAMS stars of the same mass.
4. As the mean particle weight μ in the core increases during the MS phase, the

core must contract and the envelope expands. This results in an increase in
radius. This increase is higher for massive stars that fuse H via the CNO cycle
than for low-mass stars that fuse H via the pp-chain.

5. During core H-fusion stars withM ≳ 1.2M⊙ move upward and to the right in
the HRD and stars with M ≲ 1.2M⊙ move upward and to the left.

6. Core convection in massive stars results in a short leftward loop in the HRD
at the TAMS.

Figure 13.9. Main-sequence lifetime as a function of mass for stars with Z = 0.014 (solid line) and Z = 0.002
(dashed line). (Based on data from Ekström et al. 2012 and Georgy et al. 2013.)
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Exercises
13.1 Explain in physical terms the difference in main-sequence lifetime between

stars of Z = 0.014 and Z = 0.002 plotted in Figure 13.9.
13.2 We will show later (Section 25) that differential rotation in a fast rotating

star may result in severe mixing during the main-sequence phase.
Calculate the increase or decrease of L, R, and Teff of stars more

massive than 2M⊙ when the composition has changed from X = 0.70,
Y = 0.28, Z = 0.02 to X = 0.49, Y = 0.49, Z = 0.02.

13.3 The first generation of stars had a very low metallicity and a slightly lower
He abundance than the Sun.

a. Calculate the increase or decrease of L, R, and Teff of massive stars
of X = 0.75, Y = 0.25, and Z = 0 compared to X = 0.70, Y = 0.28,
and Z = 0.02.

b. What is the effect of this abundance on the mass of the convective
core?

c. How does this affect the lifetime of massive MS stars?
13.4 Computer exercise

Use the MESA code to calculate the mass fraction of the convective cores
in ZAMS stars of 0.3, 1, 3, 10, 30, and 100M⊙, with solar abundances and
with globular abundances (0.01 times solar) and comment on the
differences.

13.5 Computer exercise
Use the MESA code to calculate the location in the HRD of ZAMS stars
of 0.3, 1, 3, 10, 30, and 100M⊙, with solar abundances (i.e., Z = 0.014),
SMC abundances (0.1 times solar), and globular abundances (0.01 times
solar), and comment on the differences.
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Understanding Stellar Evolution

Henny J.G.L.M Lamers and Emily M. Levesque

Chapter 14

Principles of Post-main-sequence Evolution

Before explaining the evolution of low-mass stars and massive stars, we must first
discuss some physical principles of post-main-sequence evolution. These principles
are important for understanding the evolution of the cores of stars, the properties of
isothermal cores, the influence of fusion in a shell, and the structure of fully
convective stars. We will show that (a) there is an upper limit to the mass of
isothermal cores of stars in hydrostatic equilibrium, (b) shell fusion acts like a mirror
for the expansion of stellar cores and envelopes, and (c) fully convective stars occupy
a nearly vertical strip in the HR diagram called the Hayashi line.

14.1 Isothermal Cores: The Schönberg–Chandrasekhar Limit
At the end of the MS phase, a star has a core with mass Mc and radius Rc that no
longer produces nuclear energy. This implies ≈L r( ) 0 for <r Rc. If < ≈L r R( ) 0,c

then ≈dT dr/ 0 in the core; otherwise, there would be transport of radiation. This
shows that a core without fusion is approximately isothermal. The question is now
whether an isothermal core can be in hydrostatic equilibrium.

An isothermal core in HE must have a steep density gradient to produce the
pressure gradient, because at constant temperature ρ∼dP dr d dr/ / . In other words,
the density gradient must provide the pressure gradient without the help of the
temperature gradient. It turns out that an isothermal core can only exist if its mass is
smaller than a certain fraction of the total mass of the star. We will derive this in a
way that resembles our derivation of the Virial Theorem in Section 3.3.

Hydrostatic equilibrium requires

ρ= −dP
dr

Gm
r

. (14.1)
2

Multiplication by πr4 3 and integration over the core, i.e., 0 < r < Rc, gives
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with α ≫ 1. Partial integration of the left term, as in the derivation of the virial
theorem (Section 3.3), yields
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where we have used the isothermal condition ρ μ=P T /c cR with Tc = constant. Note
that, contrary to the derivation of the VT, the first right term is not zero because the
integration is not done to R (where P(R) = 0) but to Rc, so )P R( c is the pressure at the
outer boundary of the isothermal core. Equations (14.2) and (14.3) show that

π
μ

α− = −R P R
T

M
GM

R
4 ( )

3
. (14.4)c c

c

c
c

c

c

3
2R

This provides a relation between the pressure at the boundary of the core and its
radius, for a given core mass Mc and temperature Tc:

π μ
α
π

= −P R
T M

R

GM

R
( )

3
4 4

. (14.5)c
c

c

c

c

c

c
3

2

4

R

This expression is of the type = −y Ax Bx3 4 if =x R1/ c. It has a maximum at
=x A B3 /4 , where =y A B3 /4max

3 4 4 3. Substituting A and B gives the maximum
pressure that an isothermal core can support.

μ
=P R C

T

M
( ) , (14.6)c

c c

max
c

4

4 2

where C is a constant. The pressure due to the weight of the envelope on top of the
core should be less than this maximum value, otherwise the core cannot support it.
The higher the core mass, the smaller this maximum pressure. We can also see that a
higher core temperature allows for a larger maximum pressure.

Q (14.1) Explain in physical terms why there is a maximum for P(Rc).

Let us assume that the isothermal core contains only a small fraction of the total
stellar mass M, and that the radius R of the star is much larger than Rc, so the
contribution of the isothermal core to the total mass of the star is small. The pressure
at the bottom of the envelope can then be estimated in the same way as the estimate
of the central pressure of any star in HE (Section 3.2)

≅P R GM R( ) / . (14.7)cenv
2 4
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The temperature at the bottom of the envelope is the same as the isothermal core
temperature Tc. We have derived in Section 3.2 that for a star in HE consisting of an
ideal gas the central temperature is of the order of


μ
μ

∼ ∼T
GM

R
M
R

T
G

or , (14.8)c
cenv

env

where μenv is μ in the envelope. Substitution of this into the expression for Penv(Rc)
yields

μ
  ∼  P R

T

M
( ) . (14.9)c

c
env

4

env
4 2

The isothermal core can only be stable if Penv(Rc) < Pmax (Rc). This gives

⎛
⎝⎜

⎞
⎠⎟

μ
μ

≲ =M
M

C Cwith 0.37. (14.10)
c

C env
2

This is called the Schönberg-Chandrasekhar limit for isothermal cores (Schönberg,
M., & Chandrasekhar 1942).

At the end of core H-fusion when μ = 4/3c and μenv ≈ 0.6 the remaining
isothermal He core can only be stable if its mass is smaller than the maximum
value of

⎛
⎝⎜

⎞
⎠⎟< ≈M

M
0.37

0.60
1.33

0.08. (14.11)c
2

Here, we assumed that the envelope is not chemically enriched at all. In reality, the
lower part of the envelope has an increased He abundance with μ > 0.env 6. If that is
taken into account, the Schönberg–Chandrasekhar limit for isothermal cores is
Mc/M ≈ 0.10.

If the core is less massive than this, the subsequent H-shell fusion occurs around a
stable He core. If the core is more massive than this, the isothermal He core cannot
support the weight of the shell plus the envelope in HE, so it will contract during
H-fusion in a shell around it. Contraction of the He core will create a temperature
gradient that produces extra gas pressure and helps to stabilize the core. However, if
the core is no longer isothermal, the temperature gradient results in an energy flux
from the core, so once the core starts to contract it loses energy and has to keep
shrinking until He-fusion starts in the core. This contraction occurs on the Kelvin–
Helmholtz timescale of the core:

τ ≃ −GM
R

L L/( ), (14.12)c

c
KH

2

shell

where Lshell is the energy generated by fusion in the shell around the core.

Q (14.2) Why does Equation (14.12) contain the factor (L − Lshell ) instead of L?
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14.2 The Mirror Principle of Stars with Shell Fusion
Whenever a nondegenerate star in radiative equilibrium has fusion in a shell around
the core, the shell appears to act like a mirror (see Figure 14.1).

– When the core contracts, the envelope expands.
– When the core expands, the envelope contracts.

There are two ways to explain this: using the virial theorem argument or using the
pressure argument. In both arguments, the thermostatic behavior of a fusion shell
plays a key role (see Section 13.3.1).

The virial theorem argument

For a nondegenerate star in radiative equilibrium to remain in thermal equilibrium,
the energy generation by fusion must remain about constant. The fusion efficiency is
very sensitive to T. Therefore, as the core contracts, the fusion shell can hardly
contract with it, because doing so would increase its T and its energy production.
The shell must remain at about the same T, so the mean temperature T̄ of the star
will not change very much. If T̄ does not change, the total kinetic (thermal) energy
will not change. The virial theorem then implies that the total potential energy
should also remain constant, so if the core contracts (decreasing E c

pot) the envelope
must expand (increasing Epot

env), and vice versa.

The pressure argument

If the core contracts and the shell on top of the core follows, the temperature in the
fusion shell rises. This would imply an increase of the energy generation rate unless
the density in the shell decreases, but if the density decreases at a roughly constant
temperature, the pressure on the shell, exerted by the weight of the envelope, must
decrease. Therefore, the envelope must expand. The same argument can be used to
show that the envelope must shrink if the core expands.

We conclude the following:
– Fusion shells act like mirrors to the expansion or contraction of the core and
the envelope. This is due to the thermostatic action of fusion shells.

Figure 14.1. Mirror action of shell fusion (red): if the core contracts, the envelope expands and vice versa.
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– The contraction of a nondegenerate He core surrounded by a fusion shell at
the end of the MS phase will result in an expansion of the star and a decrease
of Teff.

– We will show later, in Section 16.4, that the contraction of a degenerate core
(due to the increasing mass) surrounded by a fusion shell will result in an
increase in luminosity.

14.3 The Hayashi Line of Fully Convective Stars
Fully convective stars occupy a narrow, almost vertical, band at low Teff ≈ 3000 to
4000 K in the HR diagram. We have seen that this applies to fully convective pre-
MS stars (Figure 12.4). We will see later that it also applies to fully convective red
giants, red supergiants, and AGB stars; all lie in roughly the same vertical band in
the HR diagram. This band is called theHayashi line (Hayashi 1961, 1966). The part
of the evolutionary track of a star that follows the Hayashi line is called the Hayashi
track.

The Hayashi line is the result of two effects:
– Convective stars have extended envelopes and large radii, so their Teff is low.
– At low temperatures of Teff ≲ 3000 K the opacity in the photosphere drops
steeply toward lower Teff.

We will derive the physical principle of the Hayashi line by showing what happens if
a radiative photosphere is attached to the top of a fully convective star. The star is
supposed to be fully convective from the center to the bottom of the photosphere,
where τ ≃ 1. We will call this photospheric radius R1, with R1 very close to the stellar
radius R.

A. The pressure at τ = 1, derived from the interior structure.
A fully convective star obeys the polytropic relation ρ=P K 5/3, where K is a
scaling constant that depends on the star and is to be determined. All
convective stars are homologous (i.e., they all have the same P P/ c,T T/ c, and
ρ ρ/ c structures if these are expressed in a function of r/R). We can derive how
K depends on the mass and radius of the star by realizing that the central
pressure is proportional to

ρ ρ∼ = ∼P
GM

R
P K M Rand with / . (14.13)c c c c

2

4
5/3 3

The first equation results from the condition of HE, the second from the
polytropic condition, and the third from the homology condition, so the
scaling constant K depends on the stellar parameters as

ρ
ρ=   ∼     ∼     →   ∼K

P M
R

M
R

R
M

K M R. (14.14)
c

c
5/3

2

4

5
3

2

4

5

5/3
1/3

The polytropic expression for P is valid at all depths, as well as at the top of
the convection zone at R1, where P ≡R( )1 P1, so the pressure at R1 derived
from the interior condition is
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ρ ρ= ∼P K M R( ) , (14.15)1
int

1
5/3 1/3

1
5/3

where ρ1 ≡ ρ(R1).
B. The pressure at τ = 1, derived from the photosphere.

The temperature structure of a simple (gray) photosphere is given by

⎛
⎝⎜

⎞
⎠⎟τ= +T T

3
4

2
3

. (14.16)4
eff
4

This implies that the photosphere is almost isothermal because 0.84 < T /Teff

< 1.06 at τ< <0 1. We therefore adopt, for simplicity, that the photosphere
is isothermal with T = T1. The pressure in the photosphere decreases
exponentially with height as

μ
ρ ρ ρ μ μ= = −   →   = − = ≡dP

dr
T d

dr
GM
R

dln
dr

GM
R T

g
T

1
, (14.17)1

2 2
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where μ≡ ∼T g TR GM/ /1 1 1
2H R is the density scale height of the photo-

sphere. The density distribution in the photosphere is

ρ ρ=  
− −

e . (14.18)
r R

1

1
H

Adopting this density distribution ρ(r), we can now find the pressure P1 ≡
P(R1) at τ = 1 derived from the photosphere. The optical depth τ = 1 is
defined by

∫ ∫κρ κ ρ κρ=   →   = =
∞ ∞

−
−

dr e dr1 1, (14.19)
R R

r R

1

( )

1
1 1

1

HH

where we used a mean value for κ κ τ¯ ≈ =( 1). So, the density ρ1 at τ = 1 is
ρ κ κ= ¯ ∼ ¯GM TR1/ /1

2H and the gas pressure at R1 ≡ R (τ = 1) due to the
photosphere is

ρ
κ

ρ κ∼ ∼ ∼ ¯P T
GM
R

GM TR
1

with / . (14.20)1
phot

1 1 2 1
2

C. Matching the pressure of the interior to photosphere at τ = 1.
We now have two expressions for the pressure P(R1), one derived for the top
of the polytropic interior and one derived for the bottom of the photosphere
at τ = 1. These two should be equal.

κ κ κ=   →     ∼     →     ∼  − − − − − − −P P MR M R T R M T (14.21)1
phot

1
int 2 1 2 7/3 5/3 5/3 3 5 2

(for clarity we have replaced the symbol κ̄ with κ). Up to now, we have
specified neither the energy source nor the luminosity. The luminosity does
not have to obey the M-L relation that was derived in Section 6.2 because
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that was for stars in radiative equilibrium, whereas here we are dealing with
convective stars.

The luminosity is set by R1 and T1 ≈ Teff because L ∼ R2T 4. This gives
the luminosity of fully convective stars:

κ∼ − −L M T (14.22)6 6 4

D. The absorption coefficient κ in the photosphere of cool stars.
For very cool stars with Teff ≲ 6000 K, H− is the dominant atmospheric
opacity. This opacity is very small: at T = 3000 K and ρ = 10−10 g/cm3,
which are the approximate values in an atmosphere of an AGB star, the
opacity is only 5 × 10−5 cm2/g−1 (compare this with κ ≈ 0.3 cm2/g in the
interior of ionized stars). The H− opacity is a very steep function of T

κ κ ρ κ≃ = ×½ −T Z( /0.02) with 2.5  10 cm /g . (14.23)0
9

0
31 2

We can write this as κ κ ρ= Ta b
0 with a = 1/2 and b = 9.

E. The effective temperature of fully convective stars.
Substituting the expression for κ into Equation (14.22) for L, we find

= + +L A T B Mlog log log constant, (14.24)eff

with = + +
−

≃A
a b

a
18 4 6

3 1
104 and = +

−
≃ −B

a
a

2 6
1 3

14. We see that for

fully convective stars

∼ ∼− −L T M T L Mand . (14.25)eff
104 14

eff
0.01 0.14

This means that Teff is almost independent of L and M! The Hayashi line is
therefore almost vertical in the HR diagram and the predicted lines for
various masses are very close together.

N.B.
– The temperature of the Hayashi line depends on metallicity because the
photospheric opacity is proportional to Z (Equation (14.23)). The
Hayashi line of low-metallicity stars is at a higher Teff than the Hayashi
line of solar metallicity stars.

– Detailed evolutionary models show that the Hayashi line bends a little
bit to the right (toward cooler temperatures) at L > 102Lʘ (see figure
12.4).

– In the color–magnitude diagram with B-V on the x-axis the Hayashi
line of fully convective stars bends much more strongly to the right
because this color index depends very strongly on Teff for cool stars (see
Figures 2.5 and 2.7).

– The inverse dependence of L on M may appear counterintuitive;
however, realize that this was derived for stars that are fully convective
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without a core. We will see later (in Sections 16.2 and 16.4) that low-
mass stars become almost fully convective but have a high density core
when they reach the Hayashi line. Their luminosity is set by the mass of
the core. As this core mass increases, the radius increases and the star
climbs the Hayashi track in the HR diagram.

– Because stars on the Hayashi line have nearly the same Teff, their
luminosity is set by the radius because L ∼ Teff

4R2. We have seen in
Section 12.5 that convective protostars are contracting (i.e., R is
decreasing), so they evolve down along the Hayashi track.

Figure 14.2 shows predicted evolutionary tracks of stars with a large
range of masses, from 0.8 to 25Mʘ. The stars with a minimum effective
temperature occupy a nearly vertical band in the HRD: this is the Hayashi
line.

14.3.1 Intuitive Explanation of the Hayashi Line

We have derived the location of the Hayashi line from mathematical expressions.
Can we also understand the location of the Hayashi line based on simple physical
insight?

Consider the two main ingredients:
– Fully convective stars are geometrically extended. This is because they have a
small T-gradient, with |dT/dr| = |dT/dr|ad < |dT/dr|rad. With this small
T-gradient, going from the hot inside of Tc ≳ 107 K to the much cooler
edge of the star, where T ∼104 K <<< Tc, requires a long distance, so their
radii are large and their effective temperatures are low. This is a general
property of stars with convective envelopes: as the convective envelope of a
star gets deeper, the stellar radius expands (see Figure 10.1).

– The opacity at low temperatures is due to H−. This opacity is very small (e.g.,
κ ∼ −10 4 cm2/g−1 at ρ≃ ≃ −T 3000 K and 10 10 g/cm−2) and decreases very
steeply with decreasing temperature as κ ∼ T9.

Suppose a very cool star of constant L increases its size. The Teff would then
decrease and the outer layers would become (almost) transparent. Thus, even if the
star’s size increased, we could look deeper and deeper into the star up to the depth
where τ = 1 is reached at almost constant T. This is the main reason why the Hayashi
line is approximately vertical in the HR diagram!

N.B. This argument does not apply to stars that contain dust in their envelope. For
such stars (e.g., stars at the tip of the AGB with dense cold winds and class 0 T Tauri
stars; see Figure 12.6), the dust is the main opacity source, and κ is large and has a
weak dependence on T. These stars therefore radiate as black bodies with the
temperature of the dust and the radius of the dusty wind. The radiation from the
photosphere is shielded.
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14.4 Summary
1. After the MS phase, when H-fusion stops in the core but continues in a shell,

the core is nearly isothermal. Isothermal cores can only remain in hydrostatic
equilibrium if the ratio Mc/M < 0.10, where Mc is the core mass. This is the
Schönberg–Chandrasekhar limit. If Mc > 0.10 M, the core must contract.

2. In stars with shell fusion, the shell acts like a mirror: if the core contracts, the
envelope expands and vice versa. This is a consequence of the fact that fusion
acts like a thermostat.

3. Fully convective stars with a radiative photosphere have an almost constant
Teff of about 3000 to 4000 K. This is due to the very strong T-sensitivity of
the H− absorption in cool photospheres. The location of these stars in the
HRD is called the Hayashi line and the evolutionary tracks of (almost) fully
convective stars are called Hayashi tracks. Fully convective stars evolve

Figure 14.2. Predicted evolutionary tracks of low-metallicity stars. The core H- and core He-fusion phases are
shown in red and blue, respectively. The green region indicates the Hayashi line of stars at Teff ≈ 4000 to
5000 K with extended convective envelopes. (Reproduced from Schaller et al. 1992, with permission. © ESO.)
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upward along their Hayashi track if the radius expands (e.g., red giants,
AGB stars, and red supergiants) and downward if the radius decreases
(protostars).

Exercises.
14.1 Which one of these stars is more likely to have a contracting core during

H-shell fusion: a star of 0.5Mʘ or a star of 10Mʘ? Explain.
14.2 Estimate the timescale between the TAMS and the start of the core

He-fusion for a post-MS star of 4Mʘ. Assume that half of its luminosity is
obtained by core contraction, and the other half by shell H-fusion.
Hints: consider convection in the core and the Schönberg-Chandrasekhar
limit; estimate the core radius at the TAMS in analogy to the Sun.
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Chapter 15

Stellar Winds and Mass Loss

The evolution of stars is strongly affected by mass loss, so we must first discuss the
physics of stellar winds and the resulting mass-loss rates before continuing the
description of post-MS stellar evolution. Stars may lose mass due to a stellar wind.
The mass-loss rates are particularly high in luminous hot stars, where the wind is
driven by radiation pressure in the spectral lines of ions, and in cool low gravity stars
such as red giants and AGB stars. In these stars, the mass loss is driven by radiation
pressure on dust grains, helped by the pulsation of the stars. The mass-loss rate of
hot stars and cool supergiants is so large that it changes their evolution. Mass loss
strips away the outer layers of stars. After severe mass loss, the original deeper layers
that have been chemically modified appear at the surface. This allows observational
tests of the predicted nuclear fusion and mixing processes. In this section, we discuss
the two major mass-loss mechanisms. We also summarize expressions for the
observed mass-loss rates in various types of stars. Mass-loss rates are indicated by
the symbol ̇ ≡ −M dM dt/ and are expressed in units of 1Mʘyr

−1 = 6.3 × 1025 g s−1.
A mass-loss rate of 3 × 10−6 Mʘyr

−1, which is typical for a massive O-star,
corresponds to the loss of one Earth mass per year.

15.1 Types of Winds
The theory and observations of stellar winds are described in the book “Introduction
to Stellar Winds” (Lamers & Cassinelli, 1999). There are four basic types of stellar
winds.

a. Line-driven winds of hot stars are driven by radiation pressure on highly
ionized atoms of C, N, O, and Fe-group elements. This mechanism is
responsible for the fast (∼103 km s−1) winds of hot luminous stars: O- and
B-typeMS stars, hot giants and supergiants,Wolf–Rayet stars, and the central
stars of planetary nebulae. The mass-loss rates can be as high as 10−5Mʘyr

−1.
b. Dust-driven winds are driven by radiation pressure on dust grains. This

mechanism also needs stellar pulsations to produce a high mass-loss rate. It is

doi:10.1088/978-0-7503-1278-3ch15 15-1 ª IOP Publishing Ltd 2017
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responsible for the low velocity (∼10 km s−1) winds of pulsating red giants
and AGB stars. The mass-loss rate can be as high as 10−5 to 10−4 Mʘyr

−1.
c. Coronal winds are driven by gas pressure due to the high temperatures of

stellar coronae. This mechanism is responsible for the solar wind and winds of
cool MS stars and red giants. The mass-loss rates are too small to affect stellar
evolution; for instance, the solar wind produces a mass-loss rate of ∼10−14

Mʘyr
−1, which implies a loss of only 10−4 Mʘ during the MS lifetime of

∼1010 yrs.
d. Alfven wave driven winds are driven by magnetic waves. The magnetic field

lines are rooted in the photosphere. Horizontal motions of the footpoints,
due to convective cells, generate magnetic waves, which produce an outward
pressure gradient that can accelerate ionized gas. This mechanism is
(probably) responsible for the mass loss from red giants of ∼10−8 Mʘyr

−1

with speeds of ∼102 km s−1.
In this chapter, we discuss the two mechanisms, a and b, that produce the highest
mass-loss rates and play a crucial role in stellar evolution.

15.2 Line-driven Winds of Hot Stars
Line-driven winds are due to the transfer of the momentum from the stellar
radiation to the gas above the photosphere. Hot stars with ≳T 30,000 K emit
most of their light in the UV. This is also the wavelength regime where the ions of the
most abundant elements (doubly or triply ionized C, N, O, Si, S, Fe, etc.) have their
strongest spectral lines (i.e., where photons are most easily absorbed or re-emitted by
electron transitions in these ions). These specific ions are accelerated by the repeated
absorption or scattering of photons, so only a small fraction of all ions (typically
∼10−4) are accelerated; however, because of the frequent interactions of these
specific ions with protons and electrons, the gas is dragged along.

15.2.1 A Simple Estimate of a Radiation-driven Mass-loss Rate

Suppose a particular abundant ion in the wind of an O-star (e.g., a C IV ion) has one
very strong absorption line at a wavelength λ0 that corresponds to the peak of the
Planck function for that star. Assume that its absorption cross-section is so large that
the line is optically thick and absorbs or scatters all photons at its wavelength. How
much mass loss can one absorption line produce?

Suppose that the velocity increases from v = 0 at the photosphere to ∞v at large
distances. Due to the Doppler shift, all photons in the frequency range v0 to

+ ∞v c(1 v / )0 are absorbed or scattered (Figure 15.1). The momentum of a photon is
E/c = hν/c and the total momentum of all photons leaving the star per second is L/c,
so the photons that are absorbed or scattered in the wind transfer a total momentum
per second to the gas:

∫ π= = ∆ν

+

⁎

∞( )
L c R F c dv L v c/ (4 / ) / , (15.1)

v

v
v
c

vabs

1
2

0

0

where Lν is the luminosity at v0 and ∆ = ∞v v cv / .0 The total momentum loss of the
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wind per second is ̇ ∞M v . The photons that are absorbed or scattered (with a
luminosity Labs), transfer a momentum Labs/c per second to the gas. If the wind is
driven by radiation pressure, the momentum of wind is equal to that of the absorbed
radiation. This yields

̇ = = ∆ =∞ ∞M L c L v c L v cv / / v / . (15.2)v vabs 0
2

At the peak of the Planck function ≃L v L0.6v 0 (which is a property of the Planck
function), so we find that one strong spectral line can drive a mass-loss rate (in cgs
units) of

̇ ≃ ≃M
L
c

L
c

0.6 per optically thick spectral line. (15.3)
2 2

For a hot star of = ʘL L106 , this corresponds to a mass-loss rate of about
× −−

ʘM4 10 yr 18 per strong spectral line. If the spectrum contains Neff optically
thick spectral lines, with ≃N 10eff

2, then the mass-loss rate of that star is

̇ ≃ ≃ ≃ × −−
ʘM N L c L c M/ 10 / 7 10 yr , (15.4)1

eff
2 2 2 6

which is about the mass-loss rate of a typical luminous hot star. In reality, the winds
of hot luminous stars are driven by a mixture of a large number of optically thick
and thin lines (Castor et al. 1975).

An upper limit to the mass-loss rate of a radiation-driven wind can be derived by
assuming that all photons leaving the photosphere are absorbed or scattered in the
wind, resulting in

̇ < → ̇ ≃∞ ∞M L c M L cv / /v . (15.5)max max

The terminal wind velocities of hot stars are typically two or three times the escape
velocity at the photosphere: ≃∞ GM Rv 3 2 / . For a typical O main-sequence star,
this is about ≃ −

∞v 2000 km s 1, so the maximum radiation-driven mass-loss rate of an

Figure 15.1. Radiative flux absorbed or scattered in a wind with a terminal velocity v∞ by one strong spectral
line of rest frequency ν0 near the peak of the stellar energy distribution.
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O star of ≃ ʘL L105 is ∼ 10−6 −
ʘM yr 1; for a star of ʘL106 , it is −−

ʘM10 yr 15 . These
values are close to the observed mass-loss rates of massive O and B supergiants.

N.B. In the estimates above, we have assumed that the outward-directed momen-
tumof a stellar photon can be used only once. In reality, if there aremany spectral lines
and the photons are scattered multiple times, the total momentum transfer can be
increased by atmost a factor of≃3. As a result, hot luminous starsmay havemass-loss
rates slightly higher than the value of Ṁmax derived above.

Q (15.1) Sketch thepathofa scatteredphoton that transfersmoremomentumto thewind thanhν/c.

15.2.2 Observed Wind Velocities and Mass-loss Rates of Hot Stars

The observed terminal velocities of winds from hot massive stars are in the range of
about 2 × 102 to 3 × 103 km s−1. Figure 15.2 shows that velocity scales with the
escape velocity at the photosphere. The ratios are (Lamers et al. 1995)

v∞ ≈ 2.6 vesc if Teff ≳ 21000 K,
v∞ ≈ 1.3 vesc if 10, 000 ≲ Teff ≲ 20, 000 K, and
v∞ ≈ 0.7 vesc if 8000 ≲ Teff ≲ 10, 000 K.
The jumps in the ratio v∞/vesc are called bi-stability jumps. The difference between

the three regimes is due to the fact that the ionization stages of the elements that
drive the wind are dependent on Teff. In the hottest stars, the driving is mainly done
by triply ionized C, N, and O ions in stars of moderate temperature by doubly

Figure 15.2. Observed relation between ∞v and vesc for line-driven winds of hot luminous stars. (Reproduced
from Lamers & Cassinelli 1999. © Cambridge University Press. Reprinted with permission.)
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ionized Fe-group elements, and in the coolest stars by singly ionized Fe-group
elements (Vink et al. 2001).

Mass-loss rates of radiation driven winds are often expressed in terms of the
modified wind momentum, defined by Kudritzki (1988) as

≡ ˙ ∞
½D Mv R , (15.6)

which is expected to scale approximately as L1/α with α ≈ 2/3 by the theory of
radiation driven winds (Lamers & Cassinelli 1999). Figure 15.3 shows these relations
for OB stars in the Galaxy, the LMC, and the SMC. The predictions roughly agree
with observations.

Characteristic mass-loss rates for a number of Galactic massive main-sequence
stars are listed in Table 15.1. Based on these rates, it is expected that stars with
M ≳ 30Mʘ lose about 5% to 25% of their initial mass during the MS phase.

15.3 Dust-driven Winds of Cool Stars
Cool stars can have dust in their outer layers. The dust-to-gas ratio is typically ∼10−2

by mass, because dust cannot be formed from H and He but only from metals. Dust
is an efficient absorber of radiation, so the absorption of stellar photons by dust
grains produces a transfer of momentum (i.e., radiation pressure) from the photons
to the dust grains. The outwardly accelerated dust grains collide with the gas atoms
and molecules and drag these along, producing a stellar wind.

Figure 15.3. Observed modified wind momentum D in units of g cm s−2 (Rʘ
0.5) versus the L/Lʘ relation. Gray

bands indicate observed values (Mokiem et al. 2007) of Galactic, LMC, and SMC stars (from top to bottom,
with the full line as the empirical mean relation). Dashed lines show the predictions by Vink et al. (2001) for the
corresponding metallicities. (Reproduced from Mokiem et al. 2007, with permission. © ESO.)
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15.3.1 The Minimum Luminosity for Dust-driven Winds

Suppose that the dust grains are spherical with a mean radius a and a mean density
ρd. For icy particles ρ ≈ −1 g cmd

3 and for silicates ρ ≈ −4 g cmd
3. For simplicity, we

adopt a mean value of ρ ≈ −2 g cmd
3. So 1 g of gas contains π ρ= −n a10 /(4/3)d d

2 3 dust
grains, with a total cross-section of πn ad

2. The total absorption coefficient of 1 g of
dusty gas is

κ π
ρ

= ≃ × ≃ −
−

n a Q
Q

a
3 10

4
10 cm gram of gas, (15.7)1

d d
d

2
2

2

where ≈ −Q 10 2 is the efficiency factor for absorption and scattering, and the mean
particle radius is μ≈a 0.05 (Lamers & Cassinelli 1999; Mathis et al. 1977). The
wind can be driven by dust if the radiation pressure force exceeds gravity:

κ
π

π
κ

> → > → ≳
ʘ ʘ

L
r c

GM
r

L
GMc L

L
M
M4

4
10 . (15.8)d

d
2 2

3

This is the case for red giants, AGB stars, and red supergiants.

15.3.2 The Temperature of Dust

Circumstellar dust can only exist around cool stars; dust is destroyed at temperatures
above ∼1200 to 1500 K, depending on the composition of the dust. The temperature
of dust depends on the equilibrium between the energy of the radiation that the dust
grains absorb and their cooling by radiation. The energy absorbed per second by a
spherical grain of radius a at distance r from the star of luminosity L is

π
π

π
π

π σ= ≈ =

>

e a Q
L
R

W r R a Q
L
r

a Q T
R
r

r R

( / )
4

if 2 ,

(15.9)
in

2
abs 2

2
abs 2

2
abs eff

4
2

2

where = − −W r R R r( / ) {1 1 ( / ) }1
2

2 is the geometrical dilution factor that allows
for the fact that the radiation intensity does not decrease as fast as (R/r)2 at small
distances when the star is not a point source (W ≈ R r( /2 )2 at r > 2R). Qabs ≈ 10−2 is
the efficiency factor for absorption by particles with a radius of ≈ μa 0.05 m. The
energy radiated by a grain of temperature Td per second is

Table 15.1. Characteristic Mass-loss Rates of Massive Galactic Main-sequence Stars.

M/Mʘ log L/Lʘ log Ṁ (Mʘyr
−1) τMS (Myr) ΔM/M

30 5.15 −6.51 5.5 0.05
50 5.58 −5.86 3.8 0.10
80 5.97 −5.27 3.9 0.20
100 6.16 −4.99 2.7 0.27
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π σ=e a Q T4 , (15.10)out
2

em d
4

where Qem ≈ Qabs is the emission efficiency. Equating (15.9) and (15.10) gives the
dust temperature at distance r from the star of

= × − −{ }T T R r
1
2

1 1 ( / ) (15.11)d
4

eff

4 2

for gray dust (i.e., Q is independent of wavelength). Taking into account the
wavelength dependence of Q ∼ λ−p with p ≈ 1 yields

= ≈+
−
+T r R T W r R T r R( / ) [ ( / )] (2 / ) . (15.12)

d p peff

1
4 eff

2
4

Dust sublimates if it gets hotter than the condensation temperature, Tcond, which is
about 1000 to 1500 K depending on the type of dust. This means that dust can form
only at

⎛
⎝⎜

⎞
⎠⎟< > >+

+

W r R T T
r
R

T
T

r R( / ) ( / ) or
1
2

if 2 . (15.13)p

p

cond eff
4 eff

cond

4
2

Table 15.2 shows the condensation radius, rc (i.e., the minimum distance where dust
can form), for various types of dust and effective temperatures. Note that for Teff >
2500 K dust can only form at distances larger than about 2R.

Q (15.2) Equation (15.12) shows that the dust temperature is independent of the size of the dust
grains. Explain this.

15.3.3 The Role of Pulsation in Dust-driven Winds

We have shown that all cool stars with L/Lʘ > 103 M/Mʘ could, in principle, drive a
wind by radiation pressure on dust grains (Equation (15.8)); however, we have also
seen that dust can only form above the photosphere at a distance that depends on
Teff, e.g., at r > 3R if Teff = 3000 K. This creates a serious problem, since if there is
no wind, the density at a distance of 2R is so low that dust cannot form. If there is no

Table 15.2 The Condensation Radius of Dust in Cool Star Winds.

Dust type Tcond Silicate 1100 K Amorphous Carbon 1500 K Graphite 1500 K

Teff rc/R rc/R rc/R

3000 K 2.42 3.42 4.03
2500 K 1.86 2.12 2.34
2000 K 1.37 1.24 1.29

Note. Data for carbon-rich dust are from Lamers & Cassinelli (1999) and data for silicates are from Bladh &
Hoefner (2012).
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wind dust cannot form, and if dust cannot form there is no wind! This does not apply
to stars cooler than ∼2000 K, where dust forms close to the star.

The problem can be solved if the star is pulsating (Lamers & Cassinelli 1999;
15.9]. Many red giants and AGB stars pulsate. Pulsation tosses the outer layers of
the star radially outward, giving rise to a density distribution that decreases with
distance much more slowly than in a hydrostatic atmosphere. This is shown in
Figure 15.4, where the smoothed density structure of a pulsating AGB star with
different pulsation amplitudes is compared to that of a nonpulsating star.

Figure 15.5 shows empirical evidence that the mass-loss rates of Mira variables are
related to their pulsation. The mass-loss rate increases drastically with the period at
300 < P < 600 days and saturates at a level of ˙ ≈ −−

ʘM M10 yr 14 for longer periods.

Q (15.3) Can you think of a mechanism that sets the upper limit for the dust-driven mass-loss rates
of stars?

(Hint: consider the optical depth of the wind).

15.4 Mass-loss Formulae for Stellar Evolution
15.4.1 Massive O, B, and A Stars

Vink et al. (2001) predicted mass-loss rates for luminous hot stars of L > 3 × 104 Lʘ,
based on Monte Carlo simulations of radiation driven winds. These predictions fit
observations very well (see Figure 15.3). They derived a formula of the type

̇ = + + +
+ + +

ʘ ʘ ∞

ʘ

M A B L L C M M D

E T T F T T G Z Z

log log ( /10 ) log ( /30 ) log (0.5v /v )

log ( / ) (log( / )) log ( / ),
(15.14)

5
esc

eff ref eff ref
2

Figure 15.4. Time-averaged density structure ρ(r) in the atmosphere of a pulsating AGB star of R = 250Rʘ for
different pulsation amplitudes of 1, 2, 4, and 6 km s−1. The blue line is the density structure if the star does not
pulsate. (Figure is based on Bowen 1988.)
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with Ṁ inMʘyr
−1, Zʘ = 0.02, and v∞/vesc = 2.6 if Teff > 21, 000 K and 1.3 if 10, 000

< Teff < 20, 000 K. The parameters in two different temperature ranges are listed in
Table 15.3.

For the region 22, 500 ≲ Teff ≲ 27, 500 K an interpolation between the values of
the two ranges is recommended. Figure 15.3 shows a comparison between these
predictions and observations for luminous hot stars in the Milky Way, the LMC,
and the SMC. The metallicity dependence arises from the fact that the winds are
driven by radiation pressure in metal lines.

15.4.2 Wolf–Rayet stars

Wolf–Rayet stars are a late evolutionary stage of massive stars that have almost
completely lost their H-rich envelope (Section 2.7). Nugis and Lamers (2000) derived
the following empirical expression for the mass loss of Wolf–Rayet stars from the
observations of 64 C-rich and N-rich Wolf–Rayet stars with Y ≳ 0.3

̇ ≃ × −
ʘM L L Y Z2.8 10 ( /10 ) , (15.15)5 5 1.29 1.7 0.5

where Y is the helium mass fraction and = − −Z X Y1 . The terminal velocities of
these winds are between 2000 and 4000 km s−1.

15.4.3 Nonpulsating Red Supergiants: The Reimers Relation

Reimers (1975) determined the mass-loss rates of six red giants and supergiants with
4 < M < 18Mʘ, 10

3 < L < 105 Lʘ, 40 < R < 600Rʘ, and 3500 < Teff < 5000 K and
derived an empirical relation that is known as the Reimers relation

Figure 15.5. Mass-loss rates of Mira and OH/IR variables increase with longer pulsation periods, saturating at
a mass-loss rate of about 10−4 Msun yr

−1. (Reproduced from Vassiliades & Wood 1993.)
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η̇ = × −−

ʘ ʘ

ʘ
ʘM

L
L

R
R

M
M

M4 10 yr , (15.16)1
R

13

where ηR is a correction factor that was added to adjust it to the mass-loss rates
derived from observations of a larger number of cool stars of different spectral types.
This relation is often used in stellar evolution codes to describe the mass-loss rates of
cool stars.

This empirical relation implies that ̇ ∼ ̇ ∼ ̇ ∼MM R M GM R M L/ ( / ) vesc
2 . Winds of

cool supergiants and AGB stars have ≈ ≪−
∞ vv 10 km s 1

esc. This shows that the
kinetic energy of the winds is much smaller than the potential energy. The Reimers
relation thus implies that for these stars a fixed fraction of the stellar luminosity is
used to provide the potential energy of their wind that allows the gas to escape the
gravity of the star. This is different from the case of the hot stars, where the
momentum of the wind scaled with the momentum of the radiation.

Q (15.4) What would ηR be if the Reimers relation was used to predict Ṁ of the Sun?

An alternative empirical expression was proposed by Nieuwenhujzen & de Jager
(1990).

̇ = × −−
ʘ ʘ

−
ʘM L L M M T M1.2 10 ( / ) ( / ) yr . (15.17)18 1.64 0.16

eff
1.61

Van Loon et al. (2005) determined mass-loss rates from the spectral energy
distribution of dusty stars in the LMC and derived the following empirical mass-
loss formula for O-rich dust-enshrouded AGB stars and red supergiants:

̇ = × −−
ʘ

−
ʘM L L T M2.2 10 ( /10 ) ( /3500 K) yr . (15.18)16 4 1.05

eff
6.3

15.4.4 Pulsating Miras and AGB Stars

Vassilidadis & Wood (1993) derived an empirical mass-loss formula from the
observed infrared flux of dusty winds (see Figure 15.5):

Table 15.3. Mass-loss Rate Formula for Luminous Hot Stars (Vink et al. 2001)

27, 500 ≲ Teff < 50, 000 K 12, 500 < Teff ≲ 22, 500 K

A −6.697 −6.688
B +2.194 +2.210
C −1.313 −1.339
D −1.226 −1.601
Tref (K) 40, 000 20, 000
E +0.933 +1.07
F −10.92 0
G +0.85 +0.85
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⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭

̇ = − + × < <

̇ = − + − −

< >
̇ = −   >

ʘ

ʘ

ʘ

M P P M M

M P
M
M

P M M

M P

log 11.4 0.0123 (days) if 600 days and 2.5 ,

log 11.4 0.0123 (days) 100 2.5 ,

if 600 days and 2.5 ,

log 4.0 if 600 days,

(15.19)

all with =− + −ʘ ʘ⁎P R R M Mlog 2.07 1.94 log( / ) 0.9 log ( / )days . The terminal velocity
of these winds is about 5 to 20 km s−1.

15.5 Summary
1. Luminous early-type stars and luminous cool stars have mass-loss rates high

enough to affect their evolutions. This is important for the late-stage
evolution of low-mass stars and throughout the evolution of massive stars.

2. The winds of hot luminous stars are driven by radiation pressure in UV
spectral lines. The mass-loss rates are of the order of 10−7 to 10−5 Mʘyr

−1.
These winds reach a terminal velocity of a few times vesc, which corresponds
to v∞ ≈ 1000 to 4000 km s−1. Massive stars lose about 5% to 25% of their
mass during the main-sequence phase.

3. Cool stars with L/Lʘ > 103 M/Mʘ have dust-driven winds. This is the case
for luminous red giants and AGB stars. The mass-loss rates can be as high as
10−4 Mʘyr

−1. Except for stars with Teff < 2500 K, a star can only have a
strong dust driven wind if the photosphere is extended by pulsation. The
wind velocity of cool stars is of the order of 5 to 20 km s−1.

4. There are several theoretical and empirical formulae that describe mass-loss
rates as a function of stellar parameters. The theoretical formulae for the
mass-loss rates of massive O, B, and A stars agree well with the observed
mass-loss rates. The various empirical relations for the mass-loss rates of cool
stars apply only to specific types of stars.

Exercises
15.1 The momentum of an efficient radiation driven wind is about equal to the

wind momentum.
– What is the ratio between the momentum of the wind and the
momentum of the radiation of the stars listed in Table 15.1?

– What is the ratio between the kinetic energy of the wind and the
radiative energy of the stars listed in Table 15.1?

– What is the ratio between the thermal energy of the wind and the
radiative energy of the stars listed in Table 15.1?

15.2 Equation (15.11), which describes the temperature of dust that is irradi-
ated by a star, can also be used to estimate the mean surface temperature
of planets (with a small correction for reflection by clouds or ice). Check
this for Mercury, Earth, and Neptune.
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15.3 Compare the mass-loss rates predicted by Equations (15.16) and (15.17)
for a set of MS stars (class V), giants (class III), and supergiants (class I) of
Teff ≈ 6000 and 4000 K (use the data of Appendix B). What do you
conclude?

15.4 (a) Calculate the radiation driven mass-loss rate at the ZAMS and
TAMS of stars of 20, 40, 60, and 120Mʘ with solar metallicity (Z =
0.014) using stellar data from Appendix D.

(b) Take the mean value and estimate the fraction of mass that is lost
from these stars during the main sequence.

(c) Do the same for metal-poor stars of Z = 0.002 and compare the
results. What is the physical reason for the difference?

15.5 (a) Calculate the mass-loss rates for a variety of O, B, and A stars with
L > 3 × 104Lʘ, for which the Vink et al. (2001) predictions apply
(Section 15.4.1). Use stellar data from Appendix B.

(b) Calculate the value of the modified wind momentum D and verify
if these predictions support the empirical statement that D ∼ L1/α.

(c) Derive the value of α from the mass-loss predictions and compare it
with the empirical value from Figure 15.3.
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Chapter 16

Shell H-fusion in Low- and Intermediate-mass
Stars: Red Giants

Color–magnitude diagrams and Hertzsprung–Russell diagrams of old star clusters
invariably show a significant fraction of stars on the red giant branch. These stars are
brighter and cooler than the main-sequence stars in the same cluster. This indicates
that stars increase their radii after the phase of core H-fusion. Red giants fuse H in a
shell around the He core, so the expansion of the star is due to the contraction of the
core and the mirror action of shell fusion. In the description of their evolution, stars
with Mi < 2Mʘ are referred to as low-mass stars and stars in the range of 2 < Mi <
8Mʘ are called intermediate-mass stars, because their post-MS evolutions are
different. We discuss the evolution of stars of Mi = 1 and 5Mʘ in detail as examples
of the two mass ranges to demonstrate the various effects. This makes it possible to
connect computed phases of the internal evolution of stars to observed locations in
the HRD. We will show that stars experience a convective dredge-up of nuclear
products in the red giant phase. This changes the chemical composition of their
photospheres.

16.1 The Start of the H-shell Fusion
When H is exhausted in the core, the core contracts. The layers around it also
contract and their temperature increases to above T > 107 K, high enough for
H-shell fusion. We have shown in Section 13.4 that H-shell fusion starts differently
in stars with M ≳ 1.2Mʘ and stars with M ≳ 1.2Mʘ (see Figure 13.6).

- In stars with M ≳ 1.2Mʘ, which had a convective core during the MS phase,
the whole star contracts before H-shell fusion starts. This causes a small
leftward loop in the evolutionary track. The shrinking of the radius ends when
H-fusion is ignited in the shell.

- In stars with M ≳ 1.2Mʘ, H-fusion in the shell starts gradually because the
chemical profile is gradual. The transition from core H-fusion to H-shell
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fusion is smooth, so the envelopes of these stars do not contract and the
evolutionary tracks do not show the small leftward loop.

16.2 The H-shell Fusion Phase of Low-mass Stars of 0.8–2Mʘ

We first describe the evolution of a 1Mʘ star as an example of the evolution of a star
with 0.8 ≳ M ≳ 2Mʘ.

In presenting the evolution of stars, we will discuss their tracks in the HRD
combined with their Kippenhahn diagram (KD). This diagram was introduced by the
German astrophysicist Rudolph Kippenhahn in 1965 (Kippenhahn 1965). It shows
the changes in the interior stellar structure as a function of time (horizontal axis) and
mass fraction (vertical axis), with various colors and shadings used to indicate
regions of different fusion phases, convection, and composition. The combination of
the KD with the HRD provides us with very good insights into stellar evolution.

Figure16.1 shows theHRDandKDofastarof1Mʘ.The letters in theKDcorrespond
to the locations of the same letters in the HRD. The following phases can be recognized.

A-B: The main-sequence phase of H-fusion in the core.
B-C: H becomes exhausted in the center (X < 10−3) at point B. The core

contracts and its temperature increases. Before it is high enough for
core He-fusion, H-fusion is ignited in the shell around the core. The
mass of the He core exceeds the Schönberg–Chandrasekhar limit (SC-
limit) of 0.1M so the core keeps contracting. Because of the mirror
action of the shell, the outer layers expand and the star moves to the
right on the HRD. The expansion implies that an increasingly large
fraction of the stellar mass becomes convective (see Figure 10.1). Phase
B-C lasts about 2 Gyr. The star is now on the sub-giant branch.

C: At this point, about half of the stellar mass is convective: the star
reaches the Hayashi line. From now on it is a red giant. Around this
time the He core has contracted so much that it becomes degenerate!

Q (16.1) Check in the systematic diagram of Figure 8.10 that a star of 1Mʘ with a core mass of
about 0.2Mʘ can become degenerate before He is ignited.

C-D: The H-shell fusion keeps adding mass to the degenerate core, which
contracts because degenerate cores shrink when mass is added (see
Equation (11.14)). Because of the mirror action of the H-fusing shell,
the envelope expands. The star is on the Hayashi line so Teff hardly
changes, which implies that the expansion results in an increasing
luminosity. So the star climbs the Hayashi line in the HRD during the
red giant branch phase (RGB). As the core contracts, the density in the
shell increases because it is directly on top of the degenerate core, so
the shell-fusion becomes muchmore efficient. This produces the increas-
ing luminosity required by HE and TE for stars on the Hayashi track.
Note that the mass in the fusion shell gets smaller (narrower in the KD)
because less mass is needed to produce the luminosity at higher fusion
efficiency. The star climbs the RGB for about 0.5 Gyr.
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Figure 16.1. Kippenhahn diagram (top) and the HR-diagram (bottom), showing the evolution of a star of
1Mʘ. Hatched areas indicate fusion regions: dark hatched areas are for efficient fusion (ε > 5 L/M) and light
hatched areas are for inefficient fusion (L/M < ε < 5 L/M). Gray regions indicate convection, while the light
gray area indicates semi-convection. The horizontal dashed line indicates the deepest reach of the convective
envelope, which results in the first dredge-up. (© Pols 2011.)
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D: Near point D the outer convection reaches so deep into the star (to
m/M ≈ 0.25), that the products of H-fusion from the main-sequence
phase (light red shaded area in the KD) are mixed to the surface. The
surface abundance may now start to show evidence of a slight He
enrichment (difficult to detect in spectra of cool stars), a slight increase
in the N abundance, and a slight decrease of C and O. This is called the
first dredge-up.

D-E-F: As the degenerate core gets more massive, it keeps shrinking, so the star
keeps expanding and the luminosity keeps increasing. The H-shell
fusion reaches hotter layers and becomes more efficient, producing the
required luminosity. This results in faster and faster growth of the core,
which in turn results in an even more rapid increase in luminosity, etc.
This acceleration of the evolution can clearly be seen in the KD by the
fast growth of the core mass. The increase in efficiency of the shell
fusion can also be seen in this diagram because the mass of the shell
decreases, whereas its energy output (luminosity) increases.

E: At this point, the shell has reached a mass zone, m(r)/M = 0.25, which
was earlier reached by the deepest extent of the convective envelope.
The convection has mixed fresh H from the outer layers down to this
depth. Although the main H-fusion occurred in deeper layers, there
had been some depletion of H due to inefficient fusion during the MS
phase (see Figure 13.7). Thus, at phase E, the H-fusion shell finds itself
in a layer with increased H content and a lower mean atomic weight
than before. As a consequence, it starts fusing at a slightly lower rate.
In fact, its luminosity temporarily decreases (because L depends on μ)
and the star moves slightly down the Hayashi track as it shrinks a little.
This produces a little loop in the track that is shown in Figure 16.2 for a
star of 0.8 Mʘ. The star spends about 20% of its RGB time near this
loop. This produces a small peak in the observed luminosity distribu-
tion of RGB stars at MV ≈ 1.0.

E-F: During this phase, the shell is burning in a region of higher H
abundance, so the fusion can be slower and still produce the required
luminosity. Therefore, phase E-F lasts longer than phase D-E,
although the luminosity is higher.

F: At this point the degenerate core has reached a mass of M ≈ 0.45Mʘ.
The contraction of the core has resulted in a temperature high enough
for the ignition of He fusion in the degenerate core. The star leaves the
Red Giant Branch.

Phases F-G-H and H-J are the core He-fusion and the double shell fusion phases,
which will be discussed in Chapters 17 and 18, respectively. The gap in the track
between points F and G indicates that the star is not in equilibrium during that
transition (see Section 17.2).
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Q (16.2) The location of the red clump in the HRD of old clusters is very sensitive to convective
overshooting. Can you explain this?

16.3 The H-shell Fusion Phase of Intermediate-mass Stars
of 2–8 Mʘ

The post-MS evolution of stars with an initial mass of 2≲ Mi≲ 8Mʘ is very similar
to that of lower-mass stars. The tracks have the same general structure as in
Figure 16.1. The stars go through the subgiant phase and the red giant phase when
the star is largely convective and evolves upward on the Hayashi track; however,
there are some differences.

a. In lower-mass stars, the He core is more massive than the Schönberg–
Chandrasekhar (SC) limit, so the core keeps contracting when H-shell fusion
starts. In more massive stars, the mass of the He core is initially smaller than
the SC-limit, so the isothermal He core does not contract; however, due to
the addition of He by the H-shell fusion, the core mass does later exceed the
SC-limit and contract. The mirror action of the shell then results in an
expansion of the star by increasing the depth of the convective envelope, just
like in lower-mass stars.

b. Contrary to the lower-mass stars, the He core of stars with 2 ≲ Mi ≲ 8Mʘ

does not become degenerate during the H-shell fusion. This is due to the
higher T and lower ρ at the start of H-shell fusion. We will show in
chapter 17 that this has important consequences for the He ignition in the
core.

Figure 16.2. Left: the little loop in the RGB evolution of a star of 0.8 Mʘ occurs when the H-fusion shell finds
itself in a layer where the H abundance is larger because of envelope convection. This loop causes a small
bump in the luminosity distributions of old globular clusters (Reproduced from Salaris & Cassisi 2005.
Copyright © 2005 by John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.). Right: the
CMD of globular cluster M68 with the location of the small density increase produced by this loop indicated
by the red arrow (Reproduced from Salaris 1997).
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d. The H-shell fusion ends when the mass of the He core is only slightly higher
than the value of Mc ≈ 0.5Mʘ for the lower-mass stars.

e. The evolution timescales of the more massive stars are shorter than those of
the lower-mass stars. The MS lifetimes of stars of 1 and 5Mʘ are,
respectively, 9.0 Gyr and 82 Myr; the times to cross the HRD from the
TAMS to the Hayashi line are 2.3 Gyr and 2.4 Myr; and the stars climb the
Hayashi track in 160 Myr and 0.3 Myr, respectively.

Q (16.3) Verify with Figure 8.10 that the core of a 5Mʘ star does not become degenerate during
the H-shell fusion phase.

16.4 The Mcore–L Relation for Red Giants
Stars with Mi ≲ 2Mʘ have a degenerate He core and a very extended envelope when
they are on the RGB. This implies that the pressure on top of the H-fusion shell is
small. The pressure at the bottom of the H shell is mainly due to the shell itself and
the gravity from the core. This implies that the efficiency of the shell fusion is mainly
determined by the core mass and not by the envelope mass. Detailed evolutionary
models have shown that there is a strong and steep Mcore–L relation for stars with a
degenerate He core (Pols 2011; Refsdal & Weigert 1970):

≃ ×⊙ ⊙L L M M/ 2.3 10 ( / ) . (16.1)c
5 6

The luminosity is independent of the total mass of the star. Therefore, all evolu-
tionary tracks of stars of different mass converge onto the Hayashi line of the RGB.
In other words, one can derive the core mass from the luminosity of a star on the
RGB, but not the total mass.

16.5 Metallicity Dependence of the Red Giant Branch
We have seen that fully convective stars are on the Hayashi line. Red giants are
almost fully convective stars because their core contains only a small fraction of the
stellar mass. We have shown in Section 14.3 that the location of the Hayashi line in
the HRD depends strongly on the opacity in the photosphere. The H− opacity in
cool photospheres depends on metallicity because the metals provide the electrons
for H−. A higher metallicity provides more free electrons and a higher opacity. A
higher opacity means that τ ≃ 1 is reached at a lower density (i.e., further outward).
As a result, the Hayashi line for metal-rich stars is at a lower Teff than that of metal-
poor stars. This is why the metallicity of globular clusters can easily be derived from
the location of the RGB in the HRD.

Figure 16.3 shows the CMD of the cluster M54, which is at the center of the
Sagittarius Dwarf Elliptical Galaxy. The cluster had multiple star-formation periods
with different metallicities due to infalling gas. The CMD clearly shows the presence
of two main sequences: a heavily populated short one corresponding to an age of
12 Gyr and an extension to higher luminosity produced by a younger population
with an age of <2 Gyr. It also shows two RGBs: a blue one with a color of (F606W-
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F814W) ≈ 0.8, which is due to the old metal-poor population with Z ≈ 0.016 Zʘ ≈
2 × 10−4 and a redder more metal-rich RGB due to the younger population with Z
≈ Zʘ. The curvature of the RGB to the right in this diagram is due to the strong
sensitivity of the (F606W-F814W) color index to Teff (see Section 2.6). The CMD
also shows multiple horizontal branches.

The distribution of the young population of stars in the HRD of the cluster M54
shows a gap between the end of the main sequence and the lower RGB. This is called
the Hertzsprung gap. It is due to the short crossing time between the MS and the
RGB. For low-mass stars this crossing occurs on the KH timescale of τKH < 0.1 τMS.
For stars more massive than about 3Mʘ the crossing time in the HRD is even
shorter, so the probability of observing stars during that crossing is small.

Figure 16.3. Color–magnitude diagram (CMD) of the cluster M54, which is the center of the Sagittarius
Dwarf Elliptical Galaxy. The horizontal axis shows the color (F606W-F814W), (i.e., the difference in
magnitude between these two HST filters), and the vertical axis shows the apparent magnitude in the
F606W filter. Note the multiple main sequences (MS), the multiple red giant branches (RGB), and the
multiple horizontal branches (HB) corresponding to populations of stars with different metallicities. Also
note the Hertzsprung gap of the younger population and the lack of it for the older population.
(Reproduced from Siegel et al. 2007.)
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16.6 Mass Loss during the Red Giant Phase
Red giants lose mass by means of a stellar wind. These stars are located in the HRD
on the red giant branch (RGB). The winds of subgiants and low-luminosity RGB
stars are possibly driven by gas pressure in a chromosphere combined with nlinear
dissipation of magnetic Alfvén waves that originate in the convection zone
(Lamers & Cassinelli 1999; Suzuki 2007). For stars higher up on the red giant
branch, the winds are driven by a combination of stellar pulsation and radiation
pressure on dust (see Section 15.3.3).

In most stellar evolution calculations, the Reimers relation (Equation (15.16)) is
adopted with a free efficiency factor ηR ≃ 0.25 to 0.5, which appears to give
reasonably good evolution predictions. Adopting this description, a star of 1Mʘ

loses about 0.3Mʘ on the RGB (see the upper limit at phase F in the KD of
Figure 16.1) and a star of 5Mʘ loses about 0.8Mʘ during the RGB phase.

16.7 Summary
1. At the end of the core H-fusion phase the core contracts and H-fusion starts

in a shell around the He core.
2. In stars of M ≲ 2Mʘ, the core mass is higher than the Schönberg–

Chandrasekhar limit, so the core contracts. Due to the mirror action of
the shell, the envelope expands by deepening the convective layers. Initially,
the star moves horizontally in the HRD as a subgiant, but as it hits the
Hayashi line it becomes a red giant. From then on, the expansion results in
an increase in luminosity.

3. The H shell keeps moving outward in mass and adds helium to the
contracting core. The He core keeps shrinking and becomes degenerate.

4. When the lower boundary of the convection zone reaches layers where fusion
has occurred during the MS phase, the nuclear fusion products are trans-
ported to the surface. This first dredge-up increases the N abundance and
decreases the C and O abundance in the atmosphere.

5. As the fusion shell moves outward in mass (but inward in radius) it reaches
the deepest layers of the convection zone, which still have the initial H
abundance. This results in a decrease of the fusion rate and a small drop in
luminosity. This produces the red clump in the red giant branch of the HRD.

6. The post-MS evolution of stars with 2 ≲ M ≲ 8Mʘ is very similar to that of
lower-mass stars, but they do not develop a degenerate core.

7. When the core has reached a mass of about 0.5Mʘ, only slightly dependent
on the stellar mass, He fusion is ignited.

8. The transition from the MS to the RGB is short and decreases with
increasing stellar mass. This is the reason that the HRD of young clusters
and field stars shows a gap between the MS and the RGB. This Hertzsprung
gap is clearly present in the young population of cluster M54 (Figure 16.3).
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Exercises
16.1 What is the radius of a star of 1Mʘ at the start and at the end of the RGB

phase?
16.2 The Kippenhahn diagram in Figure 16.1 shows that the mass fraction of

the convective envelope decreases between phases D and F, when the
radius of the star increases. However, we have argued in Figure 10.1 that
the radius of a star with a convective envelope increases when the
convection reaches deeper into the star. Explain the apparent discrepancy
between these two statements about the depth of the convection.

16.3 Assume that the mass-loss rate of a red giant branch star of Mi = 1Mʘ is
described by the Reimers relation (Equation 15.16) with ηR = 0.5.
Calculate the mass-loss rates at points C, E, and F (in Figure 16.1) of
the RGB phase and compare it with the Kippenhahn diagram.

16.4 Computer exercise
Write a simple program to calculate the luminosity, radius, mass-loss rate,
core mass, and envelope mass as a function of time, when a star of 1Msun
climbs the RGB track from point C to F in Figure 16.1.
Hints: (a) use Equation (16.1) for the relation between L and the core
mass.

(b) calculate the increase in the core mass by the efficiency of the H-shell
fusion.

(c) use the Reimers mass-loss rate with ηR = 0.5.
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Chapter 17

Helium Fusion in Low-mass Stars: Horizontal
Branch Stars

The Hertzsprung–Russell diagrams of old clusters show a concentration of stars on
the horizontal branch. Stars on the horizontal branch are about a factor of 30 to 100
more luminous than stars of about the same mass at the tip of the main sequence.
We will show that stars on the horizontal branch have He-fusion in their cores
surrounded by a H-fusion shell. The cool end of the horizontal branch reaches the
red giant branch. In some clusters the hot end extends to Teff > 30,000 K whereas, in
other clusters, it reaches only to Teff ≈ 6000 K. The extent to the blue side of the H-R
diagram depends on the mass of the envelope that is left after the start of core
He-fusion.

17.1 The Ignition of Helium Fusion in Low-mass Stars
When the mass of the He core reaches a value of about 0.5Mʘ, slightly dependent on
the total stellar mass, the contracting core reaches the ignition temperature of
He-fusion at Tc ∼ 108 K. Because of the core mass–luminosity relation of red giants,
this happens at the tip of the RGB at L ∼ 103Lʘ (see point F in Figures 16.1 and
17.1). We have seen that stars with initial masses ofMi ≲ 2Mʘ have a degenerate He
core at the end of their RGB phase, whereas stars with Mi ≳ 2Mʘ have a
nondegenerate He core at the tip of the RGB. This results in different ignition
processes for stars in these two mass ranges.

When He is ignited, the produced energy leads to a T increase.
– In a nondegenerate core, such a rise in T results in an increase in P, so the core
expands. As the core expands, T and ρ decrease, which reduces the fusion
efficiency, so the star remains in hydrostatic and thermal equilibrium. In this
case, gravity acts like a regulator: the fusion does not get out of hand. This is
similar to the regulated start of the core H-fusion in main-sequence stars.
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– In a degenerate core, the ignition of He-fusion also produces a rise in T;
however, this does not result in an increased P, because P is independent of T
in a degenerate core. Because T rises and the core does not expand, the energy
production ϵ increases drastically; remember that ϵ ∼ T 30 for He-fusion. This
leads to more efficient fusion, which yields still higher T, which leads to even
more efficient fusion, etc. A degenerate core that is ignited acts like a bomb!
This is called the helium flash.

When the temperature in the degenerate core of a star ofMi ≲ 2Mʘ shoots up and
reaches a value of a few times 108 K, the degeneracy is lifted. This is because the
limit between degenerate and ideal gas is set by Tc ∼ ρc

2/3 (Figure 4.4). For any
density, there is a T where the gas is no longer degenerate. The density of the
degenerate He core of 0.5Mʘ is about 106 g cm�3, so degeneracy is lifted when Tc ≈
3 × 108 K. When that happens, the pressure increases when the temperature rises,
so the core expands very quickly and the fusion rate drops. The star then settles
into normal nondegenerate core He-fusion in hydrostatic and thermal equilibrium.
The luminosity produced in the core during the He flash is very high, of the order
of 1010Lʘ, but the He flash itself is extremely brief—it has never been observed!
This is because the energy of the flash is used to expand the originally degenerate

Figure 17.1. Evolution track of a star ofMi = 5Mʘ with solar metallicity Z = 0.02. The letters refer to the same
phases as those of figure 16.1 for a star of Mi = 1Mʘ. Phase F-G-H is the core He-fusion phase. Phase H-J is
the double shell fusion phase, which will be discussed in chapter 18. (© Pols 2011.)
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core by a factor of 100 in volume: from a degeneracy density of the order of 106 to
nondegeneracy at 104 g cm�3. Moreover, neutrinos remove a substantial fraction
of the fusion energy.

Q (17.1) Can you think of a way to estimate the duration of the He flash if it produces a luminosity
of 1010Lʘ and neutrinos carry off about 80% of the energy?

17.2 Helium Fusion in the Core: Horizontal Branch Stars
Figure 17.1 shows the evolutionary track of a star ofMi = 5Mʘ as a typical example.
Phases B-C-F are similar to those in Figure 16.1 for a star of 1Mʘ. We will discuss the
core He-fusion phases of stars of Mi = 1 and 5Mʘ simultaneously.

The red giant branch ends at point F with the ignition of He in the core, when
the core mass is Mc ≈ 0.50Mʘ. At the beginning of core He-fusion in equilibrium,
the star is at point G. A star ofMi = 1Mʘ is clearly out of equilibrium during the He
flash; therefore, a track in the HRD between points F and G in Figure 16.1 is not
known and is not plotted. The ignition of the He core fusion in a star of Mi ≳ 2Mʘ

occurs in a nondegenerate core and gravity regulates the start of the fusion as
described above. The star remains in equilibrium so the evolutionary track can be
calculated: see phases F to G in Figure 17.1.

When core He-fusion has started, the star settles into a new equilibrium and we
find the stars on the horizontal branch (HB) in the HRD. The core He-fusion (G-H)
of a star of Mi = 1Mʘ occurs at L ∼ 102Lʘ, with a core mass of ∼0.5Mʘ. The core
He-fusion (G-H) of a star of Mi = 5Mʘ occurs at L ∼ 103 Lʘ, with a core mass
gradually increasing from ∼0.6 to 1.0Mʘ.

The structure of an HB star is shown schematically in Figure 17.2. It can be
compared with the Kippenhahn diagram of Figure 16.1 for a star of 1Mʘ. We
recognize the following structure from inside out.

– A core with He-fusion: He → C.
Due to the strong T-dependence of the triple α process, the inner ∼1/3 of the
core is convective because L/4πr2 is very high (Section 7.9).

– An inert He region around it without fusion.
– A H-fusion shell, which contributes significantly to the luminosity.
– A H-rich envelope; this envelope is mainly in radiative equilibrium, but with a
convective outer region.

At the beginning of core He-fusion (phase G in Figures 16.1 and 17.1), the stars
are still close to the Hayashi line because they are mainly convective, but they have a
smaller radius than stars at the tip of the RGB. This is because of the virial theorem
and the resulting mirror effect of the H-fusion shell. The core expands when core
He-fusion starts, causing the envelope to contract. This results in a smaller R and L
than stars at the tip of the RGB.

During the core He-fusion phase, the star traces a blue loop in the HRD. This
loop is the mirror image of the small red loop that stars trace in the HRD during
their core H-fusion. (see Figure 13.6). It is due to the expansion of the star during
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core H-fusion and the contraction at the end. During core He-fusion, the core does
the same, but the mirror action of the shell transforms it into a blue loop. This is
shown by the loop G-H in the evolutionary track of a 5Mʘ star, whose Teff increases
to about 6000 K (Figure 17.1), and to a smaller extent by the track of the 1Mʘ star,
which reaches 5000 K at its smallest radius (Figure 16.1). Figure 16.1 shows that the
increase and decrease of the radius is produced by a decrease and later an increase of
the mass and depth of the convective envelope during phase G-H.

The slight increase in luminosity during core He-fusion is due to the same μ-effect,
L ∼ μ 4, that is responsible for the brightening during the MS phase (Section 13.3.2).
The fusion of He into C implies that μ increases from 4/3 to 12/7 in the core.

The duration of the HB phase is about 120 Myr for a 1Mʘ star and about 22 Myr
for a 5Mʘ star. This is longer than the expected nuclear lifetimes of these stars (with
a luminosity of about 102Lʘ and a core mass of 0.5Mʘ, and a luminosity of 103Lʘ

with a core mass of 0.6Mʘ, respectively), considering the small mass deficiency of
He-fusion of Δm/m = 0.00065. This is due to the large contribution of the energy
production by the H-shell fusion (see Exercise 17.1).

The He-fusion occurs originally by the triple α-process (3He → C), but as the He
abundance decreases and the C abundance increases the reaction He + C → O
becomes more important. At this point the C abundance starts to decrease again and
the O abundance increases in the core.

17.3 Evolution on the Horizontal Branch
The highest value of Teff that a star can reach on the HB depends on the envelope
mass at the time that core He-fusion starts. The smaller the envelope mass, the
shallower the convective envelope, the smaller the radius, and the higher the Teff.

Figure 17.2. Schematic diagram of the structure of a horizontal branch star. Blue: He-fusion in a convective
core. Red: shell H-fusion. Gray: convective zones. The figure is not to scale; the core is very small and the
convective envelope is very extended.
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This is demonstrated in Figure 17.3, which shows the location in the HRD of low-
mass HB stars with Z = 0.001 (characteristic of old globular clusters) during the core
He-fusion phase. All models have the same core mass of 0.49Mʘ, but different
envelope masses from 0.03 to 0.43Mʘ, so the total mass ranges from 0.52 to 0.92
Mʘ. Note that the smaller the envelope mass is, the bluer the star is during the HB
phase. This is easy to understand: a more massive convective envelope will be
deeper, which in turn implies a larger radius and a cooler star.

We have shown that, at the end of the core He-fusion phase, the core contracts
and the star expands and moves back to the Hayashi line with increasing luminosity.
At this phase, the evolution in the HRD is to the upper right. This is shown by the
thin blue lines in Figure 17.2. However, if the envelope mass is too small (i.e.,Menv <
0.03Mʘ for a core of 0.5Mʘ), the mass of the envelope is insufficient to create an
extended convection zone, so the radius of the star remains small. This could be the
result of the increasing mass of the He core from the shell fusion, or by mass loss
during the HB phase. Hot HB stars lose mass by a radiation-driven stellar wind.

HB stars with Menv/M ≲ 0.1 move up and to the left in the HRD. They become
hot subdwarfs. Because they do not move back to the asymptotic giant branch, they
are sometimes called AGB-manqué stars: stars that missed the AGB.

17.4 The Observed HB of Globular Clusters
Because the He-fusion phase is much shorter than the H-fusion phase, all HB stars in
a cluster at any time come from a small range in initial masses. This implies that they

Figure 17.3. Blue lines show the predicted evolutionary tracks of HB stars with the same helium core mass of
0.49Mʘ for different envelope masses ranging from 0.03 to 0.43Mʘ (indicated by red numbers). The thick blue
line shows the location at minimum radius and the thin lines show the track of the subsequent evolution during
core He-fusion. Note the relation between Teff and the envelope mass. (Reproduced from Maeder 2009. ©
Springer-Verlag Berlin Heidelberg 2012.)
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all have about the same core mass and therefore also about the same luminosity L at
the beginning of He-fusion. This is the reason that the HB is approximately horizontal
in the HRD. From the evolutionary tracks of 1 and 5Mʘ stars (Figures 16.1 and 17.1),
we can see that a cluster of 12 Gyr has an HB at 102Lʘ, and a cluster of 0.1 Gyr has an
HB at 103Lʘ.

In an observational color–magnitude diagram the HB is not horizontal at all, but
curves steeply down at high temperatures (Figure 2.7). This is due to the fact that the
bolometric correction, BC ≡ Mv – Mbol, increases steeply at high T because most
radiation in hot stars is emitted in the UV. On the other hand, the HB is almost
horizontal in the HRD. This is shown in Figure 17.4. The figure also shows the
strong sensitivity to metal abundance mentioned in Section 16.5.

Observations show that metal-poor clusters generally have an extended blue HB
and metal-rich clusters generally have a short red HB. Figure 17.5 shows the CMDs
of the metal-rich globular cluster 47 Tuc with Z = 0.17Zʘ, and the metal-poor
cluster M15 with Z = 0.006Zʘ. The conclusion is that stars in more metal-rich
clusters have a larger envelope mass when they arrive at the HB than those in metal-
poor clusters. This would imply that stars with higher Z have lost less mass during
the RGB phase. This contrasts expectations that the RGB mass loss is expected to
increase with metallicity (because higher Z implies more dust and more molecules,
resulting in stronger radiation pressure).

Figure 17.4. Top: the predicted locations of the main sequence (MS), the turn-off (TO), the subgiant branch
(SGB), the red giant branch (RGB), and the horizontal branch (HB) in theHRDofL versusTeff. TheHB is indeed
almosthorizontal.Bottom: the samephases in theCMDofMvversusB-V.The lines showpredicted isochronesat t
=10Gyr formodelswithZ=0.02 (blue) andZ= 0.001 (red). (Reproduced fromSalaris&Cassisi 2005.Copyright
© 2005 by JohnWiley & Sons, Inc. Reprinted by permission of JohnWiley & Sons, Inc.)
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Even more curious is the fact that some globular clusters with the same metallicity
may have either a blue HB or a red HB! This suggests that there must be another
mechanism, apart from RGB mass loss and metallicity, affecting the extent of the
convective envelope and Teff of the HB stars. This problem is called the second
parameter problem.

Some of the solutions that have been suggested involve the following.
– Differences in the initial He abundance. A higher He abundance reduces the
opacity, σe ∼ (1 + X), which results in less convection in the envelope and a
hotter HB star.

– Stars in some clusters may be rotating faster than those in other clusters. This
would produce extra mixing, resulting in a more massive He core and a less
massive envelope.

– Convective overshooting may have played a role. This would also result in a
more massive core and a less massive envelope.

These last two effects could result in different envelope masses for stars of the same
age and metallicity, and in different depths of the convection zone on the HB. See
Dotter 2013 for a review.

Remark: this problem may be solved when the internal structure of stars can be
determined empirically by asteroseismology (see Section 21).

Figure 17.5. CMDs, in terms of Mv versus B-V, of two old globular clusters of different metallicities. The HB
of the cluster with the lower Z (M15, right) extends to much bluer B-V colors (i.e., to higher Teff) than that of
the high-Z cluster. (Reproduced from Carroll & Ostlie 1996. © Cambridge University Press. Reprinted with
permission.)
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17.5 Summary
1. Horizontal branch stars are low-mass stars with core He-fusion and shell

H-fusion. HB stars are about 100 times more luminous than MS stars of the
same mass.

2. In stars of Mi ≲ 2Mʘ, He-fusion is ignited in a degenerate core, which
produces a He flash. The He flash has not been observed.

3. In stars of 2 ≲ Mi ≲ 8Mʘ, the ignition of He-fusion is regulated by gravity
and the star remains in hydrostatic and thermal equilibrium.

4. During the phase of core He-fusion a low-mass star makes a leftward loop in
the HRD, which mirrors the rightward loop during core H-fusion.

5. The highest Teff and the bluest color that an HB star can reach depends on the
mass of the envelope. The smaller the envelope mass, the higher Teff can be.

6. In general, low-metallicity clusters have a long HB (extending far to the
blue), whereas high-metallicity clusters have a short HB, close to the RGB;
however, exceptions to this trend exist. This unexplained effect is called the
second parameter problem.

Exercises
17.1 Calculate the potential energy needed to reduce the density in a core of

0.5Mʘ from 106 g cm�3 to 104 g cm�3 during the He flash.
Suppose that the peak energy production during the He flash is 1010 Lʘ and
that neutrinos carry off 80% of this energy. Calculate the duration of the
flash.

17.2 Study the Kippenhahn diagram for a star of 1Mʘ.
a. Derive the amount of He that is fused during the horizontal branch

phase (G-H) and calculate the total amount of energy generated.
b. Derive the amount of energy generated by the H-shell fusion during

the same period.
c. Which fraction of the energy is due to the H shell and which fraction

is due to the He core?
d. Compare your results with the luminosity and the duration of the

HB phase.
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Chapter 18

Double Shell Fusion: Asymptotic Giant
Branch Stars

At the end of the core He-fusion phase, a star has a carbon–oxygen core (CO core).
The luminosity is provided by a He-fusion shell and a H-fusion shell. The star has a
very large radius and is located in the HRD on an even more luminous extension of
the red giant branch, the asymptotic giant branch (AGB). The AGB phase is one of
the most interesting phases in the evolution of low- and intermediate-mass stars
because of the various interacting effects that play a role: a degenerate core, double
fusion shells, thermal pulses, and dredge-up phases that change the surface
composition from O-rich to C-rich, and high mass-loss rates. The combination of
all of these effects determines the end phase of low- and intermediate-mass stars with
initial masses of Mi < 8Mʘ.

18.1 The Start of the AGB Phase
At the end of the HB phase, when He is exhausted in the core, the resulting CO core
is without an energy source so it will contract. Because the star still has a H-fusing
shell with mirror action, the core contraction results in envelope expansion and the
star moves to the right in the HRD. Because the expanding envelope absorbs part of
the energy, the luminosity decreases slightly during the expansion. This is seen in the
track of the 5Mʘ star (Figure 17.1) near point H. The core contracts until He-fusion
is ignited in a shell around the CO core. The CO core becomes degenerate because it
is not hot enough to remain an ideal gas (Figure 8.10). The star is now at the bottom
of the AGB (at point H in Figures 17.1 and 18.2).

An AGB star consists, from inside out, of
− a degenerate CO core,
− a He-fusion shell: He → C and later C → O,
− a He-rich intershell zone,
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− a H-fusion shell: H → He, and
− a convective H-rich envelope.

Figure 18.1 shows the structure of an AGB star of 5Mʘ. The star has a radius of R =
44Rʘ. Note that the core, including the H-fusion shell, is very small: only 0.0056 Rʘ.
It contains only 2 × 10−12 of the volume of the star, but 20% of the stellar mass!

18.2 The Mcore–L Relation of AGB Stars
The He-fusion shell is directly on top of the degenerate CO core. This implies that
the pressure in the shell and its energy production are mainly set by the mass of the
core. This is analogous to the case of the H-fusion shell on top of the degenerate He
core in a low-mass RGB star (Section 16.4).

The Mc–L relation of AGB stars is called the Paczynski relation after the Polish-
American astronomer Bohdan Paczýnski (1940–2007), who derived it in 1970
(Paczynski 1970). This relation for AGB stars with a metallicity of Z = 0.03 is

⎛
⎝⎜

⎞
⎠⎟≈ × − < <

⊙ ⊙
⊙

L
L

M
M

M M a5.9 10 0.522 for 0.57 / 1.39. (18.1 )c
c

4

Various alternative versions of the Mc–L relation exist for lower-metallicity stars in
globular clusters (Boothroyd & Sackmann 1988). For instance, the relation for AGB
stars with Z = 0.001 can be described by

Figure 18.1. Schematic figure of the internal structure of a star ofMi = 5Mʘ at the start of the AGB phase: L =
1.9 × 103 Lʘ, Teff = 5770 K, R = 44Rʘ.. The table shows the mass (in Mʘ) and thickness (in Rʘ) of each zone.
(Reproduced from Carroll & Ostlie 1996. © Cambridge University Press. Reprinted with permission.)
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4

In both expressions, Mc is the total mass enclosed by the H-fusion shell. It includes
the mass of the CO core, the He-fusion shell and the intershell zone, which all affect
the pressure of the H-fusion shell.

Q (18.1) Explain why the core mass determines the pressure of the H-fusing shell.

The Mc–L relation of AGB stars has interesting consequences.
(a) If the luminosity of an AGB star is known, then its core mass is known (but

the envelope mass and the total mass are not).
(b) For a given luminosity, the rate at which fusion occurs in the H and He

shells is known. The fusion in these shells adds mass to the core, so the
growth of the core mass and the increase of L is known. This implies that
one can easily calculate the speed with which these stars will “climb” the
AGB (we will show this later in Section 18.7).

18.3 The Second Dredge-up at the Beginning of the AGB Phase
The internal evolution and the evolutionary track in the HRD of a star with an
initial mass of 5Mʘ during the AGB phase is shown in Figure 18.2. Shortly after
He-shell fusion starts (point H), the H-shell fusion is switched off. This is because the
He shell expands when the shell fusion starts. This forces the layers above it to
expand. As a result, both T and ρ in the H shell decrease and the H-shell fusion

Figure 18.2. Evolutionary track (left) and Kippenhahn diagram (right) of the AGB phase, H to J, of a star of
Mi = 5Mʘ. The letters correspond to points on the evolutionary track. Note the second dredge-up at point I
when the convection zone reaches the He-rich intershell region. (© Pols 2009.)
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almost stops (shortly after point H in the right part of Figure 18.2). In stars with Mi

≲ 4Mʘ, the H-shell fusion remains active at a low level.
With He-shell and H-shell fusion going on, the increase in core mass results in an

increasing luminosity, up to point J in the evolution track. Since the star is very
extended and on the Hayashi track with an almost constant Teff, an increase in L
implies an increase in radius. This is achieved by deepening the convection zone
because an outer convection zone bloats a star: the deeper an outer convection layer
reaches, the larger the star.

If the convection zone reaches the He-rich intershell zone, at I, it mixes the
products of H-fusion (CNO cycle) into the outer envelope and convection brings
them to the surface. This is called the second dredge-up. The intershell zone has no
more H, a very low abundance of C and O, and a high abundance of He and N, so
this second dredge-up brings the same CNO cycle products to the surface as the first
dredge-up during the RGB phase (Section 16.2), but in much larger quantities. In
stars of Mi ≲ 4Mʘ, where H-shell fusion remains active, the convection does not
reach the He-rich layer so these stars do not experience a second dredge-up.

18.4 The Thermal Pulsing AGB Phase (TP-AGB)
When an AGB star climbs the Hayashi track, it goes through a series of He flashes
that are called thermal pulses at time intervals of ∼103 to 105 yr (Do not confuse
these thermal pulses with the He flash that started He core burning). The phase of
the repeating thermal pulses is called the thermal pulsing AGB phase (TP-AGB
phase). It usually starts near the end of the AGB phase when the luminosity is high
and the CO core is sufficiently massive and compact to produce a high pressure in
the He-fusion shell. A star may experience on the order of 10 thermal pulses near the
tip of the AGB.

In order to understand the thermal pulses, we follow the evolution of the star’s
interior step by step, as shown in Figure 18.3.

1. For most of the time during the AGB phase, the H-fusion shell produces
much more energy than the He-fusion shell, which is barely active.

2. The H-shell fusion leaves He behind, so the mass of the intershell zone (ISZ)
increases with time.

3. As the ISZ grows in mass, the pressure at the bottom of that region steadily
increases because more and more He is piled on top of the degenerate CO
core. When the pressure reaches a critical value, He is reignited in a thin shell.

4. Ignition in a thin shell leads to a thermal instability of the same type as the
ignition in a degenerate core (though here the gas is not degenerate). The
reason is as follows. When the He-fusion is reignited, the gas is heated and it
expands; however, if the shell is very thin, its expansion cannot lift the layers
on top of it sufficiently to reduce the pressure that these layers exert on the
shell, so the pressure hardly changes when He is ignited in a thin shell. With
P remaining about constant, but ρ decreasing during the expansion, T must
rise in the shell. This leads to runaway fusion that is called a thermal pulse;
see Kippenhahn & Weigert (1990) for details. (Note that it looks like the
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flash is produced by the ignition of He-fusion in the degenerate core of an
RGB star, but the physical reason is different.)

5. At the peak of the runaway He-shell fusion, it produces so much energy, up
to 108 Lʘ, that the ISZ becomes convective (because L/4πr2 is so large that it
cannot be transported by radiation). The convective ISZ expands and the H
shell on top of it is pushed upward. With the H shell moving outward its
pressure drops to a value that cannot keep efficient H-fusion going, so when
He-shell fusion starts the H-shell fusion is extinguished. When the H-fusion
in the shell is extinguished, the envelope convection reaches deeper in mass
and brings enriched gas to the surface. This is the third dredge-up.

6. While the He-shell fusion is going on and the ISZ is expanding, the pressure
in the He-shell, mainly produced by the overlaying ISZ, reduces. Eventually,
the pressure on the He-shell is so low that the energy production in the He-
shell decreases and the layers on top of it contract again. The increase in T
and ρ results in a reignition of H-shell fusion. When the H-shell fusion

Figure 18.3. Schematic picture of thermal pulses in an AGB star. Top: variations in the radiative luminosity
during several cycles. The total range in L is about a factor of 4 and about a factor of 2 in R, because Teff

remains almost constant. Middle: variations in the luminosity produced by the He shell and H-shell fusion.
The total range in L is about a factor of 105. Bottom: variations in the internal structure in terms of the massM
(r). The CO core is degenerate. Thick and thin lines of the H and He shells indicate which fusion shell is
dominant. Gray regions indicate convection. Downward arrows indicate contraction and upward arrows
indicate expansion of the regions.
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reignites again it starts at the bottom of the convective envelope and moves
outward in mass. At that point, the cycle starts again at 1.

Figure 18.3 shows a schematic sketch of the process of the thermal pulses. Note the
short convective phase of the intershell zone when He-fusion is reignited in the shell.

When the intershell zone is convective during the thermal pulse, the mirror action
of the H-fusion shell implies that the envelope contracts, so the radius of the star
decreases. Because the star is on the Hayashi line, its Teff hardly changes, so the
luminosity decreases as well. The radius varies by about a factor of 2 and the
luminosity varies by about a factor of 4. The very high peak luminosity of about 108

Lʘ during the thermal pulse does not reach the photosphere; most of this energy is
used for the expansion of the intershell zone.

Q (18.2) Why is the H shell during the TP-AGB phase always at the bottom of the convective
envelope?

Q (18.3) Why is the core contracting during the TP-AGB phase?

The repetition time, tp, of thermal pulses depends mainly on the core mass. From a
large number of models, Paczynski (1975) showed that it follows approximately

⎛
⎝⎜

⎞
⎠⎟≈ − −

⊙
t

M
M

log 3.05 4.5 1 yr. (18.2)c
p

For a star with Mi = 2Mʘ and a core mass of 0.6Mʘ, the repetition time is ∼105 yr,
and for a star with Mi = 8Mʘ and a core mass of 1 Mʘ it is only ∼103 yr.

During the thermal pulsing AGB phase, the general evolutionary trend of
increasing radius and luminosity continues, due to steadily increasing core mass:
the star keeps climbing along the Hayashi track. As the star gets brighter and
brighter, the fusion goes faster and faster, so the period between thermal pulses gets
shorter and shorter. This process continues until the star leaves the AGB due to the
loss of the H envelope (Section 18.8).

Figure 18.4 shows the predicted thermal pulses in an AGB star of 1.8Mʘ. (Salaris &
Cassisi 2005). Note the general trends of increasing luminosity, decreasing Teff, and
the increasing peak luminosity produced by the He shell during the thermal pulses.
The pulses start with a periodicity of about ×2 105 yr, decreasing to ×1 105 years after
12 pulses. A thermal pulse lasts about ∼102 yr. Due to the short duration of the peak
luminosity, thermal pulses have not yet been observed!

During a thermal pulse, the mass-loss rate is higher than it is during the interpulse
phase. This increased mass loss produces a circumstellar shell. Figure 18.5 shows the
observations of such a shell around the AGB star R Sculptoris. The star is at a distance
of 270 pc and has a luminosity of 4300Lʘ. The radius of the shell is 2.6 × 10−2 pc and its
expansion velocity is 14.3 km s�1. This shows that the shell was ejected 1800 yr ago
during a thermal pulse. The shell has a mass of 3 × 10−3 Mʘ. Modeling of the shell
suggests that its ejection lasted ∼200 yr at a rate of ∼1.5 × 10−5 Mʘ/yr. This is 30 times
higher than the present mass-loss rate (Maercker et al. 2014).
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18.5 The Third Dredge-up
The occurrence of thermal pulses with the alternate switching between He shell and H-
shell fusion leads toefficientmixingandgradual changes in theatmosphericabundances.

This process occurs in two steps, as shown in Figure 18.6.
1. During the thermal pulse, when the ISZ is convective for a short time,

products of the He-fusion (mainly C) are distributed throughout the ISZ.
2. When the He-shell fusion is stable, the intershell zone contracts and the

envelope expands (due to the mirror action of the H shell) by deepening the
convection in the envelope. When the convection reaches the layers with
increased C abundance, it brings the products of He-fusion into the
atmosphere.

This is called the third dredge-up.

Each cycle brings more and more C to the surface. Eventually, massive AGB stars near
the tip of the AGB phase have an envelope and photosphere with a C/O ratio > 1,

Figure 18.4. Predicted evolution of an AGB star of 1.8Mʘ of Z = 0.01 during the TP-AGB phase over a period
of 2.5 Myr. A: the luminosity with the regular peaks and dips. The peak–peak variation is about a factor of 3.
B: the variation in Teff. The peak–peak variations are about 15% superimposed on the general trends of
decreasing Teff. C: the variation in the luminosity produced by the He-fusion shell, reaching peaks of 108 Lʘ.
The energy of these peaks is absorbed by the expansion of the intershell zone and does not reach the surface. D:
the energy produced in the H-fusion shell, which in this case is via the CNO cycle. Note the large difference in
scale of panels C and D. (Reproduced from Salaris & Cassisi 2005. Copyright © 2005 by John Wiley & Sons,
Inc. Reprinted by permission of John Wiley & Sons, Inc.)
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instead of the normal case of O/C > 1. These stars are easily distinguished because
insteadofO-richmolecules anddust (i.e., silicates) theyhaveC-richmolecules anddust
(carbonaceous grains). The flip from anO-rich toC-rich atmosphere is drastic because
theCOmolecule is themost abundant and strongly boundmolecule.WhenO/C> 1 all
C is locked in CO and only the remaining O can formO-rich molecules (e.g., OH) and
O-rich silicate dust. On the other hand, if C/O> 1, all O is locked in COmolecules and
only the remaining C can form molecules (such as CH, etc.) and carbon dust.

In massive TP-AGB stars, as shown in figure 18.4, the H shell is active at such a high
temperature that H-fusion occurs via the CNO cycle and not via the pp-chain. This
implies that C (that was transported by convection of the ISZ during the time when the
He shellwas active) is converted intoN.This process is called hot-bottomburning (HBB)
and it may prevent massive TP-AGB stars from becoming C-rich; they instead become
N-rich at the surface. HBB also produces nuclei like 23Na, 25Mg, and 26Mg (Section
8.4.4),which are found tobeoverabundant in old globular clusters (Gratton et al. 2004).

18.6 Summary of the Dredge-up Phases
It is useful to summarize the dredge-up phases of stars of 0.8 ≲ Mi ≲ 8Mʘ. Figure
18.7 shows, schematically, the position in the HRD where they occur.

Figure 18.5. The observed shell around the AGB star R Scl was ejected during a thermal pulse 1800 yr ago.
The colors show a polarized intensity image of dust-scattered light, observed in the R-band with the ESO 3.6-
meter telescope. The black lines show the isophotes of ALMA observations of the CO emission. (Reproduced
from Maercker et al. 2014, with permission. © ESO.)
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1. The first dredge-up occurs when the star is on the RGB and the envelope
convection reaches the depth where He was produced during the MS phase.
This results in an increase of the N abundance and a small increase of the He
abundance at the surface (Figure 16.1).

2. The second dredge-up occurs in the early AGB phase for stars of Mi ≳ 4Mʘ

when the star expands after the HB phase. This expansion is produced by the
growth of the convective envelope. The convection reaches even below the
depth (in mass) of the H-shell of the HB phase. So it reaches into the He layer
and brings He, N-rich, C-poor, and O-poor gas, mixed with the original
envelope mass, to the surface (Figure 18.2).

3. The third dredge-up, or rather dredge-ups, occurs during the later TP-AGB
phase in stars ofMi ≳ 4Mʘ when the envelope convection reaches into the ISZ
after a thermal pulse. The ISZ contains He and products of the He-fusion,
such as C. The surface gradually becomes richer in C (Figure 18.7).

4. C-stars: In the massive AGB stars, the C/O ratio may change from C/O <1 to
>1. These stars have a C-rich photosphere and a wind with C-rich dust.

5. S-stars are AGB stars in which the third dredge-up brings s-process elements,
such as Technetium (Tc) to the surface. These elements are formed by slow
neutron capture during thermal pulses.

Figure 18.6. Internal evolution of an AGB star, explaining the dredge-up during two thermal pulses. The thick
and thin red and blue lines indicate alternating H- and He-fusion shells. The gray areas indicate convective
regions. The phases of dredge-up and hot-bottom burning (HBB in stars with Mi ≳ 5Mʘ) are indicated. The
symbol ΔmH indicates the amount of mass converted into He between two thermal pulses, while Δmdu is the
mass that is dredged up after each thermal pulse. (Figure is from Pols 2011.)
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All of the envelope mass of AGB stars is eventually expelled by mass loss during
the late AGB phase. AGB stars are the main producers of He, C, and s-process
elements in the Universe.

18.7 The Evolution Speed during the AGB Phase
Throughout the AGB phase, the luminosity of the star increases. Because the
luminosity during the AGB phase is set by the core mass, while the growth of the
core mass is set by the luminosity, there is a simple way to estimate the speed with
which a star ascends the AGB-branch.

Let us assume that the luminosity of an AGB star is related to its core mass by the
Paczynski relation (Equation (18.1a)). The core mass grows due to nuclear fusion.
The fusion is dominated by H-fusion about 90% of the time and by He-fusion about
10% of the time. The energy production is 6× 1018 ergs g�1 for H-fusion and 6× 1017

ergs g�1 for He-fusion. We can then set the time-averaged energy production to
approximately ϵ = 5.5 × 1018 erg g�1.

The mass of the core grows as
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Figure 18.7. Dredge-up phases during the late evolution of low-mass stars. The changes in surface
compositions are written next to the track. (Figure is based on Pols 2011).
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This can be expressed as

− = × =ʘ − −d M M
dt

ln( / 0.52)
2.1 10 s 1/1.4 Myr. (18.3)c 14 1

So, the core mass grows as
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where t = 0 is the time when the star enters the AGB.
Suppose a star enters the AGB at L ≈ ×1.2 103 Lʘ andMc ≈ 0.54Mʘ. It will then
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18.8 Mass Loss and the End of the AGB Evolution
White dwarfs (WDs) are the degenerate cores that remain after the end of the
evolution of low-mass stars. Observations of WDs in clusters with different ages
show that stars with initial masses of up to about 6–8Mʘ end their lives as WDs.
These studies also show that most WDs have a mass of about M ∼ 0.6 to 0.7Mʘ

(Weidemann 1990). This implies that the majority of the low-mass stars, i.e., stars
with Mi ≲ 3Mʘ, must terminate their AGB phase with Mc ≈ 0.6 to 0.7Mʘ and L ≈
6 × 103 to 104 Lʘ, as shown in the calculations in the previous section. More massive
stars of Mi ≈ 3–8Mʘ produce a WD with M ≳ 0.8Mʘ. A WD with M ≈ 1Mʘ must
have reached L ≈ 3 × 104 Lʘ at the tip of the AGB.

We have seen that stars climb the AGB in an exponential function of time and
that the mass of the core also increases with time. What could stop the growth of the
core? Mass loss! Observations show that all AGB stars suffer mass loss at a rate that
increases from ∼10−7 Mʘ/yr at the bottom of the AGB to very high values of ∼10−5

or even 10−4 Mʘ/yr at the tip of the AGB (Sections 15.4.3 and 15.4.4). Let us
consider a simple method for estimating the effect of mass loss on the AGB and
predicting the mass of the resulting WDs.

Suppose we can describe the mass-loss rate Ṁw (subscript “w” for wind) as a
function of L; we can then also describe it as a function of t (Equation (18.5)). Let
Menv(t = 0) be the envelope mass when the star enters the AGB. The envelope mass
decreases by two effects.
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− On the inside: due to nuclear fusion = −dM dt dM dt( / ) /cenv .
− On the outside: due to mass loss by the stellar wind: = − ̇dM dt M( / )env w w.

The total mass loss of the envelope is

= − − ̇dM
dt

dM
dt

M . (18.6)cenv
w

Throughout most of the AGB phase, the wind is much more efficient in reducing the
envelope mass than the growth of the core. So we can approximate

∫  ≃ − ̇ →  ∆ ≃ ̇dM
dt

M M M dt. (18.7)env
w env w

Let us estimate how long it would take to remove the full envelope mass of a star
that enters the AGB phase with M = 3Mʘ, consisting of a core of Mc = 0.54Mʘ and
an envelope of Menv = 2.46Mʘ at t = 0. The Paczynski relation predicts that

= × ʘL L1.2 100
3 at t = 0.

We adopt van Loon’s expression (Equation (15.18)) for the mass-loss rates of
AGB stars in the LMC, increased by a factor of 2 to allow for the higher metallicity
of Galactic AGB stars. Assuming Teff = 4000 K for Galactic AGB stars, we find

̇ ≃ × = ×−
⊙

−
⊙M L L e M1.2 10 ( / ) 3.4 10 /yr. (18.8)t

w
10 1.05 7 /1.33Myr

Integration of this equation shows that the envelope has lost 2.4Mʘ after 2.3Myr. At
that time, the luminosity was 6 × ʘL103 and the core mass was 0.60Mʘ.
This simple estimate is roughly in agreement with

− the observed maximum L ∼ 104Lʘ of AGB stars in the globular clusters, and
− the derived mean mass of Galactic white dwarfs <MWD> ∼0.6 to 0.7Mʘ.

This shows that
− the AGB phase terminates because mass loss has stripped (almost) the full

envelope,
− the final mass of the WD is determined by the mass-loss rate Ṁw during the

AGB phase, and
− the maximum luminosity of the AGB stars is set by Ṁw during the AGB

phase.

The AGB mass loss prevents stars in the mass range of about 2 to 8Mʘ from
becoming supernovae. If it were not for their high mass-loss rate, these stars would
contract at the end of the AGB phase when they have a degenerate C-core. The
ignition of C-fusion in a degenerate core produces a C-flash, similar to the He-flash
at the ignition of He-fusion in a degenerate He core, as discussed in Section 17.1.
However, a C-flash would destroy the star completely. This is called C-detonation,
which produces a thermonuclear supernova.
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Q (18.4) How much higher would the supernova rate from single stars be if the lower limit of their
initial mass was not 8Mʘ, but 4Mʘ?

In our simple estimate, we have used van Loon’s relation for Ṁw (AGB); however,
observations show that mass loss on the AGB increases more drastically near the tip
of the AGB and reaches a value of a few 10−5 or even 10−4 Mʘ/yr. This high
mass-loss rate is due to pulsation (see Figure 15.5), because luminous AGB stars
pulsate as Mira variables with periods of 100 to 600 days. The winds of these stars
have a velocity of about 10 to 20 km s�1. The very high mass loss at the end of the
AGB phase is called the superwind phase. This is important for the formation of
planetary nebulae, which will be discussed in Section 19.

18.9 Summary
The AGB phase is one of the most fascinating evolutionary phases because several
interesting physical processes are happening.

1. AGB stars have a degenerate CO core, a He-fusion shell, a He-rich intershell
zone, a H-fusion shell, and an extended outer convection zone.

2. The luminosity of AGB stars depends on the core mass and not on the total
mass. As the core mass increases due to fusion, the star climbs the AGB in
the HRD along a Hayashi track.

3. The two shell-burning phases alternate in producing the luminosity of the
star, with a periodicity of about 103 to 105 years depending on the core mass
and luminosity. The changes are triggered by shell flashes, called thermal
pulses. Thermal pulses last about 102 years.

4. The very deep convection brings nuclear products of the H and He-fusion to
the surface. These are called the second and third dredge-up (the first dredge-
up occurred during the RGB phase).

5. The second dredge-up occurs early in the AGB phase, when the outer
convection reaches into the He-rich intershell zone. It brings He and N to the
surface.

6. The third dredge-ups occur after the shell flashes in a two-step process.
During the thermal flash, the products of He-fusion are mixed in the ISZ
during a short internal convection phase. Later, when the outer convection
reaches into the ISZ, these products are brought to the surface.

7. Thesurface isgradually enrichedbyCandbys-products thatwere formedduring
the thermal pulse. This produces C-stars and s-stars near the tip of the AGB.

8. The AGB phase ends when the stellar wind has removed almost the entire
envelope. This occurs on a timescale of a few Myr. During that time the
AGB star reaches a luminosity of ∼104Lʘ and a core mass of about
0.6–0.7 Mʘ.

9. Mass loss during the AGB phase sets the mass of white dwarfs and the
supernova rate.
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Exercises.
18.1 Figure 18.4 shows the luminosity produced by the H-fusion and the

He-fusion shells of a star that started the AGB phase with a mass of
1.8Mʘ. The peaks in luminosity last less than 100 yr and can be ignored.

(a) Estimate the mean luminosity produced by He-fusion from the
beginning of the TP phase to the end.

(b) Do the same for the H-fusion.
(c) What is their ratio?
(d) What is the mass that took part in the He shell fusion and in the

H-shell fusion during the full TP-AGB phase?
18.2 Sketch the changes in the surface abundances of He, C, and N expected

during the three dredge-up phases of a star with Mi = 3Mʘ and 5Mʘ.
18.3 Computer exercise

Calculate the evolution of AGB stars numerically, using theMc–L relation
of Paczynski and Reimers mass-loss rates for different values of ηR.

(a) Write the differential equations that describe L(t), Mc(t), and
Menv(t).

(b) Solve them by computer for stars that start the AGB phase with

* = =

* = =
⊙ ⊙

⊙ ⊙

M M M M
M M M M

2.0 and 0.522 ,
5.0 and 0.55 .

c

c

Assume that the AGB evolution ends when the envelope mass is
smaller than 0.01Mʘ.

(c) Calculate L(t), Mc(t), and Menv(t)
(d) What is the core mass Mc and L at the tip of the AGB? What is the

mass of the resulting white dwarf?
(e) How long does the AGB phase last for these stars?
(f) How does the result depend on the adopted value of ηR in the

Reimers relation? Explain the results.
(g) Which average value of ηR agrees best with the observed masses of

white dwarfs?
18.4 Computer exercise

Calculate the evolution of two AGB stars that start the AGB with

* = =

* = =
⊙ ⊙

⊙ ⊙

M M M M

M M M M

2.0 and 0.522

5.0 and 0.55 .
c

c

,

Use the mass-loss rate derived from the IR flux of AGB stars and its
relation with the period of pulsation (Section 16.4.4), or the Reimers
relation with ηR = 2 (whichever is the larger of the two). Adopt the relation
between Teff and L from the track in Figure 18.2 and plot the evolution of
the mass-loss rate, Mc, Menv, M, L, R, and Teff. Explain the result.
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Chapter 19

Post-AGB Evolution and Planetary Nebulae

After the AGB phase, when a star has lost almost all of its very extended convective
envelope, the remaining envelope mass shrinks. The luminosity remains constant
because it is still produced by shell fusion on top of a degenerate core. The shrinking
of the envelope implies a decreasing radius, so the star moves horizontally to the left in
theHRD.For the first part of this leftwardmotion, the star is difficult to observe because
it is enshrouded by a thick dusty wind that was ejected in the superwind phase at the end
of theAGBphasewith anoutward expandingvelocity of about 10km s−1.When the star
reaches an effective temperature of∼30,000 K it develops a high-speed radiation-driven
wind of ∼103 km s−1. The interaction between this fast wind and the slow AGB wind
produces a planetary nebula.When themass of the envelope is below a critical limit, the
fusion stops and the star moves downward in the HRD toward the white dwarf region.
Some stars experience a late thermal pulse after the planetary nebula phase. Those stars
are observed to brighten and expand back to the Hayashi line in a few decades.

19.1 The Post-AGB Phase
Evolutionary calculations show that a star leaves the AGB when the mass in the H
envelope has decreased to only about 10−2 to 10−3Mʘ, depending on the core mass.
At that time, the reduced H-envelope mass can no longer sustain a fully developed
convection zone. The convective envelope slowly shrinks and becomes radiative
rather than convective. This transition occurs first in the deepest layer of the
envelope, where κ is small.

The star still has double-shell fusion around the degenerate core and its
luminosity is still set by the core mass. This post-AGB phase is short, about 103

to 104 years, so the core mass hardly increases during that time. This means that the
luminosity remains constant and the star moves horizontally to the left in the HRD,
eventually reaching a temperature as high as Teff ∼105 K. The post-AGB evolu-
tionary track of a star with a degenerate core of 0.6Mʘ that leaves the AGB with an
envelope mass of 0.003Mʘ is shown in Figure 19.1.
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Q (19.1) Estimate the mean density in the convective envelope when the star leaves the AGB.

The location of the star in the HRD during the horizontal crossing depends on the
mass of the envelope. As long asMenv ≳ 10−2Mʘ for a high luminosity AGB star, or
10−3Mʘ for a low luminosity AGB star, the star remains close to the AGB. But
when mass loss has reduced Menv below this limit, the envelope goes into radiative
equilibrium and contracts because it does not have enough mass to sustain an
extended outer convection zone. The star then starts moving to the left in the HRD.
This is called the post-AGB phase. During the first part of the post-AGB phase, the
star is optically faint because it is surrounded by a thick dust shell that was ejected
during the superwind phase at the end of the AGB phase.

When Teff ≈ 30,000 K and the radius has decreased from ∼200Rʘ to ∼3Rʘ, two
effects start to play a role.

– The star develops a line-driven stellar wind with a velocity of a few 103 km s−1

(similar to the ones that were discussed in Section 15.2 for hot luminous stars).
– The UV flux from the star destroys the dust and ionizes the gas of the AGB
wind that surrounds the star.

The interaction of this fast wind with the slow AGB wind produces a planetary
nebula and the star becomes a central star of a planetary nebula (CSPN).

Figure 19.1. Post-AGB evolutionary track of a star with Mi = 3Mʘ that has a core mass of Mc = 0.60 and an
envelope mass of Menv = 0.003Mʘ when it leaves the AGB. The numbers along the track indicate the
decreasing envelope mass in Mʘ. Note the 10 thermal pulses at the tip of the AGB. A red dashed line of
constant radius R = 0.0285Rʘ is indicated in the lower left. (Reproduced from Iben 1982.)
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The mass-loss rates of CSPNs are ∼10−7 to 10−9 Mʘ yr−1, strongly dependent on
L as Ṁ ∼ L1.6, and the terminal wind velocity is 500 to 3000 km s−1 (Kudritzki &
Puls 2000). From now on, the envelope loses mass even faster, not only to the core
but also to the wind, so the speed with which the star moves to the left in the HRD
increases. The speed of the crossing is determined by the continuing mass loss from
the envelope. The crossing time is of the order of 103 to 104 years.

Figure 19.2 shows the change in the internal structure of a post-AGB star ofMi =
3Mʘ during the leftward crossing in the HRD. During the first part of the post-AGB
track, the star is invisible because it is hidden in the dust that was ejected at the end
of the AGB phase, during the superwind phase when the mass-loss rate was as high
as 10−4 Mʘ yr−1.

When the envelope mass has decreased to as little as ∼3 × 10−4 or 3 × 10−5Mʘ,
depending on L, the envelope is almost fully in radiative equilibrium and the star is
on the left of the HRD at Teff ∼ 105 K with a small radius of only ∼0.3Rʘ. Soon
thereafter, the fusion stops completely because the envelope is no longer producing
sufficient pressure for the fusion to continue.

Q (19.2) By what factor does the volume of the star decrease during the post-AGB crossing? How
much did the core decrease in volume?

19.2 Born-again AGB Stars
In some cases, a star experiences a last thermal pulse while it is moving to the left on
the HRD. This is possible because the time between two thermal pulses is on the
order of 103 to 104 yr and the HRD crossing time is of the same order. It is estimated
that about one-fourth of all the AGB stars will have a late thermal pulse when they
have already left the AGB.

The two most famous examples are Sakurai’s object (V4334 Sgr), discovered in
1996 by the Japanese amateur astronomer Yukio Sakurai, and FG Sagittae (FG Sge).

Figure 19.2. Schematic picture of the internal structure of a star of Mi = 3Mʘ during the crossing of HRD.
The H- and He-fusion shells are shown in red and blue, respectively, and the CO core is green. White zones are
in radiative equilibrium. The gray area indicates the convective envelope, which decreases in mass and size.
The envelope mass, the stellar radius, and the time since the star left the AGB are indicated. (Data are from
Blöcker 1995.)
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FG Sge was discovered to be variable in 1943. In 1955, it was a blue B-type star
that was slowly getting redder. In 1991, it was a yellow F-type star and continued
moving to the red side of the HRD, where it stopped as a K-type star on the AGB.
The presence of an ionized circumstellar shell shows that the star was a CSPN before
it started to move back to the right on the HRD. This means that it had been an
AGB star before and had already crossed the HRD to the left and produced a PN a
few thousand years ago. When it was a hot star, the last thermal pulse produced so
much energy that the thin envelope expanded again. This resulted in an increase of
the radius and a decrease of Teff, until the star was on the AGB again. Therefore,
these stars are called born-again AGB stars (Duerbeck & Benetti 1996).

19.3 Planetary Nebulae
For a long time, PNe were explained in terms of the central star ionizing the previous
AGB wind. The problem with this idea was that the expansion speed of the PNe is
typically vexp ∼ 30 to 50 km s−1, but the AGB winds are ejected with vAGB ∼ 10–15
km s−1. How could the AGB material have been accelerated? After the discovery of
stellar winds from CSPN (Heap 1979; Patriarchi & Perinotto 1991) it became clear
that PNe are the result of the interaction between the slow AGB wind and the fast
CSPN wind (Kwok et al. 1978).

Figure 19.3 (left) shows an image of the planetary nebula NGC 7293, also known
as the Helix nebula. The nebula, at a distance of 220 pc, has an inner radius of 0.26
pc, an outer radius of 0.4 pc, a surrounding outer shell with a radius of 0.9 pc, a total
mass of the ionized gas of 0.1Mʘ, and an expansion velocity of 31 km s−1. The ratio
between the outer radius and expansion velocity indicates a kinematic age of about
12,000 yr. The right side of Figure 19.3 shows a schematic picture of the interaction
between the fast CSPN wind and the slow AGB wind. The fast wind (white) from the
central star runs into the slow wind ejected during the AGB phase. The interaction
region (green) is shock-heated and ionized, producing the visual nebula. Outside the
nebula is the unshocked cold but highly diluted AGB wind (dark red).

The velocity of the interaction region between the slow AGB wind and the fast
CSPN wind can be derived from the conservation of momentum of the two
interacting winds (Lamers & Cassinelli 1999)

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

≃ +
̇

̇V t V
M V

M V
( ) 1 . (19.1)PN AGB
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AGB AGB

The mass of the interaction region is

≃ × −
̇ ̇

M t t V V
M M
V V

( ) ( ) , (19.2)PN CS AGB
AGB CS

AGB CS

where t is the time since the fast wind of the CSPN has reached the slow AGB wind.
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Adopting ṀCSPN ≈ 10−7 Mʘ yr−1, ṀAGB ≈ 10−5 Mʘyr
−1,VCS = − V3000 km s , and1

AGB

= 20 km s−1, we find that VPN ≈ 30 km s−1 and the mass of the PN at t ∼104 yr is
∼0.1Mʘ, in reasonable agreement with the characteristic values of PNe.

Q (19.3) Explain why the expansion velocity of a PN depends on the ratio ̇ ̇M V M V/CS CS AGB AGB.
Q (19.4) Explain why the mass of a PN depends on the parameters as in Equation (19.2).

Hint: πρ̇ =M 4 vr2 for a spherically symmetric wind.

This simple description is reasonably successful in explaining the gross properties
of PNe. However, observations with facilities such as the Hubble Space Telescope
have shown that most PNe have complex morphologies. This suggests the presence
of additional effects such as rotation and nonspherical winds of AGB stars, binary
stars, and magnetic fields (Balick & Frank 2002).

19.4 Fading to the White Dwarf Phase
When the envelope mass has decreased to Menv < 10−4 to 10−6Mʘ, depending on
luminosity, shell fusion stops and the luminosity decreases. The star moves down
and to the right in the HRD along a cooling track. Figure 19.5 shows the cooling
tracks from the post-AGB phase via the CSPN phase to the WD phase for stars of
different initial masses.

Figure 19.3. Left: Hubble Space Telescope image of the Helix nebula, NGC 7293, observed in different
emission lines. Right: interacting wind model of planetary nebulae. (Courtesy of NASA;1 model reproduced
from Lamers & Cassinelli, 1999 ª Cambridge University Press. Reprinted with permission.)

1 http://www.spacetelescope.org/images/opo0432d/

Understanding Stellar Evolution

19-5

http://www.spacetelescope.org/images/opo0432d/


Q (19.5) What could be the reason that the H-shell fusion stops when the envelope mass is too small?
Q (19.6) Does the cooling track of a star of Mi = 7Mʘ follow a line of constant radius? If not, does

the radius increase or decrease? Explain the reason.

Table 19.1 lists the characteristics of stars of initial masses 7, 3, and 1Mʘ in-
between the AGB phase and the WD phase. Note the extreme sensitivity of the
crossing time on M. The stars fade to the WD phase in a few megayears.

Figure 19.4. Evolutionary tracks of stars with initial masses of Mi = 7, 3, and 1Mʘ . The ages since the stars
left the AGB are given along the tracks in 103 yr. (Figure adapted from Blöcker 1995.)

Table 19.1. Evolution from AGB star to WD (Based on Blöcker 1995)

Mi /Mʘ Mc /Mʘ

log(L/Lʘ)
(AGB tip)

log(L/Lʘ)
(turn)

log Teff

(turn)
tcrossing
yr

tfading
yr

7 0.94 4.30 4.42 5.62 ×6 101 ×1 106

3 0.60 3.75 3.26 5.20 ×7 103 ×3 106

1 0.52 3.20 2.90 5.00 ×2 105 ×4 106

Notes.
a. Mc is the core mass and the mass of the resulting WD.
b. The term “turn” is the hottest phase, i.e., the end of the leftward crossing.
c. tcrossing is the time from the tip of the AGB to the hottest phase.
d. tfading is the time from the hottest phase to L = Lʘ.
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Because the radius of a star during the crossing and the fading depends strongly on
the envelope mass, the predicted values of tcrossing and tfading are sensitive to the
assumed mass-loss rate during the post-AGB phase, especially the mass-loss rate of
the CSPN.

19.5 Summary
1. A star leaves the AGB when the envelope mass is below a critical limit of the

order of 10−4 to 10−3Mʘ, because it can no longer sustain a deep convection
zone. The envelope slowly goes into radiative equilibrium. The star shrinks
and moves to the left in the HRD. The crossing time in the HRD is typically
104 yr, but depends strongly on core mass and luminosity. During the
crossing, the energy is still produced by He-shell and H-shell fusion.

2. The luminosity is set by the mass of the degenerate core, which does not
change anymore. The values of the radius and Teff are set by the decreasing
envelope mass.

3. Some post-AGB stars experience a late thermal pulse after they leave the
AGB. These stars temporarily evolve back to the AGB. They are called born-
again AGB stars.

4. When Teff ≈ 30,000 K the star develops a fast line-driven wind. This fast
wind runs into the slow AGB wind. The interaction region is heated by the
shock and ionized by the UV radiation of the star. This produces a planetary
nebula (PN). The star is now a central star of a planetary nebula (CSPN)
that continues to move leftward in the HRD.

5. When the envelope mass is below ∼10−5 to 10−4Mʘ, the pressure in the
fusion shells is so low that fusion is slowly extinguished.

6. When fusion is extinguished, the star moves down in the HRD toward the
white dwarf region. This fading takes a few 106 yr.

Exercises.
19.1 (a) Calculate the radius of the star of Mi = 3Mʘ and the density in the

convective envelope when it leaves the AGB. Realize how small it is
compared to the mean density in the convective envelope of the Sun
(Appendix C).

(b) Calculate the change in the mean density in the envelope (i.e.,
outside the H- fusion shell) during the transition from right to left in
the HRD.

19.2 The location of a post-AGB star during the crossing of the HRD from
right to left depends on the core mass and the envelope mass. Consider the
evolutionary track shown in Figure 19.1.

(a) Calculate the evolution time during the horizontal crossing of the
HRD from Teff = 5000 K (Menv = 0.00184Mʘ) and Teff = 100,000 K
if the star had no stellar wind.

(b) Before stellar winds from post-AGB stars were discovered from the
study of their UV spectra in the 1980s, astronomers had already
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concluded that post-AGB stars must have stellar winds. Can you
think of arguments for this conclusion?

(c) Calculate the crossing time of the same post-AGB stars if the mean
mass-loss rate by a stellar wind was 10−9, 10−8, and 10−7 Mʘ yr−1.
Realize how strongly the evolution timescale depends on the mass-
loss rate. Describe the physical reason for this strong dependence.

References
Balick, B., & Frank, A. 2002, ARAA, 40, 439
Blöcker, T. 1995, A&A, 299, 755
Duerbeck, H. W., & Benetti, S. 1996, ApJL, 468, L111
Heap, S. R. 1979, in IAU Symp. 83, Mass Loss and Evolution of O type Stars (Dordrecht:

Reidel), 99
Iben, I. 1982, ApJ, 260, 821
Kudritzki, R. P., & Puls, J. 2000, ARA&A, 38, 613
Kwok, S., Purton, C. R., & Fitzgerald, P. M., 1978, ApJL, 219, 125
Lamers, H. J. G. L. M., & Cassinelli, J. P. 1999, Introduction to Stellar Winds (Cambridge:

Cambridge Univ. Press)
Patriarchi, P., & Perinotto, M. 1991, A&AS, 91, 325

Understanding Stellar Evolution

19-8

http://adsabs.harvard.edu/abs/2002ARA...A..40..439B
http://adsabs.harvard.edu/abs/1995A...A...299..755B
https://doi.org/10.1086/310241
http://adsabs.harvard.edu/abs/1996ApJ...468L.111D
http://adsabs.harvard.edu/abs/1979IAUS...83...99H
https://doi.org/10.1086/160301
http://adsabs.harvard.edu/abs/1982ApJ...260..821I
https://doi.org/10.1146/annurev.astro.38.1.613
http://adsabs.harvard.edu/abs/2000ARA%26A..38..613K
https://doi.org/ 10.1086/182621 
http://adsabs.harvard.edu/abs/1978ApJ...219L.125K
http://adsabs.harvard.edu/abs/1991A%26AS...91..325P


Understanding Stellar Evolution

Henny J.G.L.M. Lamers and Emily M. Levesque

Chapter 20

White Dwarfs and Neutron Stars

All stars with initial masses smaller than about 8Mʘ end their lives as white dwarfs
(WD), degenerate stars with no nuclear energy source. They radiate as they lose
thermal energy from their degenerate interior and we can describe their evolution
due to this cooling. We will also show that there is a maximum mass for white
dwarfs, which is different for He-rich and C- and O-rich white dwarfs.
Observationally, white dwarfs come in three spectral classes: DA (spectrum
dominated by H-lines), DB (spectrum dominated by He-lines), and DC (continuum
spectrum without absorption lines). This distinction is based only on the spectrum
and does not give information on the internal composition. The gravity at the
surface of a WD is high (∼108 cm s−2) and the atmosphere is so stable that
gravitational diffusion occurs: heavier elements sink to the bottom of the photo-
sphere and lighter elements appear at the top. For instance, in He-rich or C- and
O-rich WDs the He, C, and O may have settled at the bottom of the atmosphere,
leaving an extremely thin H layer in the photosphere that produces a DA-type
spectrum. We also discuss the structure of neutron stars (NSs), which are more
massive degenerate stars. These stars are the end products of the evolution of more
massive stars with initial masses of 8 ≲ Mi ≲ 25Mʘ.

20.1 Stars That Become White Dwarfs
White dwarfs are the end points of the evolution of low-mass stars. Three scenarios
can be distinguished.
(1) 0.8 ≲ ≲Mi 8 ʘM : these stars go through core H- and core He-fusion and end as

C- and O-rich degenerate stars, CO white dwarfs.
(2) ≲ ≲ ʘM M0.5 0.8i : these stars reach core H-fusion, but they are not massive

enough to reach core He-fusion. They will end their lives as He-rich white
dwarfs. The lifetime of a star with ≲Mi 0.8 ʘM is longer than the age of the
Universe. This implies that no He-rich WD could have formed yet by single star
evolution. Therefore, He-rich WDs must have been formed via the stripping of
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an initially more massive star by a close companion. In this process, the star
loses its envelope by mass transfer to the companion, leaving behind a
degenerate core at the end of its truncated evolution.

(3) Binary-stripping of even lower-mass stars can result in the formation of
H-rich white dwarfs.

20.2 The Structure of White Dwarfs
White dwarfs are stars that are electron nonrelativistic degenerate, so their EoSs can
be expressed as P ∼ ρ5/3. This means that they are polytropes with γ = 5/3 or n = 1.5.
The structure of polytropic stars was discussed in Sections 11.2 and 11.3. In Section
11.3.1, in Equation (11.14), we have shown that there is a strict mass–radius relation
for degenerate stars

μ= − −R M M R0.012 ( /2) if and are in solar units. (20.1)e
1/3 5/3

This relation implies that the volume of the star is inversely proportional to its mass!
For fully nonrelativistic degenerate white dwarfs, the numerical values are

μ
μ

− = = ×
− = = ×

⊙
−

⊙

⊙
−

⊙

R M M R

R M M R

H WD 1 0.046 ( /0.5 )

He or CO WD 2 0.014 ( /0.5 ) .
(20.2)e

e

WD
1/3

WD
1/3

Q (20.1) What is the radius and density of a He-rich WD of 0.5Mʘ? Compare it with the radius
and mean density of Earth.

Q (20.2) How does the mean density of WDs vary with mass?

20.3 The Chandrasekhar Mass Limit for White Dwarfs
The mass–radius relation for WD (Equation (20.2)) shows that R will decrease as M
increases. Because the volume of a WD is inversely proportional to its mass, the mean
density increases as ρ ∼ M 2. This implies that the density in the center of a WD may
be high enough for the electrons to become relativistic degenerate (RD). The more
massive a WD, the larger the mass fraction of the relativistic degenerate core. If the
WD is completely relativistic degenerate, the EoS is ρ γ∼ → = − =P K n 1/( 1) 34/3

(Section 4.5.2). We have shown in Section 11.3.4 that polytropes with fixed K and
n = 3 can only exist for one specific mass. This is the Chandrasekhar mass limit. This
limit is named after the Indian–American Nobel laureate Subrahmanyan
Chandrasekhar (1910–1995), who derived it at the age of 19 while traveling by boat
from India to the U.K. (Chandrasekhar 1931). The modern value is

μ= ⊙M M1.46(2/ ) , (20.3)ech
2

with μe = 1 for H-WDs and μe = 2 for He-WDs and CO-WDs. This implies that
WDs with M > Mch cannot exist. If a WD in a binary system accretes enough mass
from its companion to reach this limit, it will collapse into a neutron star; in practice,
CO-WDs accreting mass from a companion appear to undergo a runaway nuclear
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fusion reaction that leads to their explosion as a supernova of type Ia (discussed in
Chapter 27).

The predicted mass–radius relation of WDs is shown in Figure 20.1. The blue
lines are for nonrelativistic degenerate stars (Equation (20.2)). The red line is for
WDs with a relativistic degenerate core. The radius goes to zero at the
Chandrasekhar limit.

20.4 The Cooling of White Dwarfs
The luminosity of WDs comes from cooling. The electrons cannot cool because they
are degenerate, so their energy distribution is set by the density, which does not
change. Only the ions can cool and they contain almost all of the mass of a WD.
Their thermal energy is transported outward by conduction and radiated by the very
thin nondegenerate photosphere.

Initially, the ions have a temperature of the order of 108 K, which was the
temperature of the He-fusion shell and the isothermal core. Such a young hot WD

Figure 20.1. Mass–radius relation of WDs. The blue dotted line is for completely nonrelativistic degenerate
He-rich or CO-rich WDs with μe = 2. The red line is for partly relativistic degenerate WDs. The radius goes to
zero at the Chandrasekhar limit of 1.46Mʘ. (ª Pols 2011.)
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cools down fast, with a relatively high luminosity of ∼10�1Lʘ. However, as the ions
cool, the luminosity decreases and so the cooling slows down and the luminosity
decreases slowly over time.

The cooling of a WD depends on its energy loss and hence on its luminosity. The
luminosity depends on the temperature of the interior. Because the core has no
energy source, the temperature gradient must be about zero, so the core is
isothermal (apart from a very small gradient due to heat conduction). The
luminosity–temperature dependence can be derived if we assume for simplicity
that the WD consists of a fully degenerate core with a thin photosphere made up of
ideal gas with a Kramers law opacity: κ = κ0ρT

-7/2 ∼ PT �9/2 (Equation (5.8)). In that
case, Eddington’s equation for radiative transfer (Equation (6.1)) in the photo-
sphere, combined with the HE equation dP/dr =ρr2/GM, can be written as

κ
π

μ= =−dT dP APT A
ac

L
M

/ with
3

16
. (20.4)7.5 0

R

The solution of this equation with the approximate outer boundary conditions,
T → 0 and P → 0, gives

ρ= × ∼ ∼T A P P T T4.25 and / (20.5)8.5 2 3.25

in the photosphere.
Now consider the boundary (b) between the degenerate core and the photosphere.

At that boundary the pressure at the bottom of the photosphere, Pb ∼ ρbTb, is equal
to that at the top of the core, Pb ∼ ρb

5/3. So

ρ ρ ρ ρ∼ ∼ → ∼ ∼P T T Twith . (20.6)b b
5/3

b b b
2/3

b b b
3.25

Substitution of the temperature from Equation (20.5) gives an expression for Tb.
Inserting the constants results in

⎧⎨⎩
⎫⎬⎭= × ʘ

ʘ
T

L L
M M

5.9 10
/
/

(20.7)b
7

2/7K

for a CO or He WD. Adopting typical values of L ∼ 10−2Lʘ and M ∼ 0.6Mʘ, we
find Tb ≈ 1.8 × 107 K. Since the core is isothermal, its temperature is Tc ≈ Tb.

The thermal energy of the ions that is available for cooling is Eth = cV M Tc,
where cV = 3k m/2 ion is the specific heat per gram · K and =m m4ion H for a He WD.
The luminosity of a WD is due to cooling of the ions, so

= − = − = −L
dE
dt

c M
dT
dt

c M
dT
dt

. (20.8)V
c

V
th b

We have shown in Equation (20.7) that Tb ∼ (L/M)2/7, so L = AMTb
7/2, where A is a

constant. Adopting T = Tb = Tc results in an expression of the form

= − → = +− −dT
dt

A c T T T A c t( / ) (5 /2 ) , (20.9)V V
7/2 5/2

0
5/2
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where t is the time since the cooling started. Substitution of the constant A and the
resulting T(t), from equation (20.9), into expression (20.7) for the luminosity,
L∼ MT7/2, results in the cooling curve shown in Figure 20.2. We see that the
cooling is initially rapid. After this initial fast cooling, when T ≪ T0, the temperature
decreases as T ∼ t�2/5. Substitution in equation (20.7) gives L ∼Mt�7/5. Substitution
of the constants yields

⎛
⎝⎜

⎞
⎠⎟μ≈ ×

⊙ ⊙

−
−

L
L

M
M

t
5.2 10

yr
(20.10)10

ion
7/5

7/5

with μion = 4 for a He WD. This shows that an increase in t by a factor of 1.64
reduces L by a factor of 2. It also shows that a He-rich WD will be fainter than a
H-rich WD of the same cooling age.

Figure 20.2 shows the calculated luminosity of a CO WD of 0.6Mʘ. The dashed
blue line is the prediction by the simple theory (Equation (20.10)). It shows that after
a few gigayears the luminosity of a WD decreases slowly on a timescale of gigayears.
The red line in Figure 20.2 is the prediction from a more detailed model in which
partial degeneracy and crystallization are taken into account. Crystallization occurs
in the center of a WD when the ions form a lattice structure. This structure grows as
the white dwarf cools. Crystallization releases energy and produces the bump in L at
t ≈ 5 Gyr.

Figure 20.2. Cooling curve of a CO WD of 0.6Mʘ. Blue line: simplified model described above. Red line:
detailed model with crystallization. (ª Pols 2011.)
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20.5 Neutron Stars
Neutron stars (NSs) are the descendants of single stars with initial masses between
about 8 and 25Mʘ. The evolution of these stars will be discussed in Chapter 23.

At densities in excess of about 1 × 107 g cm�3, electrons are captured by protons,
forming a neutron-rich gas at a density so high that even the neutrons are
degenerate. Compact stars with M > Mch collapse into neutron stars, which are
supported by the pressure of degenerate neutrons. The equation of state for neutron
degeneracy is similar to that of electron degeneracy (Equations (4.20) and (4.22)):

ρ μ ρ= < ×∼
−P K ( / ) if 6 10 g cm , (20.11)n n n,1

5/3 15 3

with Kn,1 = 5.5 × 109
−

−
dyne cm

(g cm )

2

3 5/3
and

ρ μ ρ= > ×∼
−P K ( / ) if 6 10 g cm , (20.12)n n n,1

4/3 15 3

with = ×
−

−( )
K 1.24 10 dyne cm

g cm
n,2

15
2

3 4/3
and μ = 1n for a gas fully consisting of neutrons.

Equation (20.14) is the EoS for extreme nonrelativistic degenerate neutrons.
Equation (20.15) is the EoS for extreme relativistic degenerate neutrons. We see
that nonrelativistic degenerate neutron stars are polytropes with n = 1.5, so they
have a similar mass–radius relation to white dwarfs:

≈ ⊙
−R M M4.9( / ) km. (20.13)ns ns

1/3

This equation predicts Rns ≈ 4 km for a typical NS mass ofMns ≈ 1.5Mʘ. In reality,
the radius of a neutron star is about 10 km, with a large uncertainty due to the
uncertainty in the EoS (Özel & Freire 2016). With such a small radius, the density of
a neutron star is on the order of 1015 g cm�3! (For comparison, the density at the
center of the Sun is ∼102 g cm�3.)

The structure of a neutron star is sketched in Figure 20.3. The crust consists of
three layers: an outside layer of nonrelativistic electron degenerate gas, a middle
layer of heavy nuclei (e.g., 56Fe) and relativistic degenerate electrons, and an inner
layer of even heavier neutron-rich nuclei, free neutrons, and relativistic degenerate
electrons. The outer core consists of superfluid neutrons and protons and relativistic
degenerate electrons. The inner core consists of hyperons, which are nuclei
consisting of three quarks, including at least one “strange quark.” The quarks
interact via the strong nuclear force.

Complete relativistic degenerate neutron stars are n = 3 polytropes and exist for
only one value of the mass, so neutron stars can only exist if their mass is smaller
than some maximum value (analogous to the Chandrasekhar mass limit of white
dwarfs). This maximum mass is about 2 to 3Mʘ, depending on their uncertain EoS.
This limit is called the Oppenheimer–Volkoff limit (Oppenheimer & Volkoff 1939).
If the mass of a neutron star exceeds this limit, it collapses into a black hole. This
happens at the ends of the lives of massive stars with ≳ ʘM M25i when they explode
as core-collapse supernovae.
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20.6 Summary
1. White dwarfs are electron degenerate stars.
2. CO white dwarfs are the remnants of stars with 0.8 ≲ ≲Mi 8 ʘM . He- and

H-rich WDs are formed by binary-stripping.
3. The mass–radius relation of nonrelativistic degenerate WDs is R ∼ M�1/3.

WDs have a radius on the order of the Earth radius and a density of ∼105 to
106 g cm�3. WDs with M ≳ 0.5Mʘ are partly relativistic degenerate in their
core and the mass–radius relation becomes steeper.

4. The Chandrasekhar upper limit for He and CO WDs is 1.46Mʘ.
5. The luminosity of WDs is due to the loss of thermal energy of the ions. The

cooling time is on the order of a few gigayears and L ∼ t�7/5.
6. Neutron stars are the degenerate end products of stars with Mi > 8Mʘ. They

have a mass in the range of 1.46 to ∼3Mʘ and a density of the order of 1015

to 1017 g cm�3. The upper mass limit is uncertain due to uncertainties in the
EoS.

Exercises
20.1 The lower limit for the initial mass of single stars that become neutron

stars is equal to the upper limit for the initial mass of single stars that
become WDs. This last limit can be derived empirically from the study of
a large number of clusters. Can you invent a way to do this?

20.2 (a) How much fainter or brighter is a H-rich WD compared to a He-rich
WD and a C-rich WD of the same cooling age in the slow cooling phase?
(b) Explain the basic reason for this difference in physical terms.

Figure 20.3. Schematic representation of the structure of a neutron star. The different regions, described in the
text, are indicated by different colors. The density scale and the distance scale are indicated. (Reproduced from
Bowers & Deeming 1984, courtesy of Boston: Jones and Bartlett.)
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20.3 What is the expected lower luminosity limit of CO-rich WDs resulting
from stars formed shortly after the Big Bang? (Assume that the stellar
evolution of the first generation stars was about the same as that of stars
that are formed now.)
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Chapter 21

Pulsating Stars

A surprisingly large fraction of stars pulsate, from the low-mass solar-type stars to
the intermediate-mass δ Scuti stars, to the high-mass long period variables and
Cepheids. Pulsation can occur during various evolutionary stages: the main-
sequence phase, the horizontal branch phase, the AGB phase, and when stars cross
the Hertzsprung gap in the HRD. Several types of stars are radial pulsators that are
located in the so-called “classical” instability strip in the HRD. We discuss their
pulsation mechanisms and the timescale of the radial pulsations. In recent years,
with the advent of accurate photometry measured from space, many nonradial
pulsators have also been discovered. We briefly discuss some of their properties.

21.1 Classical Radial Pulsators
Radially pulsating stars periodically change in size. Their pulsation is due to the
existence of a partial ionization zone in the envelope. The location of the classical
radial pulsators in the HRD is shown in Figure 21.1. Most of these radial pulsators
are located in the instability strip, in-between the main sequence on the hot side and
the Hayashi line for red giants and AGB stars on the cool side. This location
corresponds to a specific depth of the ionization zone of H or He, as will be discussed
below.

Low-mass and high-mass stars cross the instability strip when they evolve from
the MS to the Hayashi track during the H-shell fusion phase (for low-mass stars) or
during the core He-fusion phase (for high-mass stars). Because the crossing time
during H-shell fusion is much shorter than that during core He-fusion the number of
classical radial pulsators in the core He phase is higher.

The properties of the most important radially pulsating stars are listed in Table
21.1. The pulsation constant Q̄ is a characteristic of the radial pulsation period and
will be discussed below.

– δ Cepheids, or Type I Cepheids (or simply Cepheids), are massive metal-rich
(Pop I) stars that cross the instability strip when they describe a loop in the
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Figure 21.1. Location in the HRD of various types of radially pulsating stars. Cepheids (red), RR Lyrae stars
(green), and δ Scuti stars (blue) are located in a nearly vertical instability strip. The long period variables
(LPVs) and β Cepheids are outside of this strip. (Reproduced from Iben 1967, with permission)

Table 21.1. Properties of the Fundamental Mode of Radially Pulsating Stars.

Type Pop Period (days) log (L/Lʘ) Spectral Type Q̄(days)

δ Cepheids I 2–60 2.8–4.6 F–G 0.04
δ Scuti I 0.04–0.2 0.9–1.6 A–F 0.04
β Cepheids I 0.1–0.2 4.0–4.7 B1–B2 0.03
W Virginis II 1–20 2.0–2.9 F–G 0.06
RR Lyrae II 0.3–1 1.5–1.6 A–F 0.04

Note. Data are from Cox (2000).
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HRD during the core He fusion phase. Their pulsation is driven by a partial
ionization zone in the star.

– δ Scuti stars, or dwarf Cepheids, are on an extension of the instability strip at
lower luminosity down to the main sequence.

– β Cepheids, or β Canis Majoris stars, are massive main-sequence stars or
subgiants of about 7 to 20Mʘ. They are not located in the main instability
strip because their pulsation is not driven by partial ionization of H or He,
but by the high opacity in a layer of T ∼ 2 × 105 K below the photosphere,
due to iron-like chemical elements.

– W Virginis stars, or Type II Cepheids are the metal-poor (Pop II) equivalents
of Type I Cepheids.

– RR Lyrae stars are low-mass metal-poor stars in globular clusters that cross
the main instability strip during core He-fusion on the HB.

21.2 Pulsation Periods of Classical Radial Pulsators
The pulsation period, P, of a star depends on the timescale for restoring equilibrium.
For stars that pulsate radially, the restoring force is gas pressure. In Section 9.1, we
have shown that the characteristic time for a sound wave to travel from the center to
the surface of a star is the dynamical time that is inversely proportional to the square
root of G ρ× ¯ (Equation 9.2), so we can expect a relation of the type

τ
ρ

ρ ρ= × = = × ⊙( )P C
C

G
Q / , (21.1)dyn

1/2

where C is a constant of the order of unity and Q is the pulsation constant. The mean
value of Q is given for the different types of variables in Table 21.1. It is about 0.05
days for most radial pulsators. The pulsation is in fact a standing pressure wave,
driven in the ionization zone in the envelope and traveling between the stellar center
and the surface of the star. Because the temperature structure in the different types of
stars is not the same, the sound speed crossing time depends on the evolutionary
phase, so the constants C and Q are slightly different for the various types of
variables. In fact, the value of Q for any type of variable changes slightly with the
period. For instance, Q = 0.036 for Cepheids with P = 2.5 days and 0.045 for
Cepheids with P = 60 days (Cox 2000).

21.2.1 Period–Luminosity Relations

Radial pulsators have periods that strictly follow period–luminosity relations. For
a given type of radial pulsator, a higher luminosity or larger radius corresponds to
a lower mean density and a longer period. The P-L relations depend on the
observed photometric band. The most accurate P-L relations of Cepheids are
those in the infrared, because the IR is in the Rayleigh–Jeans part of the spectrum,
where the magnitudes are less sensitive to the details of the changes in spectral
type.
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The existence of a P-L relation for stars in a small range of Teff can easily be
understood. We have seen that P ∼ ρ̄−1/2 ∼ ×−M R1/2 3/2 with R ∼ L1/2 for constant
Teff and M ∼ L1/x if L depends on M as L ∼ Mx. This results in P ∼ L(3x�2)/4x. The
exponent is approximately 1/2 for a mass–luminosity relation with 2 < x < 4.

An accurate P-L relation for Galactic Cepheids has been derived from trigono-
metric parallaxes measured with the Hubble Space Telescope:

= − −M P2.43 log ( /day) 1.62, (21.2)v

where Mv is the mean value during the pulsation (Benedict et al. 2007). The relation
is slightly different for Type II Cepheids in the LMC, due to their lower metallicities
(Gieren et al. 1998):

= − −M P2.77 log ( /day) 1.29. (21.3)v

Figure 21.2 shows the very tight relation between the period and the mean H-band
magnitude of Cepheids in the LMC. Cepheids are therefore ideally suited for
determining their absolute magnitude from the observed period and, thus, determin-
ing the distance of their host star cluster or galaxy from the comparison between the
absolute and apparent magnitude.

Q (21.1) Give at least two reasons why the observed P-L relation is tighter in the near-IR than in
the visual.

Figure 21.2. Period versus the H-band magnitude relation of Cepheids in the LMC. The mean relation is
H = −3.14 × log (P/days) + 16.00. (Reproduced from Testa et al. 2007, with permission. ª ESO.)
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21.3 The κ-mechanism of Classical Radial Pulsators
RR Lyrae stars, Cepheids, δ Scutis, and their Pop II equivalents are variable because
the κ-mechanism in the H and He ionization zone excites a radial pulsation mode,
where κ refers to the absorption coefficient. The κ-mechanism works in layers, which
are partly ionized because, in ionization zones, the degree of ionization and the
opacity can change during compression and expansion. The κ-mechanism is also
called the Eddington valve mechanism, because Eddington described it in 1926 in his
influential book “The internal constitution of the stars” (Eddington 1926).

To explain this, let us first look at the working of a normal combustion motor in a
car. A car is driven by themotion of pistons in cylinders. For an engine to work, it needs
heat input in the cylinder at the right moment (i.e., when the gas is compressed). This is
done by producing a spark during compression. This spark heats the gas, which expands
and drives the cylinder upward. If you ignited the spark at the moment of minimum
compression (i.e., when the cylinder is at its highest position), the motor would not
work; the crucial aspect of the engine is the addition of heat when the gas is compressed.
In the expansion phase, the exhaust valve opens so that the hot gas escapes through the
exhaust pipe and the piston can move inward to begin a new compression phase.

In the κ-mechanism for pulsating stars, the heat input during compression is
provided by an increase in opacity during the compression of a partially ionized zone
in a star. This blocks the transfer of radiation and heats that layer whereby energy is
delivered to the oscillation, hence the name “κ-mechanism.” During expansion the
gas cools, κ decreases with ρ, and excess heat is released so that the gas can start a
new compression phase, hence the name “valve mechanism.”

Let us compare the effect of compression in a fully and a partly ionized layer
where the absorption coefficient is described by the Kramers relation (Equation
(5.8)) κ ∼ ρT −7/2.

In a fully ionized or fully neutral layer:
Compression: ρ↑ → T increases adiabatically (Equation (4.33)) T ∼ ρ2/3↑

→ κ ∼ ρ− 4/3 ↓ so radiation escapes more easily if a layer is
compressed.

Figure 21.3. Basic principle of a combustion motor. A spark ignites the fuel (gas) when the gas is compressed.
This heats the gas, so its expands and drives one piston up and the other one down. The production of a spark
during compression in the alternating cylinders keeps the motor running.
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In a partly ionized layer:
Compression: ρ↑ → T rises marginally because the heat goes into ionizing the gas:

P ∼ ργ and T ∼ ργ−1 → κ ∼ ρT−7/2 ∼ ρ(9-7γ) / 2 → κ ↑ if γ < 9/7.
→ κ↑, so the radiation flow is blocked (trapped) in the compressed

layer
→ energy input during compression (like in an engine).

Expansion: ρ↓ but T is about constant as gas recombines and releases energy:
P ∼ ργ and T ∼ ργ�1 with γ < 9/7 → κ ∼ ρT−7/2 ∼ ρ(9-7γ)/2 ↓ → κ↓
and the energy escapes by radiation.

This works like a motor because the ionization layer stores energy during
compression and releases it during expansion. The condition that γ < 9/7 is crucial
for the κ–mechanism! In fully ionized gas γ = 5/3, so the κ-mechanism does not work.
However, γ is reduced in partly ionized gas and reaches a value of 1.19 < γ < 1.29 ≈
9/7 (see Figure 4.5). So the partial ionization zones are the motors that drive the
pulsations in the classical instability strip.

There are three ionization zones in a star, starting from outside in: the H→H+

zone, the He→He+ zone, and the He+→He++ zone. Detailed models show that the
He+→He++ zone, which is the deepest of the three and occurs at a temperature of
about 4 × 104 K, is mainly responsible for the observed radial pulsations.

In principle, the κ-mechanism could work in the partial ionization zone of any
star, but it only produces an efficient pulsation if two conditions are fulfilled.

1. The ionization layer cannot be too deep; otherwise the layers above it may quench
the pulsation. This happens in cool stars where the ionization zone lies deep
and the convection in the envelope on top of it produces efficient quenching.

2. The ionization layer cannot be too close to the surface; otherwise, there is not
enough gas on top of the ionization zone to produce efficient pulsation. This
happens in hot stars.

Stars only pulsate via the κ-mechanism if the He+→He++ ionization zone has the right
depth (i.e., the star has the right surface temperature), slightly depending on gravity and
pressure. This is the reason why there is a nearly vertical instability strip in the HRD!

Q (21.2) Explain why the instability strip in the HRD runs to the lower left and not vertically or to
the lower right.

Figure 21.4 shows the depth of the ionization zone in stars of different Teff. The
left model refers to the coolest radial pulsator in the instability strip. If Teff is less
than about 5500 K, the He ionization zone is too deep and the layers above it quench
the pulsation. The right model refers to the hottest radial pulsator in the instability
strip. If Teff is higher than about 7500 K, the star is too hot and the ionization zone is
not deep enough: there is not enough mass above the ionization zone to push the
ionization zone down again. The ionization zone is at the right depth for pulsation in
the model of Teff = 6500 K. Notice that in these radially pulsating stars the
He+→He++ ionization zone has only about 10−7 to 10−4 of the stellar mass above it.
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Q (21.3) Why are the H→H+ and He→He+zones partly overlapping in mass, and why is the
He+→He++ ionization zone separated in mass from the other zones?

21.4 An Example: The Pulsation of δ Cephei
Let us consider the observed variation of a Cepheid as an example of a radially
pulsating star. When a star pulsates radially, it not only changes R but also Teff and
L. The bolometric magnitude changes with R2Teff

4. In general, the star is hotter
when it is smaller. The photometric variation at a given wavelength depends on
how the monochromatic flux per unit surface depends on Teff. At short wave-
lengths, i.e., shorter than the flux maximum, an increase in Teff results in a large
increase in monochromatic flux per unit surface. At wavelengths longer than the
flux maximum, i.e., in the Rayleigh–Jeans tail of the Planck function, the
monochromatic flux per unit surface scales with Teff, so the changes in magnitude
will be smaller.

Figure 21.5 shows the variation in V-magnitude, Teff, R, and radial velocity vrad
(negative for expansion and positive for contraction) of the photosphere of the
prototype Cepheid, δ Cephei. This star has a mass of 4.5Mʘ, a mean radius of 44.5
Rʘ, and pulsation period of 5.37 days. The average radial velocity of the star is
−13.5km s�1. The peak-to-peak change is 11.5% in radius and a factor of 1.7 in
luminosity. Note that the velocity curve and Mbol have a sawtooth shape, with

Figure 21.4. Schematic picture of the depth of the H and He ionization zones (IZ) in stars of different Teff in the
classical instability strip. Red indicates the location of the combined H→H+ and He→He+ zone and blue shows
the location of the He+→He++ zone. The radial pulsation is driven by the He+→He++ zone. The vertical axis gives
the logarithm of the fraction of the stellar mass above the zones. Left column: maximum depth of IZ for radial
pulsation. Right column: minimum depth of IZ for radial pulsation. (Reproduced from Carroll & Ostlie 1996.
ª Cambridge University Press. Reprinted with permission.)
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maximum brightness corresponding to maximum outward velocity. This agrees with
the explanation of the κ-mechanism, which requires that the radiation that is trapped
in the ionization zone is released during expansion. The variations in Teff and R are

Figure 21.5. Variation in visual magnitude, Teff, R/Rmin, and vrad = �vexpansion during the pulsation of δ
Cephei, which has a period of 5.37 days. The phase of vrad = 0 corresponds to either maximum or minimum
radius. The maximum brightness is reached during maximum expansion velocity. (Reproduced form Collins
Dictionary of Astronomy, 2006. ª Market House Books. Ltd.)
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almost anti-correlated, which indicates that the minimum radius occurs just before
maximum Teff and vice-versa.

Most radial pulsators vary in the fundamental mode. Throughout the star, the gas
moves in the same direction, alternatingly inward or outward. In such radially
pulsating stars, driven by the κ-mechanism, the motions are restricted to the outer
layers and are quenched at larger depths. Stars can also pulsate in radial overtones.
In that case, there are more n > 0 nodes in the stellar interior. The period of an
overtone pulsation is shorter than the fundamental pulsation period by about a
factor of 1/n. This makes it easy to identify overtones.

21.5 Nonradial Pulsations and Asteroseismology
The stars discussed above pulsate in a dominant radial mode; however, stars can
also pulsate in many radial and nonradial modes simultaneously. In that case, the
star not only changes its radius but it changes its shape as well, deviating from
spherical symmetry. These changes can be described by spherical harmonic
functions. Contrary to the fundamental radial mode in Cepheids, which has a
period on the order of days, the nonradial pulsations in solar-like stars or red giants
have periods on the order of minutes or hours, respectively. Nonradial pulsations are
often called oscillations. The study of stellar structure by means of detected
oscillations is called asteroseismology.

The oscillation pattern of a nonradial pulsator, NRP, is characterized by two
quantum numbers: (m, ℓ ).

– m describes the number of meridional nodes: m = 0 is symmetric around the
rotation axis.

– ℓ-m is the number of nodes in the latitude direction. If ℓ = m there are no
latitude nodes.

A pulsation with ℓ = m = 0 is a radial pulsation. Pulsation modes with m ≠ 0
describe waves traveling in the azimuthal direction. An m = 3 and ℓ-m = 0 pulsation
mode is like a peeled orange with six parts alternatingly expanding and contracting.
An m = 0 and ℓ-m = 3 mode is like a tomato with three horizontal node lines that
separate the star into four latitudinal zones, alternatingly expanding and contract-
ing. Pulsations with m > 0 represent traveling waves that move around the star
parallel to the equator. At the surface of a star these waves are analogous to water
waves in a river, but they also occur in deeper layers. They produce horizontal
motions at the surface that can be detected as spectral line profile variations.

Figure 21.6 shows the modes for ℓ = 3 and different values of ℓ-m.

Nonradial pulsation modes are more difficult to detect than radial modes because
different parts of the star may pulsate out of phase: while one part contracts and gets
hotter, the other part expands and gets cooler, resulting in opposite effects and
partial canceling of observable characteristics. The higher the quantum numbers m
and ℓ-m (i.e., the larger the number of surface nodes), the smaller the variations in
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brightness and in line profiles. Brightness variations of NRP stars are therefore
generally on the order of 1% or less (i.e., more than 10 times smaller than those of
radial pulsators). See Coen Schrijvers’ personal website1 for movies with examples of
line profile variations for different nonradial pulsations.

Nonradial pulsations can be due to
– pressure modes or p-modes, in which the pressure force is the dominant
restoring force. The pressure force can cause both horizontal and vertical
motions. P-mode pulsations are trapped in the upper layers of the star.
Therefore, the frequencies of p-mode pulsations provide information about
the T, ρ, and chemical structure of the outer envelope.

– gravity modes or g-modes, in which gravity (buoyancy) is the dominant
restoring force. G-modes represent internal gravity waves that travel deep
into the interior of the star. Therefore, the frequencies of the g-mode
pulsations provide information about the T, ρ, and chemical structure deep
inside the star. The analysis of g-mode oscillations provides a great way to
study internal mixing by convection, overshooting, and meridional
circulation.

See Christensen–Dalsgaard (2014) for a detailed description of theory and obser-
vations and Aerts et al. (2010) for a review.

Figure 21.7 shows the propagation of sound waves in the Sun. The paths of the
waves are bent because the sound speed increases with depth. This effect is
analogous to the bending of light rays when they enter a medium with a higher
speed of light. At a certain depth, depending on wavelength and on the local
temperature and density conditions, the waves will be reflected.

At the surface the waves are reflected by the rapid outward decrease in density, so
the waves are trapped in the layer between the surface and the inner turning point.

Figure 21.6. The topology of nonradial pulsations (NRPs) for ℓ = 3 modes and different m modes. From left to
right: (m, ℓ-m) = (3,0), (2,1), (1,2), (0,3). Notice that ℓ-m is the number of latitudinal nodes and m is the number
of longitudinal nodes. The number of longitudinal and latitudinal zones is one higher than the number of
nodes, e.g. the right model has 3 latitudinal nodes and 4 zones. The blue sections are expanding and the red
sections are contracting with the + and − signs indicating positive or negative Doppler shifts.

1 http://staff.not.iac.es/∼jht/science/
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From all possible wavelengths, only those that fit with an integer number around the
circumference of the star will produce an oscillation. The figure shows the path of a
few waves of wavelength λ π= R2 / l l +( ( 1) that produce an oscillation. The
pulsations of degree ℓ can be in the fundamental mode (i.e., with n = 0 nodes), or
in overtones with n > 0.

High-accuracy photometric observations of NRP stars usually show a series of
frequencies. Most of the oscillations are of mixed modes, with both pressure and
gravity as restoring forces. In the limiting case of single modes, there is a significant
difference between the periodicities of p-mode and g-mode pulsations. High-order
p-mode pulsations (i.e., with overtones n ≫ 0), are equidistant in frequency, whereas
high-order pulsations in the g-mode are equidistant in period. This characteristic
makes it easy to determine the types of observed modes.

The observed oscillations in the Sun have frequencies of about 1200 to 5000 μHz,
with a mean period of about 5 minutes. They are equidistant in frequency, which
indicates that they are p-modes. The waves are triggered by convection in the
envelope of the Sun. The oscillation of B-type stars is due to low-order g-modes,
with periods on the order of hours.

Figure 21.7. Path of sound waves of several frequencies that produce oscillations in the Sun. The wavelength λ
of the sound waves is specified by the degree l with λ π= R2 / l l +( ( 1) . The dotted circles show the depth
where the waves are reflected. The other lines show the path of waves of degree ℓ = 0 (a straight path through
the center), 2 (passing close to the center), 20, 25 (dashed lines), and 75 (trapped in a thin surface layer).
(Reproduced figure with permission from Christensen–Dalsgaard 2014. Copyright 2002 by the American
Physical Society)
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Figure 21.8 shows the power spectrum of the nonradial pulsations in the solar
type G-type star KIC 693 3899, observed with the Kepler satellite, as an example.
The observed overtone pulsations of p-modes with ℓ = 0, 1, and 2 are indicated. Note
that they are equidistant in frequency.

Figure 21.9 shows the frequency spectrum of nine stars of about 1Mʘ in different
evolutionary phases (i.e., with different surface gravities and mean density). The

Figure 21.8. Observed power spectrum (black) of the G-type star KIC 6933899. The red line is the smoothed
power spectrum. The pulsation periods are around 10 to 15 minutes. The equal spacing in frequency of the
overtones shows that the peaks are due to nonradial p-mode pulsations. The peaks are identified with their
value of ℓ. (Reproduced from White et al. 2012.)

Figure 21.9. Frequency spectrum (in μHz) of nonradial pulsations of nine stars with a mass of ∼ 1Mʘ,

observed with Kepler. The stars are arranged in order of decreasing surface gravity and mean density. The left
panel shows, from top to bottom, two main-sequence stars, two subgiants, and an RGB star. The right panel
shows four RGB stars with increasing radius. The mean nonradial pulsation period of each star is indicated in
blue. (Reproduced from Chaplin & Miglio 2013, with permission)
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mean nonradial pulsation period runs from 4.8 minutes to 9.3 hours. There is a clear
trend from high-frequency oscillations in stars with high surface gravity to low
frequencies at low surface gravity. This shows that the surface gravity can be derived
accurately from asteroseismology.

Just like the fundamental radial pulsations, which are driven by the κ-mechanism in
classical pulsators, nonradial pulsations must also be driven by some mechanism that
triggers instability. Multiperiodic radial and nonradial p-mode pulsations, as observed
in cool stars like the Sun, are due to the motions produced by the convective cells in
the outer stellar envelope. All low-mass stars with convective envelopes are expected
to be multiperiodic nonradial pulsators. On the other hand, the g-mode pulsations of
B stars are most likely driven by the κ-mechanism, due to the iron opacity peak.

21.6 Summary
1. Classical radial pulsators are located in a nearly vertical band in the HRD,

called the instability strip, centered around Teff ≈ 6500 K.
2. The fundamental radial pulsation period P depends on the mean density of

the star. It is characterized by the pulsation constant Q = P/ ρ ρ¯ ¯ʘ( )/ 1/2, with Q
≈ 0.05 days.

3. The radial pulsators in the instability strip are driven by the κ mechanism.
This mechanism operates in the ionization zones inside stars, mainly the
He+→ He++ zone. In these zones, the opacity increases during compression
and decrease during expansion.

4. In stars with Teff ≲ 5500 K, the He+→ He++ zone is too deep and the required
heat input (by blocked radiation) is negligible. In stars with Teff ≳ 7500 K, this
zone is too shallow and the pulsation is quenched in the outer layers. This is
the reason that the instability strip is nearly vertical in the HRD.

5. The light curve of Cepheids shows a maximum when the expansion velocity
reaches a maximum.

6. Stars can also pulsate nonradially in modes that are excited by convective
motions in the envelope. The dominant restoring force can be the pressure
force (p-mode pulsations) or gravity (g-mode pulsations). The high-order
peaks in the power spectrum of p-mode pulsations are equidistant in
frequency, while they are equidistant in period for the g-modes. P-mode
pulsations give information about the structure of the star’s outer layers and
g-mode pulsations depend on the structure deep inside the star.
Asteroseismology provides a method to determine empirically the depth of
convection zones, internal mixing, internal rotation curves, etc.

Exercises
21.1 a. In chapter 9, we have predicted that the dynamical timescale of a star is

of the order of τdyn = (G ρ̄)−1/2. Observations show that the fundamen-
tal pulsation period is P = Cτdyn.

Calculate the value of C from the data in Table 21.1.
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b. If this value of C also holds for other types of stars, predict the
pulsation period of the Sun, a red supergiant, a star at the tip of the
AGB, a WD, and a neutron star.

c. Explain why these last estimates do not predict the pulsation periods
accurately?

21.2 Explain the trend in the mean pulsation periods of the stars shown in
Figure 21.9.

21.3 Stars on the RGB and the AGB are located in about the same region of
the HRD. Suppose that an RGB star and an AGB star have the same
values of Teff and L and the same mass. Which one of the two would have
the shorter fundamental period? Explain this.

21.4 Suppose that the RGB star and the AGB star of Exercise 21.3 with the
same Teff and L both show nonradial p-mode and g-mode pulsations.
Which of the two modes provides the best diagnostic to distinguish
between the RGB phase and the AGB phase?
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Henny J.G.L.M. Lamers and Emily M. Levesque

Chapter 22

Observations of Massive Stars: Evidence for
Evolution with Mass Loss

The distribution of massive stars in the Hertzsprung–Russell diagram is an
important source of information about their evolution. The observed luminosity
upper limit is not the horizontal line in the HRD, predicted by the Eddington limit,
but a line that slopes downward from about 3× 106 Lʘ at ∼40 000 K to 5× 105 Lʘ at
∼8000 K. We will show that this is the result of the atmospheric Eddington limit.
This indicates that the most massive stars do not evolve into red supergiants (RSGs);
instead they lose a substantial fraction of their mass shortly after the main-sequence
phase as luminous blue variables. Not surprisingly, the upper part of the HRD
contains various types of stars in which the nuclear fusion products appear at the
surface: N-rich O- and B-type stars, and N-rich or C-rich (and H-poor) Wolf–Rayet
stars (WR). In this section, we will discuss the observational clues to their evolution.
The number ratios of WR stars to RSGs and the ratio of C-rich to N-rich WR stars,
observed in several galaxies, depends on the metallicity of that galaxy. This shows
the importance of metallicity-dependent mass loss in the evolution of massive stars.

22.1 The Observed Upper Limit in the HRD
Figure 22.1 shows the observed distribution of luminous stars in the LMC with the
empirical upper limit. This empirical limit is called theHumphreys–Davidson limit or
HD-limit, after the U.S. couple Roberta Humphreys and Kris Davidson, who
studied it in 1979 (Humphreys et al. 1979).

The observed distribution of massive stars shows a conspicuous absence of cool
stars with Teff < 8000 K above Mbol = −9.5 or L = 5 × 10�5 Lʘ. This corresponds to
stars with an initial mass of about Mi > 40Mʘ. This is surprising because luminous
stars above this mass limit exist on theMS, and the evolutionary tracks of massive stars
are approximately horizontal in the HRD; the lack of bright red supergiants—cool
massive stars with a very extended convective envelope—indicates that stars more
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massive than about 40Mʘ do not evolve to the far right of the HRD. Massive stars can
be prevented from becoming red supergiants if they lose a significant fraction of their
envelope before they reach the Hayashi line. It turns out that they lose this mass during
a brief phase as luminous blue variables after the main sequence.

22.2 The Atmospheric Eddington Limit
The luminosity of massive stars is so high that they are close to their Eddington limit
for radiation pressure (Equation (6.12)). For massive stars, with electron scattering
as the dominant opacity in their interior, LE = 4πcGM/σe ≈ 3 to 4 × 106Lʘ and
Mmax ≈ 150 to 200Mʘ; however, the absorption coefficient is higher than σe in the
atmosphere (see the peak in κ at 104 < T < 105 K for ρ < 10−6 g cm−3 in Figure 5.1).
At atmospheric densities of the order of 10−10 g cm−3 the opacity has a peak around
10,000 to 20,000 K. A peak in κ implies a drop in the Eddington limit. We can define
the atmospheric Eddington limit as

π κ σ κ= = <L cGM L L4 / ( / ) , (22.1)eE
atm

atm E atm E

where κatm is the maximum value of κ in the atmosphere at 10−2 < τ < 103. Because
κatm has a peak around Teff ∼ 10,000 K, the atmospheric Eddington limit in the
HRD will show a dip in luminosity, called the Eddington trough. Stars that reach
that limit when they evolve to the right in the HRD after the MS phase will become
unstable and suffer severe mass loss. The situation is sketched in Figure 22.2.

The predicted evolutionary tracks of massive post-MS stars are almost horizontal
in the HRD, going from left to right. If a star reaches LE

atm, its atmosphere becomes
loosely bound, which may lead to instabilities and high mass-loss rates. This will
continue until the star has lost so much mass that it can no longer sustain an

Figure 22.1. Distribution of the most luminous stars in the LMC. Two versions of the possible Humphreys–
Davidson upper limit are shown (red line or black dashed–dotted line), as well as several predicted
evolutionary tracks. The gray region is the location of the brightest red supergiants. (Reproduced from
Massey 2003, with permission.)
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extended convective envelope. It will shrink and move to the left in the HRD. Stars
with a mass below the critical mass or luminosity may safely evolve “under the
atmospheric Eddington trough” and reach the RSG phase. In principle, stars could
exist and be stable on the cool side of the Eddington trough; however, because the
tracks are nearly horizontal they cannot reach this area. The exceptions are stars
with a mass just below the critical mass. They may become RSGs and move slightly
upward along the Hayashi line. When they have lost enough mass, and can no
longer sustain their large convective envelope, they will shrink and move back to the
left of the HRD; however, during their leftward motion in the HRD, they will hit the
Eddington dip on the cool side and become unstable at Teff in the range of about
5000 and 10,000 K. These are the highly variable YSGs.

Figure 22.3 shows the location of the predicted atmospheric Eddington limit in
the HRD for different metallicities from Z/Zʘ = 0.1 to 2.0 (Ulmer & Fitzpatrick
1998). In this study, the atmospheric Eddington limit is defined as the luminosity
where the force due to radiation pressure reaches a maximum of 90% of the gravity
somewhere in the atmosphere between 10−2 < τ < 103. This means that the effective
gravity is reduced by a factor of 10 compared to the values predicted by stellar
evolutionary theory. Note the downward slope between about 50,000 K and 11,000
K, the minimum near 12,000 K, and the upturn at Teff < 10,000 K. This atmospheric
Eddington limit is sensitive to metallicity, with a LE

atm being smaller for higher
metallicities, because κ increases with Z. The predicted decrease of L with Teff agrees
qualitatively with the observed Humphreys–Davidson limit. This suggests that the
HD-limit is due to high mass loss as stars become unstable and lose mass because of
their loosely bound atmospheres.

Figure 22.2. Schematic description of the effect of the dip in the atmospheric Eddington limit LE
atm on the

evolution of massive stars. Schematic evolutionary tracks are indicated, as well as the location of WR stars,
luminous blue variables (LBVs), and red (RSG) and yellow (YSG) supergiants. A star at the end of a track
indicates a supernova explosion.
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22.3 Luminous Blue Variables and the Atmospheric Eddington Limit
Luminous Blue Variables (LBVs) are very luminous blue supergiants with L/Lʘ >
3 × 105 that show large and irregular variations in their V magnitudes (Humphreys
& Davidson 1994). These variations occur on timescales from weeks to years, with
occasional large eruptions.

− On timescales of yr or decades, their visual brightness temporarily increases
by a factor of about 2 to 5. After a few years to a decade the brightness drops
again.

− Every 102 to 103 yr, they experience a large eruption when they eject ∼1 to
10Mʘ of gas. The most famous of these eruptions are those of P Cygni in AD
1600 and η Carinae around AD 1843, when that star temporarily became the
second brightest star in the sky.

Figure 22.4 shows an image of the nebula around η Car, which is a result of a
series of outbursts in 1838–1856. The amount of mass in the nebula is estimated to

Figure 22.3. Predicted atmospheric Eddington limit, defined by Ymax = grad/ggrav = 0.90 in the atmosphere
between 10−2 < τ < 103. The metallicities approximately correspond to M31 (Z/Zʘ = 2), Milky Way (Z/Zʘ = 1),
LMC (Z/Zʘ = 0.3), and SMC (Z/Zʘ = 0.1). (Reproduced from Ulmer & Fitzpatrick 1998.)
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be 20Mʘ. The nebula is highly aspherical, which suggests that either binarity or fast
rotation has played a role in shaping the nebula.

When LBVs are in a phase of faint visual luminosity, their spectral type is O or B
and Teff is between 15,000 and 35,000 K. At maximum visual light Teff is between
7000 and 10,000 K. Observations over the full spectrum have shown that the
luminosities of LBVs remain “approximately” constant during these variations (but
see Figure 22.6): the radiation is just redistributed more to the UV in the hot phase.
This means that the variations in V are mainly due to large changes in radius. In the
hot phase, LBVs have a typical radius of 30 to 100Rʘ, but in the bright phase this
can increase to about 100 or 300Rʘ. The more luminous the LBV, the larger the
variations in R and Teff.

Figure 22.5 shows the V-band light curves of S Doradus, an LBV in the LMC,
between 1974 and 1992. The variations are irregular, with a timescale of several
years, and large, with ΔV ≈ 1.2 mag.

Figure 22.6 shows the stellar parameters of S Dor during the large variations in 1984–
1991, derived by comparing their energy distribution with model atmospheres. In this
period, the radius varied between 100 to 380Rʘ and Teff varied between 9000 and
20,000 K. The luminosity varies only slightly and has a minimum when R is at
maximum. This suggests that part of the energy generated by fusion is used for the
expansion.

Figure 22.4. HST image of the Carina nebula that was ejected in a series of eruptions between 1838 and 1856
by the LBV η Carinae. The nebula, at a distance of 3000 pc, contains about 20Mʘ of gas and dust. (Figure is
from J. Morse, University of Colorado and NASA HST. Courtesy of NASA.)
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Q (22.1) Give at least two arguments for why the variations of LBVs cannot be due to some kind
of pulsation.

Figure 22.7 shows the location of LBVs in the HRD. For each star, the location is
shown at two occasions, connected by dotted lines. The luminosity at the two
occasions is about the same. This indicates that changes in Teff are due to changes in
R. During the hot phase (left in the HRD), the LBVs are located in a band of L
decreasing with Teff. In the cool phase, they are located in an almost vertical band at
Teff ≈ 9000 K. This location is qualitatively remarkably similar to the predicted
shape of the atmospheric Eddington limit!

There are only a handful of LBVs known in our Galaxy and only a few dozen in
total. This indicates that it must be a short-lived phase. The origin of the instability is
not yet known; however, it is significant that in the hot phase, when the star is faint
in the visual, its location in the HRD is very close to the HD-limit and to the
atmospheric Eddington limit. The instability of these stars is somehow related to the

Figure 22.5. Visual light curve of the LBV S Dor in the LMC in 1975–1992. (Reproduced from Spoon et al.
1994, with permission. ª ESO.)

Figure 22.6. Variation of the stellar parameters of S Dor in the period 1984–1991. The variations in R and Teff

are approximately anticorrelated: Teff reaches a minimum of about 9000 K when the radius reaches its
maximum of about 380Rʘ. The luminosity varies only slightly, by about 0.2 dex, and has a minimum when R
reaches its maximum. (Figure is from Lamers 1995.)
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fact that their atmospheres are loosely bound and a small internal disturbance may
have a large effect. We will show later in Section 25 that critical rotation may play
a role.

The mass-loss rates of LBVs are high and on the order of 10−6 to 10−4 Mʘ yr−1. In
addition, the stars suffer large eruptions. From the statistics of LBVs with nebulae,
the occurrence of these eruptions is estimated to be once in about 102 to 103 years.
Because of the highly variable mass loss and the eruptions, the predicted post-main-
sequence evolutionary tracks of stars encountering the atmospheric Eddington limit
is uncertain. In most stellar evolution calculations, a high average mass-loss rate of
about 10−4Mʘ yr−1 is adopted. For reviews, see Nota & Lamers (1997).

22.4 Wolf–Rayet Stars
Wolf–Rayet stars (WR stars) are luminous stars, L ≳ 105Lʘ, with Teff ranging from
about ∼30,000 to 100,000 K; see Crowther (2007) for a review. They are named after
the French astronomers Charles Wolf (1827–1918) and Georges Rayet (1839–1906),
who discovered in 1867 a new class of hot stars with strong and broad emission lines.
The emission lines indicate that the stars have a strong stellar wind with a mass-loss
rate of 4 × 10−6 to 4 × 10−5 Mʘ yr−1 and terminal velocities of ∼1000 to 3000 km s−1.
The wind is so optically thick that the photosphere cannot be observed. The
spectrum is therefore dominated by wind features (i.e., the strong and broad

Figure 22.7. Location of LBVs (black dots) in the HRD. For each star, the location is shown twice, connected
by a dashed line: at the optical maximum when the star is cool and R is large and at optical minimum when the
star is hotter and R is smaller. The crosses indicate highly variable yellow supergiants. The location of the main
sequence is indicated in red. The blue lines are lines of constant radius. (Data are from Humphreys &
Davidson 1994 and Smith et al. 2004.)
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emission lines). The spectrum shows that the atmospheres are strongly enriched by
fusion products.

Wolf–Rayet stars are classified according to their observed chemical
compositions:

− WNL stars (W for Wolf–Rayet, N for N-rich, L for late spectral type, with
Teff ∼ 30,000 to 45,000 K) are N-rich but C- and O-poor. They are also
He-rich but still have some H left. These abundances are clearly the products
of H-fusion via the CNO cycle (Section 8.4.3).

− WNE stars (E for early spectral type, with Teff > 45,000 K) are N- and
He-rich and C-poor, but, contrary to the WNL stars, they have no H left.
These are also the products of H-fusion via the CNO cycle, but from a later
stage when all H was converted into He.

− WC stars are C-rich and He-rich, but lack N and H. They are hot with Teff >
45,000 K. They clearly show the products of He-fusion via the triple-α
process (Section 8.5).

− WO stars are O-rich, C-rich, and He-rich stars whose spectrum is dominated
by O lines. This is partly an abundance effect and partly an ionization effect.
These stars are in fact so hot that the OIV lines become stronger than the CIV
lines, even if the ratio C/O > 1.

Figure 22.8 shows the optical spectrum of WN and WC stars in the wavelength
range of 3500 to 6000 angstroms. The subclasses 4 to 9 indicate different values of
Teff, decreasing from subclass 4 to 9. Notice the difference in the spectra due to their
different chemical compositions. The WN spectra show emission lines of HeI–HeII
and NIII–NV, with HeII decreasing toward later subtypes. The WC spectra show
emission lines of HeII, CIII–CIV, and OIV, with HeII decreasing and CIII
increasing toward later subtypes.

The presence of the strong optical emission lines is evidence for the presence of
dense extended winds around WR stars. The structure of the winds is shown
schematically in Figure 22.9. The optically thick part of the star, τ > 20, is shown in
orange and the atmosphere at 2/3 < τ < 20 is shown in red. The blue extended region
is the wind, with ne > 1012 cm−3 in dark blue and ne < 1012 cm−3 in light blue. The
size of the WN8 star, the WC9 star, and the O star are plotted to scale. Note the
large extension of the winds of the WR stars that hide the photospheres.

Figure 22.10 shows the location of WR stars in the HRD. The stars are located in-
between the zero-age main sequence (ZAMS) of H-rich stars and He-rich stars. The
location of the Humphreys–Davidson limit is also shown, as well as the evolutionary
track of a star with an initial mass of 40Mʘ. Single WR stars are the descendants of
massive stars with Mi ≳ 40Mʘ, but their present mass is lower.

Although WR stars have lost almost all of their H, they are located in the HRD
between the H and He MS. This is due to their extended envelope. Their luminosity
is so high that the radiation pressure produced by the Fe opacity peak around 105 K
in the envelope almost balances gravity. This means that the gas pressure is very low
in the envelope, so the density is also low. This results in an extended low-density
envelope, an increased radius, and a drop in Teff.
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The strong enrichment patterns of the WR stars show that they are “peeled” stars.
During their evolution after the MS phase, they have lost so much mass that the
products of nuclear fusion are exposed at the surface. Because N-rich layers are the
result of H-fusion and C-rich layers are the result of deeper He-fusion, WC stars
have been peeled more severely than WN stars. In other words, if a massive post-MS
star is peeled, the N-rich layers will appear first at the surface and the C-rich layers
will appear later. This implies that WR stars will evolve from WN to WC due to
their high mass-loss rates.

Figure 22.8. Optical spectra of WR stars. Top: WN stars; bottom: WC stars. (Reproduced from Crowther
2007, with permission.)
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Q (22.2) Evolution calculations suggest that stars with initial masses less than about 30Mʘ

explode as supernovae during the red supergiant phase. How can the presence of WR
stars with L ≲ 2 × 105 Lʘ be explained?

Figure 22.9. Sizes of a WN8 and a WC9 star are compared with that of an O4 If star. The sizes are plotted to
scale. The optically thick regions of the stars (τ > 20) are shown in orange and the atmospheres (2/3 < τ < 20)
are shown in red. The wind is shown in blue, with ne > 1012 cm−3 in dark blue and ne < 1012 cm−3 in light blue.
Note the small radii and the extended winds of the Wolf–Rayet stars compared to that of the O star.
(Reproduced from Crowther 2007, with permission)

Figure 22.10. The locations of galactic WR stars in the HRD is indicated by a red region, with a few spectral
types. The ZAMSs for He and H stars are indicated by green lines, with the location of stars of various masses
marked as points. Lines of constant radii are shown in blue and the HD limit is shown as a dashed green line.
The evolutionary track of a 40Mʘ star is shown in black. Note that the WR stars are located in-between the
He-ZAMS and the H-ZAMS. (Adapted from Moffat et al. 1989. ª Kluwer Academic Publishers 1989. With
permission of Springer.)
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22.5 The Dependence of Massive Star Evolution on Metallicity
Observations of massive stars in the Galaxy, the LMC, and the SMC show that
metallicity plays a crucial role in the evolution of massive stars. This is not surprising
considering two effects that we have discussed before.

1. The high mass-loss rates of luminous stars are driven by radiation pressure in
spectral lines of C-, N-, O-, and Fe-group elements (Section 15.2).

2. The atmospheric opacity, and hence the luminosity of the atmospheric
Eddington limit, depends on metallicity (Figure 22.3).

22.5.1 The Observed Metallicity Dependence of Red Supergiants

Red supergiants are massive stars of 10 ≲ Mi ≲ 40Mʘ with extended convective
envelopes. They are located close to the Hayashi limit in the HRD. We have seen
in Figures 16.3 and 17.4 that the minimum Teff of a convective star depends on
metallicity. The opacity in the atmospheres of very cool stars is due to H− with the
electrons provided by the low ionization stages of metals such as Fe, Cr, Ti, etc.
The higher the metallicity, the larger the κ (as κ ∼ Z) and the cooler the Hayashi
limit.

This predicted trend is confirmed for massive stars by a study of the spectral types
of RSGs. The spectral type distribution of RSGs in different galaxies shows a trend
with metallicity. This is shown in Figure 22.11, where the distributions of RSGs over
K and M subtypes in five galaxies with Z = 1.0 to 0.10Zʘ are plotted. There is a
clear trend demonstrating that the spectral types are earlier (corresponding to a
higher Teff in cool supergiants) at lower Z. This shift in spectral type exceeds what
would be expected from a simple Z effect on the molecular band strengths in the
spectrum. It shows that the Teff of RSGs is higher at low Z.

22.5.2 The Observed Metallicity Dependence of Wolf–Rayet Stars

Realizing that WR stars are peeled-off stars, we expect that the degree of peeling
(and hence the relative number of WR stars and WR spectral types) depends on the
mass-loss rate during previous evolutionary stages, which in turn depends on
metallicity.

Figure 22.12 (top panel) shows the number ratio of RSG/WR stars for several
Local Group galaxies with different metallicities. The metallicities, expressed here as
the logarithm of the O/H ratio, are between 0.25 and 2 times that of the Galaxy.
There is a clear trend with the WR/RSG ratio increasing toward higher metallicity.
This can be explained by the fact that single stars become WR stars if their evolution
tracks hit the atmospheric Eddington limit. This limit reaches lower luminosity at
higher metallicity. So the number of WR stars will increase with metallicity
compared to the number of stars that reach the RSG phase.

Metallicity also has an effect on the number ratio of WC/WN stars. Since WC
stars are more peeled-off than WN stars, the number ratio of the WC/WN stars in
galaxies is expected to increase with mass loss and metallicity. Figure 22.12 (bottom
panel) shows that this is indeed the case.
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22.6 Summary
1. The luminosity upper limit of massive stars, called the Humphreys–Davidson

(HD) limit, is a line in the HRD that drops between 50,000 ≳  ≳T 9000eff K
from log L/Lʘ ≈ 6.3 to 5.7 and is about constant at Teff ≲ 9000 K.

2. The atmospheric Eddington limit in the HRD is lower than the classical
Eddington limit because the opacity in the atmosphere is higher than σe in
the interior. It has a dip (Eddington trough) at  ≈T 11,000eff K. The hot side
of the Eddington trough coincides with the HD-limit.

3. Stars more luminous than the deepest point of the Eddington trough cannot
evolve into RSGs because they lose a large amount of mass as LBVs.

4. Luminous blue variables (LBVs) are massive stars that show large irregular
variations in visual brightness on timescales of years to decades and large
eruptions on timescales of centuries. The optical brightness variations are
due to dramatic variations in radius at approximately constant luminosity.

Figure 22.11. Observed distribution of red supergiant spectral subtypes in galaxies of decreasing metallicity.
The RSGs have later spectral types, corresponding to cooler temperatures, at higher metallicity. (Reproduced
from Levesque & Massey 2012.)
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At maximum radius, the stars are cool, Teff ≈ 9000 K, while at minimum
radius they are much hotter, close to the hot side of the Eddington trough in
the HRD. The time-averaged mass-loss rate of LBVs is high, possibly as high
as −10 4 Mʘ yr−1.

5. Wolf–Rayet (WR) stars are luminous hot stars, located in the HRD between
the H and the He ZAMS in the HRD. Their spectrum is formed in the stellar
wind and shows broad emission lines that indicate high mass-loss rates.
There are three classes: WN stars are N-rich, WC stars are C-rich and He-
rich, and WO stars are O-rich and He-rich. WR stars are stripped massive
stars with the products of H-fusion via the CNO cycle (WN) and He-fusion
via the triple-α process (WC) in their atmospheres.

Figure 22.12. Top: the increase of the number ratio of WR/RSG stars in several Local Group galaxies with
increasing metallicity, expressed as log (O/H) + 12. (N.B: log (O/H) + 12 ∼ 8.7 for massive Galactic stars in the
solar vicinity.) The trend is due to the metallicity dependence of the atmospheric Eddington limit. Bottom: the
increase of the number ratio of WC/WN stars in the same galaxies. The trend is due to the metallicity
dependence of the mass-loss rate. (Reproduced from Massey 2003, with permission)
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6. The number ratios of WR/RSG and WC/WN stars in a stellar population
increase with metallicity. This is due to the metallicity dependence of both
the atmospheric Eddington limit and the mass-loss rate.

7. All of these effects demonstrate that the evolution of massive stars is strongly
influenced by mass loss and that the effect is stronger at higher metallicity.

Exercises
22.1 Calculate the maximum initial mass of stars that can evolve into red

supergiants in galaxies with Z/Zʘ = 2, 1, 0.3, and 0.1.
22.2 Estimate the duration of the LBV phase by comparing the number of

LBVs in the LMC with 3 × 105 ≲ L ≲ 2 × 106 Lʘ, with the number of
single WR stars in the same luminosity range, assuming a mean predicted
lifetime for WR stars of about 0.5 Myr.

Hint: use the list of LBVs by Humphreys and Davidson 1994 (ref 22.4).
and use the lists of WR stars from Hainich et al. (2014) or later
compilations.

22.3 Evolutionary calculations show that a massive post-main-sequence star
must lose between 5 and 20Mʘ during the LBV phase to prevent evolution
into a red supergiant.

(a) What is the average mass-loss rate during the LBV phase?
(b) In-between eruptions, the mean mass-loss rate of LBVs is on the

order of a few times −10 5 Mʘ yr−1. Which fraction of the mass that
is lost during the LBV phase is due to quiescent mass loss and which
fraction is lost in eruptions?

Remark: eruptions are not included in stellar evolution models, so the
average mass loss during the post-MS phase of massive stars is adjusted to
about 10−4 Mʘ yr−1 to match the observed lack of red supergiants above
the Humphreys–Davidson limit.

22.4 Computer exercise
Use the MESA code to calculate the evolution of a star ofMi = 40Mʘ, and
derive the amount of mass in the convective envelope when the star leaves
the red supergiant phase.
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Chapter 23

Evolution of Massive Stars of 8–25Mʘ

Stars with an initial mass above 8Mʘ evolve differently from stars with M < 8Mʘ

because they are massive enough to go through all nuclear fusion phases (Section
8.11). They do not develop a degenerate He or CO core. By core contraction they
can therefore reach the high central temperatures that are needed for the ignition of
the late nuclear fusion phases. Stars less massive than Mi ≲ 25Mʘ spend their last
evolutionary phases as red supergiants, contrary to their more massive counterparts,
which lose so much mass that they become Wolf–Rayet stars. Stars with 8 ≲ Mi ≲
25Mʘ expand after the main-sequence phase and reach the Hayashi line and become
red supergiants. Stars in the range of 8 ≲ Mi ≲ 12Mʘ temporarily leave the red
supergiant region in the HRD as they describe a leftward loop (blue loop) and
become yellow supergiants, It is during this loop that they cross the instability strip
and pulsate as Cepheids. At the end of their life, stars with 8 ≲ Mi ≲ 25Mʘ explode
in the red supergiant phase as core-collapse supernovae.

23.1 Predicted Evolutionary Tracks
Figure 23.1 shows the predicted evolutionary tracks of stars of Mi = 1 to 120Mʘ,
modeled with moderate convective overshooting of ℓos = 0.25Hp and mass loss. The
left panel is for stars with solar composition (Z = 0.02), and the right panel is for
low-metallicity stars (Z = 0.001). The hatched areas show the locations of slow
nuclear fusion. The red band is the location of core H-fusion, the blue band is the
location of core He-fusion, and the green band indicates core He-fusion and later
fusion phases in red supergiants.

In this section, we concentrate the discussion on stars in the range of 8 to 25Mʘ.
Several tracks show blue loops (i.e., loops to the left in the HRD) during core
He-fusion. These are due to the same effect that produces the horizontal branch
during core He-fusion of low-mass stars: due to the mirror action of the H-fusion
shell, the envelope contracts when the core expands. The presence of blue loops
therefore depends on the expansion of the core.
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In low-mass stars of Mi < 5Mʘ with solar composition, the loops are very short
and close to the Hayashi track, whereas they reach further to the left in stars with
Z = 0.001. These are the loops during the core He-fusion when the stars are on the
horizontal branch that were discussed in Section 17. In more massive stars ofMi ≈ 8
to 12Mʘ, the tracks for both metallicities show loops during core He-fusion, but the
loops are more extended in the lower metallicity models. Solar metallicity stars with
Mi ≳ 12Mʘ do not make loops during core He-fusion, despite having a H-fusion
shell just like the lower-mass stars.

Detailed studies show that the presence or absence of blue loops depends on
the surface gravitational potential, φc ∼ Mc/Rc, of the core inside the fusion shell
(Kippenhahn & Weigert 1990). If φc is smaller than some critical value, the star will
describe a leftward loop. If φc is larger than this critical value, the star will not make
a loop. Let us try to understand why stars with Mi ≳ 12Mʘ do not make a loop.
Remember that the central temperature of a star in HE scales as Tc ∼M/R (Equation
3.9). If the star is centrally concentrated, most of the central pressure is due to the
mass of the core, so we may expect that Tc ∼Mc/Rc ∼ φc. So, higher Tc → higher φc.
The central temperature after the core H-fusion phase increases with stellar mass

Figure 23.1. Evolutionary tracks of stars of about 1 to 120Mʘ for metallicities of Z = 0.02 (left) and Z = 0.001
(right). The red band is the location of core H-fusion, the blue band is the location of core He-fusion, and the
green band indicates He-core fusion and later fusion phases when the star is on the Hayashi line. Notice that
core He-fusion in solar metallicity stars with Mi ≲ 12Mʘ occurs during blue loops in evolution tracks.
(Reproduced from Schaller et al. 1992, with permission. ª ESO.)
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(see Figure 8.10), so φc increases with mass. Models show that in stars with Mi ≳
12Mʘ the potential of the core φc exceeds the maximum value for the occurrence of
loops: these stars will not make blue loops in the HRD.

There are several additional subtle effects that play a role in setting the potential
of the core and the occurrence of blue loops.

1. Convective overshooting increases the core mass and increases the potential,
thus preventing blue loops.

2. Low-metallicity reduces the opacity and the convection in the core (accord-
ing to the Schwarzschild criterion) during core H-fusion, so massive low-
metallicity stars have less massive cores than solar metallicity stars at the end
of core H-fusion. A smaller core has a lower potential, which facilitates the
formation of loops. The tracks in Figure 23.1 show this effect.

3. The chemical structure above the core, which is sensitive to mixing and
rotation, also plays a role.

These arguments show that the presence or absence of blue loops during the
evolution of massive stars of Mi ≈ 8 to 12Mʘ stars is uncertain. This is the reason
that predicted evolutionary tracks of intermediate-mass stars by different groups
may show different blue loops.

Q (23.1) We will show in Chapter 25 that fast rotation induces extra mixing inside a star. What is
the influence of fast rotation on the occurrence of blue loops?

23.2 The Internal Evolution during the Post-MS Phase of Stars
of 8 to 25Mʘʘ

Figure 23.2 shows the Kippenhahn diagram for the evolution of a star ofMi = 15Mʘ

and metallicity Z = 0.02. The evolutionary track is shown in the left panel of Figure
23.1. After the star has arrived on the Hayashi track with an extended convective
envelope, it remains an RSG. During the RSG phase, the star climbs the Hayashi
track from log L/Lʘ = 4.5 to 5.1. Notice in Figure 23.2 that each subsequent fusion
phase is shorter in duration. This is partly due to the small mass defect of fusion of
heavy ions and the increasing neutrino loss at high temperatures (Section 8.8).

The successive nuclear fusion phases in stars of Mi = 15 and 25Mʘ are listed in
Table 23.1, together with the central temperature and density and the duration of the
phases. Notice the rapid increase in ρc at each new phase. This is because at the end
of each phase the core contracts and Tc increases until the next fusion reaction starts.
The evolution accelerates very quickly in the latest stages. Whereas the core H- and
core He-fusion phases take megayears, core C-fusion takes centuries, core Ne- and
core O-fusion take years, and Si-fusion takes only days.

Q (23.2) Why are the last evolutionary phases so short?
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Figure 23.3 shows the variation of Tc and ρc during the evolution of stars of Mi =
15 and 25Mʘ. The arrow shows the overall trend of Tc ∼ ρc

1/3 for a contracting core
that was predicted on the basis of simple HE conditions (Equation (8.22)). During
core fusion phases, the star adjusts itself slightly to a new equilibrium; this produces
the little curls at each fusion phase. The contraction phases are fast, typically on the
Kelvin–Helmholtz timescale of the core, and the core fusion phases last relatively
longer, on the nuclear fusion timescale (see also Figure 8.10).

Figure 23.2. Kippenhahn diagram of a star of Mi = 15Mʘ with Z = 0.02. Thick hatched regions indicate
efficient fusion. At t < 12.2 Myr, when the star is on the main sequence, this is core H-fusion. At 12.2 < t < 13.6
Myr, this is core He-fusion and H-shell fusion, followed after t > 13.74 Myr by He-shell and H-shell fusion. At
t = 13.753 Myr, C-fusion starts in the core. Curly regions indicate convection. In vertically hatched regions, the
abundances are changed by previous convection. During core He-fusion and later, the star is a red supergiant
with an extended convective envelope. (Reproduced from Maeder & Meynet 1987, with permission. ª ESO.)

Table 23.1. The Fusion Phases in Stars of Mi = 15 and 25Mʘ. (Data are from Maeder & Meynet 1987)

Process 15Mʘ 25Mʘ

Fusion Fuel Products log Tc log ρc Duration log Tc log ρc Duration
Hydrogen H He 7.48 0.76 11 Myr 7.58 0.28 6.7 Myr
Helium He C, O 8.25 3.14 2.0 Myr 8.29 2.88 0.8 Myr
Carbon C O, Ne 8.92 5.38 2000 yr 8.92 5.11 520 yr
Neon Ne O, Mg 9.21 6.86 0.73 yr 9.20 6.60 0.89 yr
Oxygen O, Mg Si, S 9.29 6.82 2.58 yr 9.30 6.56 0.40 yr
Silicon Si, S Fe, Ni 9.52 7.63 18 d 9.56 7.48 0.73 d

Note. Tc is in units of K, and ρc is in units of g cm−3.
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Each successive process requires a higher Tc and occurs in a smaller fraction of
the stellar mass. The star therefore develops an “onion-skin” structure with the most
advanced products in the core, surrounded by shells of less advanced fusion
products. During these processes, the star remains a red supergiant until it explodes
as a core-collapse supernova.

Figure 23.3. Internal evolution of Tc (in K) and ρc (in g cm−3) during the evolution of stars of Mi = 15 and
25Mʘ. The general trend of Tc ∼ Mc

2/3ρc
1/3 is halted during the core fusion phases, indicated by the blue lines

and labels. (Reproduced from Woosley et al. 2002. Copyright 2002 by the American Physical Society.)

Figure 23.4. Schematic drawing of the onion shell structure of massive stars of 8≲ Mi ≲ 25Mʘ at the end of
their evolution, with the dominant elements indicated. The outer envelopes of stars of Mi > 25Mʘ are stripped
before they explode as supernovae. Note that the figure is not to scale.
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23.3 Stellar Pulsation during Blue Loops
We have discussed radially pulsating Cepheids in Section 21. The large number of
Cepheids indicates that these stars are in an evolution phase that lasts relatively long,
much longer than the time that it takes stars to cross the Hertzsprung gap after the
MS phase. This, together with their luminosity of 2.8 < log L/Lʘ < 4.6 and spectral
type F–G, indicates that Cepheids are in the blue loop phase and core He-fusion
phase of stars of 6 ≲Mi ≲12Mʘ. The lack of Cepheids with log L/Lʘ > 4.6 coincides
with the lack of blue loops for more massive stars of solar metallicity. This is shown
in Figure 23.5.

23.4 Summary
1. Intermediate-mass stars of 8 ≲ Mi ≲ 25Mʘ evolve to the Hayashi line in the

post-MS phase. The evolutionary tracks of stars with Mi ≲ 12Mʘ describe
blue loops in the HRD during core He-fusion. This is due to the contraction
of the core and the mirror action of the H-fusion shell.

2. The occurrence of blue loops depends on the surface gravitational potential
at the edge of the He core. The loops are longer and more pronounced in
low-metallicity stars.

3. Cepheids are in the blue loop phase of stars of Mi ≲ 12Mʘ. The luminosity
upper limit of Cepheids coincides with the luminosity upper limit of blue
loops.

4. Stars with12 ≲Mi ≲ 25Mʘ do not show blue loops but remain red supergiants
throughout all successive nuclear fusion phases before they explode as core-
collapse supernovae.

Figure 23.5. Location of Cepheids (gray region) in the HRD compared with predicted tracks of stars with 9 ≲
Mi ≲ 25Mʘ. Full red lines are tracks with initial rotational velocity of 300 km/s; dotted black lines are for
nonrotating stars. The Cepheids are located in the blue loop. (Adapted from Meynet & Maeder 2000.
Reproduced with permission ª ESO.
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5. The core H- and core He-fusion phases last millions of years. The core
C-fusion phase last thousands of years. The core Ne- and core O-fusion
phases take years, and the core Si-fusion phase takes only days.

Exercises.
23.1 (a) Study the Kippenhahn diagram of a star of Mi = 15Mʘ and relate the

different phases to their locations on the evolutionary track.
(b) What was the adopted mass-loss rate during core H- and core

He-fusion?
(c) Compare that with the mass-loss formulae in Chapter 15.

23.2 What could be the reason that the evolution of a star in the Tc–ρc diagram
of Figure 23.3 becomes less steep at late evolution phases?

23.3 Computer exercise
Use the MESA code to follow the evolution of a star ofMi = 25Mʘ and

determine the amount of mass that takes part in each successive core
fusion phase.
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Chapter 24

The Evolution of Massive Stars of 25–120Mʘ:
Dominated by Mass Loss

Mass loss plays a dominant role in the evolution of stars more massive than about
25Mʘ. During the main-sequence phase, the stars have a convective core that
diminishes as the He abundance increases. After the main-sequence phase, stars of
25 ≲ Mi ≲ 50Mʘ evolve into red supergiants just like the stars in the range of 8 to
25Mʘ; however, massive red supergiants are so luminous and have such a low
surface gravity that the convective envelope is almost completely stripped by mass
loss. When the envelope mass is below a critical value, the stars contract and move
to the left in the HRD where they appear as Wolf–Rayet stars with strongly enriched
atmospheres. They remain Wolf–Rayet stars until they explode as supernovae. Stars
with Mi ≳ 40-50Mʘ do not even reach the red-supergiant phase; shortly after the
main-sequence phase they go through a phase of rapid and strongly variable mass
loss as a luminous blue variable. They lose so much mass that they evolve straight
into a Wolf–Rayet star and remain in that phase until they explode as supernovae.

24.1 The Effect of Mass Loss during the Main-sequence Phase
We have seen in Section 15.2.2 that the mass-loss rate of hot stars increases with
luminosity as Ṁ ∼ L1.5. At the same time, the mass–luminosity relation indicates
that L ∼My with y ≈ 2.9 so Ṁ ∼M4.4. This shows that the influence of mass loss on
the evolution will increase with stellar mass.

Figure 24.1 shows the first calculations of the influence of mass loss on the
evolution of massive stars. The mass-loss rate, due to radiation-driven winds, is
expressed in terms of N, where Ṁ = NL/c2(see Equation (15.4)). The figure shows
the tracks during the main-sequence phase of a star of 30Mʘ for strong mass loss
(N = 300), moderate mass loss (N = 100), and conservative evolution (N = 0). The
moderate mass loss is 7 × 10−7 Mʘ yr�1 on the ZAMS. This is slightly more than the
observed value of ∼3 × 10−7 Mʘ yr�1.

doi:10.1088/978-0-7503-1278-3ch24 24-1 ª IOP Publishing Ltd 2017

http://adsabs.harvard.edu/abs/2014MNRAS.438.1191S


The figure shows four effects.
1. The luminosity increases less in models with increased mass loss. This is

because the convective core is smaller than in conservative evolution. As a
consequence, μ increases less and thus L increases less (Equation (6.7)).

2. At the end of the MS phase, the star is less luminous than it would be in the
case of conservative mass loss, but still more luminous than it would have
been had the star started with Mi = Mfinal and evolved conservatively. This is
because the star has a more massive He core than it would if it started with a
lower mass but experienced no mass loss.

3. The MS phase lasts longer in the case of mass loss because L is lower than it
would be in the case of conservative evolution.

4. The end of the MS phase for mass-losing stars is at lower Teff than it would
be in the case of conservative evolution. This is because the core H-fusion
phase lasts longer, resulting in a widening of the main sequence for stars with
substantial mass loss during core H-fusion.

Q 24.1 What could be the reason that the mass-loss rate, adopted for calculating the evolution of
the stars shown in Figure 24.1, is expressed as Ṁ = N × L/c2?

24.2 Predicted Evolution Tracks with Mass Loss
Figure 24.2 shows the evolutionary tracks of stars from 0.8 to 120Mʘ, with mass loss
and convective overshooting for solar metallicity (Z = 0.014) and SMC metallicity

Figure 24.1. Effect of mass loss during the MS phase of a 30Mʘ star with a mass-loss rate specified by Ṁ =
N × L/c2. The mass at the end of the MS,Mfinal, and the MS lifetimes are indicated. (Reproduced from Lamers &
Cassinelli 1999. ª Cambridge University Press. Reprinted with permission.)
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(Z = 0.002), calculated by the Geneva group (Ekstrom, S. et al. 2012, Georgy et al.
2013).

The predicted tracks show the main-sequence widening for stars of 25 < Mi <
120Mʘ. These stars lose between about 5% and 30% of their initial mass during the
MS phase (Table 15.1). Stars of Mi ≳ 50Mʘ do not reach the Hayashi line as a red
supergiant, because they have lost a substantial fraction of their mass during the
MS phase and later as LBVs. The tracks return to the left before the stars reach
the Hayashi line because their envelope does not have sufficient mass to sustain an
extended convection zone. This agrees qualitatively with the observed lack of very
massive red supergiants shown in Figure 22.1. The location of the predicted
turnaround is uncertain because the highly variable mass loss during the LBV
phase, which is still not well understood, cannot be properly modeled. The adopted
mass loss rate in the LBV phase is usually adjusted to predict a turn around at
approximately the observed Humphreys–Davidson limit. The tracks with
solar metallicity turn around earlier (i.e., at higher Teff) than the tracks with
SMC metallicity. This is because the radiation-driven mass-loss rate of massive
stars is metallicity-dependent, with Ṁ ∼ Z0.85 (Equation (15.14)).

In Section 24.2.2 we will discuss the evolution of a 60Mʘ star, showing different
processes that affect the evolution of massive stars with mass loss.

Figure 24.2. Evolutionary tracks of stars with solar metallicity (Z = 0.014) and SMC metallicity (Z = 0.002).
The surface composition of N/H in terms of the number ratio AN = log(N/H) + 12 is shown in color. The initial
composition of AN = 7.78 is shown in black. The gray region shows the location of the pulsating Cepheids.
(Reproduced from Ekstrom et al. 2012, with permission; Georgy et al. 2013, with permission).
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24.2.1 The N Surface Abundance of Peeled Stars

Mass loss produces a change in surface abundance of massive stars, because
stripping of the outer layers exposes nuclear products that were formed earlier by
fusion in deeper layers. At the end of the MS phase, the N abundance increases at
the surface: the star becomes an ON-star (O for spectral type O, and N for
nitrogen). This is because the overshooting from the convective core has brought
products of the CNO cycle, in particular, N, into the radiative envelope, up to the
point where M(r) ∼ 0.9M. Once the outer ∼0.1M has been peeled off by mass loss
during the MS phase, enriched layers appear at the surface (this is different from
the dredge-ups of low-mass stars, where the enriched matter is dragged all the way
to the surface by envelope convection). A comparison between observed and
predicted surface abundances in various evolutionary phases provides a sensitive
check to the accuracy of the evolutionary models. In particular, the role of
rotation-induced mixing can be derived from the study of surface N abundance
(Brott et al. 2011). In this section, we discuss the predicted changes in the N
abundance at the surface.

The color-coding in Figure 24.2 indicates the abundance of N at the stellar
surface. The original N/H number ratio is log(N/H) + 12 = 7.98 if Z = 0.014 and
7.13 if Z = 0.001. We can distinguish two mass regions.

– For stars of Mi ≲ 25Mʘ, red giants and supergiants, horizontal branch stars,
AGB stars, and blue loop stars show N enhancement at their surface. In all of
these phases, the increase in N abundance is moderate because N is dredged
up by convection into the envelope from the CNO fusion region below. The
large envelope mass results in a severe dilution of the N abundance compared
to that produced by the CNO cycle.

– In stars of Mi ≳ 25Mʘ the increase in surface N abundance is much higher
because shortly after the MS phase the stars are peeled off to the layers where
CNO fusion has occurred. The higher the mass of the star, the stronger the N
enhancement.

Q (24.2) Explain why the N enhancement at the surface of massive stars, Mi > 25Mʘ, is much less
severe in stars with Z = 0.002 than in stars with Z = 0.014.

24.2.2 The Duration of the Core-fusion Phases

Figure 24.3 shows the duration of the phases of core H-fusion, core He-fusion, and
core C-fusion in stars of Mi = 1 to 120Mʘ and Z = 0.02 and 0.001 (Schaller et al.
1992). For stars with Mi ≳ 25Mʘ, H-fusion takes a few million years, He-fusion a
few 105 yr, and C-fusion about 104 yr. Metallicity has very little effect on the
duration of the phases.

Q (24.3) Explain why the slope of these relations gets less steep toward higher mass.
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24.3 The Evolution of a 60Mʘ Star with Mass Loss
Let us consider the evolution of a 60Mʘ star as an example of a massive star. Figure
24.4 shows: the evolutionary track in the HRD (top panel), the changes in internal
structure in the Kippenhahn diagram (middle panel), and the changes in the surface
composition (lower panel). The letters on the evolutionary track correspond to the
phases indicated in the other panels.

This figure shows the major properties of high-mass stellar evolution.
– The mass of the He core after the MS phase is larger than the Schönberg–
Chandrasekhar limit of M/Mi ≈ 0.10 (Section 14.1), so the core immediately
contracts after the MS and He fusion starts in the core shortly after the MS
(see the KD). This is different from low-mass stars, which have a separate
phase of H-shell fusion: the RGB phase.

– In the very short time between the end of the core H-fusion and start of the
core He-fusion, shell H-fusion is the main energy source, so the shell H-fusion
occurs in a thick layer. As soon as core He-fusion starts, the shell H-fusion
retreats to a less massive shell.

Figure 24.3. Lifetimes of H-fusion, He-fusion, and C-fusion in stars of Mi = 1 to 120Mʘ for two metallicities:
Z = 0.02 and 0.001 (Reproduced from Schaller et al. 1992, with permission. © ESO.)
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Figure 24.4. (a) Evolutionary track of a solar-metallicity star of Mi = 60 Mʘ with mass loss and convective
overshooting, with = 0.25 Posl l , and without rotational mixing. (b) Kippenhahn diagram showing the
evolution of the internal structure. Hatched areas indicate fusion layers, curls indicate convective zones,
and vertical striped regions indicate modified abundances. The letters correspond to the locations in the HRD.
The decrease in the upper limit is due to mass loss. Corresponding spectral types are indicated. (c) Changes in
the surface abundance of H (red), 4He (blue), 12C (green), 16O (black), and 14N (black dashed), expressed in
mass fractions. The abscissa shows both the time (in Myr) and the remaining mass. (Reproduced fromMaeder
& Meynet 1987, with permission. © ESO.)
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– At around 3.7 Myr, the mass of the star decreases steeply in about 104 yr. This
is due to the very high mass-loss rate of 10−4 to 10−3 Mʘ yr�1 adopted in the
calculations to mimic the mass loss by the LBV eruptions.

– The surface composition starts to change during the late MS phase, when
mass loss has stripped the star down to ∼ 47Mʘ (see abscissa), the original
mass of the convective core. This results in a large increase of the abundance
of N at the expense of C and O. These are the observed ON stars.

– Shortly after the LBV phase, when the mass decreases from about 43 to
38Mʘ, the star describes a fast loop (D, E, F) in the HRD that takes only
about 6 × 104 yr. At phase F, the star has a He-rich and N-rich atmosphere
and contracts into a Wolf–Rayet star of type WN.

– At phase G, the atmosphere becomes C-rich. At that time, the star has
contracted to a small radius and high Teff, so it is a WC star. At phase H, the
atmosphere becomes O-rich and the star becomes a WO star.

Q (24.3) Correlate the changes in surface composition with the track and with the Kippenhahn
diagram and try to explain them.

24.4 The Conti Scenario
Before 1970, the predicted evolution of massive stars could not explain the range
of different types of massive stars with strange properties that were observed: the
N-rich ON stars, the Of stars with many emission lines, the N-rich Wolf–Rayet stars
(WN), the C-rich Wolf–Rayet stars (WC), the luminous blue variables (LBV), etc.
The evolutionary connection of these stars was completely unknown! This situation
improved dramatically when the first rocket spectroscopic UV observations of three
hot supergiants in the Orion Belt indicated a high mass-loss rate and subsequent
satellite UV spectra showed that the phenomena of mass loss is ubiquitous among
massive stars. (For a review of the early history of mass loss from massive stars and
its effect on stellar evolution, see, e.g., Lamers 2008). Within a decade, evolutionary
calculations showed that high mass-loss rates not only changed the evolution of
massive stars but could also explain the appearance of the observed nuclear products
at the stellar surface.

In 1976, the U.S. astronomer Peter Conti suggested a scheme for the evolution of
massive stars, based partly on observations and partly on predictions, that
connected the different types of stars in evolutionary sequences. This is called the
Conti scenario (Conti 1975; Maeder & Conti 1994). This scenario was later slightly
updated (Maeder 2009). The present version of this scenario is shown in Table 24.1.

The different types of stars in this scenario are as follows.
O = O stars without emission lines (low M

.
< 10−6 Mʘ yr�1).

Of = Ostars with emission lines (high M
.
> 10−6 Mʘ yr�1).

BSG = Blue supergiant (O, B, A).
YSG = Yellow supergiant (F, G).
RSG = Red supergiant (K, M).
LBV = Luminous blue variable (with eruptions).
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WN = WR star with N-rich wind, He-rich, some H (high Ṁ > 10−5 Mʘ yr�1).
WNL = Late-type WN (spectral type WNL7–WNL8).
WNE = Early-type WN (spectral type WN2–WN6).
WC = WR star with C-rich wind, He-rich, no H (high Ṁ > 105 Mʘ yr�1).

WCL = Late-type WC (spectral type WC7–WC9).
WCE = Early-type WC (spectral type WC4–WC6).
WO = WR star with O-rich wind.
SN = Supernova (types are discussed in Section 27).

NB 1: The limits of 30, 40, and 60Mʘ are uncertain. They depend on
composition and rotation because the mass-loss rates are smaller in
low-metallicity stars and rotation induces mixing.

NB 2: Recent observations have shown that some Type IIn supernovae are
from LBV progenitors. This suggests that massive stars may also end
their lives during the LBV phase (Maeder 2009).

NB 3: The evolution described here is for single stars. In narrow binary
systems, mass transfer may result in stripping of the most massive
component. This may produce Wolf–Rayet stars that originate from
stars with an initial mass Mi < 40Mʘ. (Crowther, P. A. 2007).

NB 4: We discussed the evolution of stars up to 120Mʘ. The evidence for more
massive stars, possibly up to 300Mʘ, and their evolutions, has been
described in (Vink et al. 2015).

Table 24.1. The Conti Scenario That Describes the Evolutionary Connections of the Different Types of Stars.
(Based on Smith et al. 2014)
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24.5 Summary
1. The evolution of massive stars is strongly affected by their high mass-loss

rates. Mass loss during the MS phase leads to lower luminosities and longer
MS lifetimes than those seen in stars with conservative evolution. Mass loss
also leads to a widening of the MS in the HRD at high luminosity.

2. Mass loss results in stripping of the stars with nuclear products appearing at
the surface. This explains the ON stars at the end of the MS phase.

3. LBVs play a crucial role in the evolution of stars of Mi ≳ 40Mʘ. The
stripping of stars during the LBV phase results in Wolf–Rayet stars.

4. Mass loss explains the occurrence of N-rich, C-rich, and O-rich WR stars by
stripping massive stars to ever deeper layers.

5. The Conti scenario explains the relation between the different types of
massive stars in an evolutionary sequence (the resulting supernovae are
discussed in Chapter 27).

Exercises.
24.1 Show that the calculated duration of the MS phase of a star with Mi =

30Mʘ with different mass-loss rates, as shown in Figure 24.1, agrees with
expected values.

24.2 Measure the amount of mass that takes part in the H-, He-, and C-fusion
phases in a star Mi = 60Mʘ and the mean luminosity at these phases
(Figure 24.4). Take into account the contribution by the shell fusion.

Use these data to predict the duration of these phases and compare
those with Figure 24.3.

In case of disagreement, comment on the reason.
24.3 What is the expected slope of the log(t) versus log(M) relation in Figure 24.3

for H-fusion in low-mass stars with L ≲ 2Lʘ.
Why does the slope of the log(t) versus log(M) relation in Figure 24.3

for H-fusion flatten toward more massive stars?
24.4 (a) Indicate the changes in the surface composition of the Mi = 60Mʘ

star along its evolutionary track.
(b) Indicate the adopted mass-loss rates along the evolutionary track.
(c) Indicate the mass of the star along the evolutionary track.

24.5 How would the surface evolution along the evolutionary track have
changed if the adopted mass-loss rates were increased by a factor of 2
or decreased by a factor of 2?
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Chapter 25

Rotation and Stellar Evolution

Massive stars are born rapidly rotating. This is due to the fact that magnetic braking
in their early phases is much less important than in lower-mass stars, which have a
convective envelope and strong magnetic fields. The distribution of equatorial
rotation velocities of massive main-sequence stars shows a peak near about
200 km s�1 and extends to 400 km s�1. This corresponds to rotation periods of
only a few days for massive main-sequence stars, compared to the Sun’s rotation
period of 24.5 days. As a result, the effective gravity at the equator of massive stars is
reduced drastically by the combined action of rotation and radiation pressure. The
most rapidly rotating stars may even reach the critical limit of zero effective gravity
at their equator during their post-MS evolution. This results in very high mass-loss
rates that change their evolution. Fast rotation also influences the internal structure
of massive stars as it creates meridional circulation. This circulation produces
chemical mixing, even in layers that are stable against convection. In this section, we
discuss the effects of fast rotation on the shape and the surface temperature
distribution of massive stars. Fast rotation produces a nonspherical wind that
may result in slowing down or spinning up a star, depending on the ratio between the
mass loss from the poles and from the equator. We compare the evolution of fast
rotating stars with that of slowly rotating stars.

25.1 The Critical Velocity of Rotating Stars
Surfaces of constant effective gravity in rapidly rotating stars, where geff = ggrav –
gcentr, are not spherical but oblate due to the centrifugal acceleration, gcentr = v2/R.
The critical rotation velocity, vcrit, is defined as the rotation velocity, where geff = 0 at
the equator. It can also be expressed in terms of the critical angular velocity, Ωcrit.
The values of vcrit and Ωcrit follow from the condition gcentr = ggrav:
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where Req is the equatorial radius and ⁎ Γ= − )M M (1eff e , where Γ σ π= L cGM/4e e is
the Eddington factor (Equation (6.14)) to correct for radiation pressure by electron
scattering. Using = ΩRvrot eq we find

Ω = * − ΓGM R(1 )/ . (25.2)crit e eq
3

Figure 25.1 shows a quadrant of the shape of a 20Mʘ star at various values of the
angular velocities, expressed as Ω Ω/ crit. Note that the equatorial radius increases
steeply for values of Ω Ω/ crit approaching unity, but that the polar radius is only
slightly affected by the rotation rate. This implies that the volume of a star increases
with rotation rate while the density decreases, especially in the envelope near the
equator. The maximum ratio between the equatorial and polar radius of Req/Rp =
1.5 is reached when Ω→Ωcrit.

25.2 The Von Zeipel Effect
The surface temperature of rapidly rotating stars is not constant but varies with
latitude. This can be understood by considering equipotential surfaces. In rapidly
rotating stars, surfaces of constant effective gravity are oblate. Figure 25.2 shows
lines of constant effective gravity in a rigidly rotating star. The lines of constant
gravity are closer together near the poles than near the equator.

Figure 25.1. Shape of a 20Mʘ main-sequence star of solar metallicity for several values of Ω Ω/ crit. (Courtesy
of Sylvia Ekstrom)
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Surfaces of constant geff are isopotential surfaces and therefore also surfaces of
equal pressure and equal density. Surfaces of constant pressure and density are also
surfaces of constant temperature, because T ∼ P/ρ. Furthermore, the isothermal
surfaces are closer together at the pole than at the equator. This implies that the
T-gradient, and hence the radiative flux, which is proportional to dT4/dr (Equation
(6.3)), is higher at the poles than at the equator! This is expressed in the Von Zeipel
theorem, named after the Swedish astronomer Edvard von Zeipel (1873–1959), who
proved it in 1924.

The Von Zeipel theorem states that in a rotating star the local radiative flux is
proportional to the local effective gravity

σ

π θ π

Ω Θ = Ω Θ

=
Ω
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Ω Θ

→ Ω Θ ∼ Ω Θ

F T
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rad eff
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where Ω is the angular velocity and Θ is the stellar latitude (Θ = 0 and π at the poles
and π/2 at the equator). The total luminosity of a rapidly rotating star is

∫π⁎ = Θ Θ Θ Θ
π

L R F d4 ( ) ( ) sin ( ) . (25.4)
0

/2
2

As a result, Teff and the spectral type at the poles are hotter than at the equator. This
implies that the spectral type and the luminosity derived from observations will
depend on the orientation of the rotation axis with respect to the line of sight. This

Figure 25.2. Lines of constant geff for a rigidly rotating star with a rotation of Ω Rp = 0.54 (GM/Rp)
0.5 where

Rp is the radius at the pole. The spin axis is vertical and shown by the dotted red line. (Reproduced from
Lamers & Cassinelli 1999 ª Cambridge University Press. Reprinted with permission.)
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may produce an artificial widening of the observed main sequences in clusters if the
stars are rapidly rotating and have randomly directed rotation axes.

Q (25.1) How does this affect the determination of spectroscopic distances (from Mv and spectral
type) for rapidly rotating stars?

25.3 Nonspherical Mass Loss of Rapidly Rotating Stars
The winds from hot stars are driven by radiation pressure. Rapidly rotating stars are
more luminous at the pole, where Teff is higher, so they will have a higher mass flux
from the pole than from the equator. At the same time, the terminal wind velocity
v∞ will also be higher at the pole than at the equator, because v∞ ∼ vesc (see Section
15.2.2). This produces a nonspherical wind with a mass flux and wind velocity that
depend on stellar latitude. The surface integrated mass-loss rate of a rotating massive
star is larger than that of a nonrotating star in the same evolutionary phase.

The latitude dependence of the mass-loss rate of a rapidly rotating star of 100Mʘ

is shown in Figure 25.3. The color indicates the distribution of Teff and the size
indicates the mass-loss rate as a function of stellar latitude. In general, the mass-loss
rate is highest at the poles where Teff is highest. This is shown in the left panel of
Figure 25.3; however, at certain polar values of Teff the mass-loss rate is higher at the
equator than at the poles. This happens if Teff at the pole is about 25,000 K and if
Teff and vesc are both significantly lower at the equator than at the poles due to fast
rotation. In that case, the mass-loss rate from the equator will be higher than the rate
from the pole. This is shown in the right panel of Figure 25.3. The reason is that the
ions that drive the wind are different at Teff ≳ 21,000 than at Teff ≲ 21,000. This is

Figure 25.3. Left: mass flux from a rotating star of 100Mʘ and L = 3 × 106 Lʘ with a rotational velocity of
80% of the critical velocity and Teff = 30,000 K at the pole. The colors indicate the Teff distribution along the
stellar surface and the size in any direction indicates the mass-loss rate. The mass-loss rate is higher at the poles
than at the equator. Right: the same star with Teff = 25,000 K at the pole and Teff < 20,000 K at the equator.
This difference in Teff drives a rotation-induced bi-stability disk Lamers & Pauldrach (1991). (Reproduced
from Maeder & Desjacques 2001, with permission. ª ESO.)
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the effect of the bi-stability jumps observed in the ratio v∞/vesc (Figure 15.2) and
discussed in Section 15.2.2.

Maeder (2009) has derived the total mass-loss rates of rapidly rotating stars by
integrating the latitude-dependent mass loss over the full stellar surface. This
results in
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where Ṁ(0) is the mass-loss rate for a nonrotating star (i.e., the mass-loss rate
predicted by Vink et al. 2001 described in Section 15.4.1). The empirically derived
values of α (from Lamers et al. 1995) depend on Teff as

α = 0.52 if log Teff > 4.35,
α = 0.24 if log Teff ≈ 4.30,
α = 0.17 if log Teff ≈ 4.00,
α = 0.15 if log Teff ≈ 3.90.
This expression is valid for stars with an Eddington factor Γe < 0.25. For stars

with higher Eddington factors, the mass loss increases much more steeply with
v/vcrit.

Q (25.2) Why does the mass-loss rate of massive stars increase much more steeply with v/vcrit if
Γe approaches unity?

Figure 25.4 shows the increase in mass loss of stars that reach their critical
rotation rate, Ωcrit (Equation (25.2)), at the end of the main-sequence phase
(TAMS). The upper panel shows the values of Γe at the TAMS for stars of different
initial masses. Stars with initial masses of Mi > 60Mʘ reach Γe > 0.6 at the TAMS.
Even with a relatively small initial rotation velocity, these stars may reach critical
rotation during or shortly after the main-sequence phase. The lower panel shows the
increase in mass-loss rate compared to that of nonrotating stars at the TAMS. The
increase of the mass-loss rate depends on Teff at the TAMS because the value of
α depends on the ionization state in the radiation driven wind (Section 15.2.2). The
figure shows that the mass-loss rate of rotating massive stars may increase by orders
of magnitude when they approach critical velocity.

Stellar winds remove angular momentum from rotating stars. The net effect
depends on the latitude dependence of the mass-loss rate. As discussed in previous
paragraphs, the radiation driven mass-loss rate from the polar region is higher than
from the equatorial regions for most hot stars. Its effect can be described by the loss
of specific angular momentum, j = vrot(Θ) × rproj per gram of gas, where rproj is the
distance from the rotation axis. The specific angular momentum at the polar region
is much smaller than at the equatorial region because both vrot(Θ) and rproj are
smallest at the poles. For a solidly rotating star, j at the polar region is smaller than
the mean specific angular momentum of the star. High mass loss from the pole
therefore results in a decrease of the stellar mass with little loss of angular
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momentum, so the mean specific angular momentum of the star (i.e., j̄ ≡ J/M,
where J is the total angular momentum of the star) increases during the evolution.
This implies that the rotation velocity will increase during the evolution. On the other
hand, a star with enhanced mass loss from the equatorial regions will lose so much
specific angular momentum that j̄ decreases: the rotation rate will decrease during
the evolution. This shows that

– in rapidly rotating stars with enhanced polar mass loss, the ratio veq/vcrit will
increase during the evolution, and

– in rapidly rotating stars with enhanced equatorial mass loss, the ratio veq/vcrit
will decrease during the evolution. We have seen above that this happens only
in a specific Teff range, at about 25,000 K.

A rapidly rotating star with enhanced polar mass loss may reach a critical
rotation rate (i.e., Ω = Ωcrit) when it evolves, due to the combined effects of radiation
pressure and rotation. This limit is called the Omega–Gamma limit, or ΩΓ limit
(Langer 2012). Rapidly rotating massive stars may reach this limit before they reach
the atmospheric Eddington limit.

Figure 25.4. Top: the value of Γe at the TAMS of stars as a function of the initial stellar mass (blue). Bottom:
the increase in mass-loss rate when the star reaches critical rotation at the TAMS for different values of Teff at
the TAMS (red). (Reproduced from Maeder 2009. ª Springer-Verlag Berlin Heidelberg 2012.)
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Q (25.3): How does the equatorial velocity of a massive star of about 20 Mʘ with spherical mass
loss vary as the star evolves in the HRD from the ZAMS to the red supergiant phase?
Assume for simplicity that the star is rotating as a solid body.

25.4 Mixing by Meridional Circulation
Rapid rotation induces meridional circulation due to shear forces between layers of
different rotation speed. Meridional circulation is a flow pattern toward or away
from a pole along meridional lines (i.e., lines of constant longitude). This effect is
strongest during the main sequence phase when the rotation speed is still high. At
later phases, a star spins down because it expands, or because it loses angular
momentum through an equatorial wind (unless the wind is strongly enhanced in the
polar direction). Figure 25.5 shows the circulation pattern in an MS star of 20Mʘ.

Meridional circulation produces very efficient mixing. In nonrotating or slowly
rotating massive stars, mixing occurs only in the core due to convection and
convective overshooting, but these stars do not have convective envelopes that
would bring nuclear material to the surface. However, meridional circulation in
rapidly rotating stars can bring nuclear products from the top of the convective core
all the way up to the surface during the MS phase.

Figure 25.6 shows the predicted surface N abundance of LMC stars in the range
of 8 to 60Mʘ with different initial rotation velocities v sin (i), where v is the
equatorial rotation velocity and i is the inclination of the rotation axis (i = 0 for pole-
on stars). The N abundance is expressed in log(N/H) +12. The initial abundance is
log(N/H) = 6.9. The predictions are from a population synthesis model by Brott
et al. (2011a), based on stellar evolution calculations with an assumed distribution of

Figure 25.5. Two representations of the meridional circulation currents in a 20Mʘ MS star, halfway between
the ZAMS and TAMS. The initial rotation velocity is 300 km/s. Left: the circulation pattern in 2D. Right: 3D
demonstration of the same pattern. The inner sphere is the convective core. The inner circulation cell is rising
toward the pole and descending along the equator. The outer circulation is rising along the equator and
descending along the poles. (Reproduced from Meynet & Maeder 2002, with permission. ª ESO.)
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masses, initial rotation velocities, and random orientation axes. The observations
agree roughly with the predicted trend, although there are notable deviations. In
particular, the large number of N-enhanced stars at low v sin (i) is surprising. Part of
the discrepancy may be due to the presence of unresolved binaries in the observed
sample.

Q (25.4): Explain the shapes of the predicted rotation tracks in Figure 25.6 of 13Mʘ stars with
different initial rotation velocities.

25.5 The Effect of Rotation on the Evolution of Massive Stars
Rapid rotation affects the evolution of massive stars in two ways.

– Rotation induced mixing will result in a more chemically homogeneous
structure than in a nonrotating star. We have seen in Sections 13.2 that a
chemically homogeneous star evolves upward and to the left in the HRD
during core H-fusion, whereas a non-rotating star moves to the right as the
star becomes more chemically stratified.

– Rapid rotation reduces the effective gravity and increases the volume and the
mean radius of a star, which results in a lower Teff than nonrotating stars.

Figure 25.6. Predicted and observed surface N abundance, as a function of the projected rotational velocity v
sin (i). The N abundance is expressed in log(N/H) +12. The colored background shows the predictions. The
darker orange region shows the predicted trend for the majority of the stars, with the N abundance increasing
with v sin (i). The lines show the calculated trends for evolutionary models of a 13Mʘ star with different initial
values of v. The low point of the track is at t = 0. The dots are the observed values of stars with different
surface gravities. The color coding of the observations and the tracks refer to the surface gravity: log g ≳ 4.1
dex (light blue), 3.7 ≲ log g < 4.1 dex (purple), and 3.2 ≲ log g < 3.7 dex (dark blue). (Reproduced from Brott
et al. 2011a, with permission. ª ESO.)
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– Rapid rotation has no direct effect on the nuclear energy production in the
center of the star.

Figure 25.7 shows the predicted evolutionary tracks of stars with initial masses
between 5 and 60Mʘ without rotation (red tracks) and with a high initial equatorial
rotation velocity of 550 km s�1 (blue tracks). The models have galactic abundances.

Notice the following differences between rotating and nonrotating stars.
– Rapidly rotating stars on the ZAMS have the same luminosity as non-rotating
stars, but their Teff are lower. This is because rapidly rotating stars have larger
surface areas than their non-rotating counterparts (see Figure 25.1).

– Nonrotating stars move to the right during the MS phase. This is a
consequence of chemical stratification. On the other hand, the tracks of
rapidly rotating stars first move upward to the left along the MS before
bending to the right. This is because rotation induces mixing, which keeps the
star chemically homogeneous for some time (see Section 13).

– Near the end of the core H-fusion phase, chemical stratification results in the
tracks moving to the right.

– For stars with 5 < Mi/Mʘ < 15, the post-MS evolution of stars with and
without rotation is similar.

– For stars more massive than 15Mʘ, the post-MS luminosity of the rapidly
rotating star is higher, by about a factor of 2, than that of a nonrotating
star. This is because the rotation-induced mixing resulted in a more massive
He core.

Figure 25.7. Evolutionary tracks of stars of 5 < M/Mʘ < 60 for non-rotating stars (red) and fast-rotating stars
with an initial equatorial rotation velocity of 550 km/s (blue).The horizontal axis is the surface-averaged value
of Teff. For clarity, the tracks are shown in solid and dotted lines that alternate with initial mass. (Reproduced
from Brott et al. 2011b, with permission. © ESO.)
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- Increased mass loss by rotation implies that tracks for the most massive stars
do not reach as far to the right as they do for nonrotating stars.

25.6 Homogeneous Evolution
If the rotation velocity is above a certain limit, mixing can become so strong that the
star evolves almost homogeneously, such that at the end of the core H-fusion the star
is on the He MS. This limit depends on the metallicity for the following reason.
Compared to galactic disk stars, stars of low metallicity have smaller mass-loss rates.
This implies that they lose less angular momentum by stellar wind and maintain
their fast rotation and mixing longer than Galactic stars. Figure 25.8 shows the
evolution tracks of rotating stars of 20, 30, and 60Mʘ with LMC metallicity, Z
(LMC) = 0.3Zʘ, and LMC mass-loss rates. For each of these masses, there is a
rotation limit above which the star evolves homogeneously. This critical limit is
∼480, ∼430, and ∼400 km s�1 for LMC stars of 20, 30, and 60Mʘ, respectively.

25.7 Summary
1. A rapidly rotating star is not spherical but oblate, with a higher temperature

at the poles than at the equator: the Von Zeipel effect.
2. The winds of rapidly rotating stars are not spherical. In most stars, radiation-

driven mass loss is enhanced at the poles due to the higher radiative flux. In
some temperature regimes, the bi-stability of radiation driven winds results in
enhanced mass loss from the equator. This is the case if Teff is about 25,000 K

Figure 25.8. Evolutionary tracks of LMC stars with various rotation rates. For initial rotation rates above a
critical limit, stars evolve quasi-homogeneously. (Reproduced from Langer 2012, with permission)
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at the poles and < 21,000 K at the equator. In all cases, the wind velocity is
lower at the equator because it scales with the local escape speed.

3. Rotating massive stars lose angular momentum to their radiation driven
winds. If the equatorial mass loss is higher than the polar mass loss, the
specific angular momentum of the star decreases and the rotation rate slows
down.

4. If the polar mass loss, with its low specific angular momentum, is higher than
the equatorial mass loss, then the specific angular momentum of the star
increases. (This might play a role in the formation of gamma-ray bursts,
which require rapidly rotating cores at the end of their evolutions.)

5. Rapid rotation in a star produces meridional circulation, which can lead to
severe mixing. Stars rotating above a critical initial rotation rate will evolve
quasi-homogeneously during their core H-fusion phase. Their tracks move
upward and to the left from the H-rich ZAMS to the ZAMS for He stars.

6. Rotation induced mixing may bring nuclear products to the surface during or
shortly after the MS phase. The first element to show an enhanced
abundance is N, produced by the CNO cycle.

7. Rapidly rotating stars of high luminosity may become unstable by the
combination of the large radiation pressure (Γ-effect) and centrifugal force
(Ω-effect). This results in an ΩΓ-limit in the HRD, which is at lower
luminosity than the Eddington limit for nonrotating stars. This may play a
role in the instability of LBVs.

Exercises

25.1 The distribution of the mass-loss rates of rapidly rotating stars is shown in
Figure 25.3.

(a) Explain the latitude distribution of the mass-loss rate as a function
of latitude (θ).

(b) What is the latitude distribution of the terminal velocity?
(c) Explain that the density in a rotation-induced bi-stability disk can

be much higher than that in the wind from the poles.
25.2 The angular momentum of a rotating shell with radius (r, r + dr), density

ρ(r), and angular velocity Ω(r) is L = (8π/3)Ω(r)ρ(r)r4 dr. Derive an
expression for the total angular momentum of a uniformly rotating star,
with angular velocity Ω, that consists of a core with density ρc at 0 < r < rc,
and an envelope with a mean density ρenv at rc < r < R.

25.3 At the end of the MS phase, a star of Mi = 60Mʘ has a mass of 45Mʘ a
radius of R = 40Rʘ and a He core of Mc = 30Mʘ with Rc = 0.5Rʘ.

By what factor will the equatorial rotational velocity decrease if the star
expands during the shell-H fusion phase as a solid rotator, i.e., Ω
independent of r, by a factor of 10 in radius.

Assume that the star originally rotated as a solid body with an angular
velocity Ω.

Adopt mean densities for the core and the envelope.
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25.4 Assume that a solidly rotating constant mean density star of 30Mʘ and a
radius of 50Rʘ with an equatorial rotation speed of 200 km/s�1 suddenly
loses 20% of its mass due to a strong stellar wind, and then readjust its size
to its initial radius of 50Rʘ.

Calculate the equatorial rotation speed after the mass has been lost in
three cases.

(a) Suppose that the wind is only from the polar region.
(b) Suppose that the wind is only from the equatorial region.
(c) Suppose that the mass flux of the stellar wind is spherically

symmetric. Assume that the radius did not change.
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Chapter 26

Late Evolution Stages of Massive Stars

Massive stars go through all of the fusion phases discussed in Section 8.8, from
H-fusion all the way to Si-fusion. Each fusion phase is shorter than the previous one
because neutrino emission removes an increasingly large fraction of the energy at
high temperatures. Thermal equilibrium of the star requires that this loss is
compensated by increasing the reaction rate, thus reducing the duration of each
phase. Each fusion phase requires a higher ignition temperature than the previous
one. This implies that successive nuclear fusion phases in the core occur in smaller
and smaller fractions of the mass of the star. A massive star therefore develops an
onion skin model, with each layer having a different chemical composition. The
most massive nuclei are in the center and the least massive nuclei are at the surface.

26.1 Late Fusion Phases
The late evolutionary phases of stars more massive than aboutMi ∼ 8Mʘ proceed at
an increasing speed. This is partly due to the fact that the mass defect εn of the fusion
reactions decreases with increasing atomic mass, but at the latest phases of O-fusion
and Si-fusion it is also due to the loss of energy by neutrinos. For a star to remain in
equilibrium, its energy production has to be Lnucl = Lrad + Lv, where Lrad is the
energy production required to maintain hydrostatic and thermal equilibrium and Lv

is the neutrino loss. The timescale of each phase is approximately

ε= +t M c L L/( ), (26.1)vnucl n
2

rad

where Mnucl is the mass of the nuclear material available for fusion and ε = Δm m/n

is the mass defect of the reaction (Section 8.1). The ratio Lrad/Lv ≪ 1 at Tc ≳ 109 K
during the C-, Ne-, O-, and Si-fusion phases, so the timescale is

ε≈t M c L/ . (26.2)vnucl n
2
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The lifetime is shortened by a factor of Lrad/Lv compared to the situation without
neutrino losses. This ratio is of the order of 10�1, 10�3, 10�4, and 10�6 for the fusions
of C, Ne, O, and Si, respectively (see Table 8.4).

Figure 26.1 shows the lifetimes of the different fusion phases for nonrotating stars
of solar metallicity in the range of 12 to 60Mʘ. Core He-fusion is about 10 times
shorter than core H-fusion. Core C-fusion lasts about 10�4 to 10�5 times as long as
the core H-fusion, i.e., about 102 to 103 yr. The O-fusion phase and the Ne
photodisintegration phase both last about a month to a year. The last phase, core
Si-fusion, lasts only about a day! Stars with initial masses less than ∼14Mʘ do not
reach Ne-, O-, or Si-fusion.

Q (26.1): Suppose that a star of Mi = 50Mʘ is a Wolf–Rayet star with a radius of about 10Rʘ

after the C-fusion phase in the core. Does the envelope of the star have time to react to
the subsequent internal changes?

26.2 The Internal Evolution
The core temperature of massive stars during their late fusion phases is set by the
equilibrium between the nuclear energy generation rate per gram per second, ϵn

Figure 26.1. Lifetimes of the different fusion phases for nonrotating stars of solar metallicity, with an initial
mass in the range of 10 to 60Mʘ. (Reproduced from Hirschi et al. 2004, with permission. ª ESO.)
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(Equation (8.1)), and the sum of the neutrino cooling, ϵν, and the energy generation,
ϵtherm, needed to keep the star in hydrostatic and thermal equilibrium.

ϵ = ϵ + ϵ ≈ ϵν . (26.3)n vtherm

This equilibrium is shown in Figure 26.2.

The evolution of the core of a star of 60Mʘ in the (ρc,Tc) diagram is shown in
Figure 26.3. The figure shows the expected trend of Tc ∼ ρc

1/3 that we derived in
Section 8.10 (Equation (8.22)). During the core fusion phases, the star settles into an
equilibrium that is determined by the values of ρc and Tc needed to produce the net
energy, Lnucl�Lν, that is required for the star to remain in hydrostatic and thermal
equilibrium.

During the late phases, the conditions in the center of the core are close to the
boundary between the equations of state for ideal gas and relativistic electron
degeneracy (Figure 4.4).

We have argued before, in Section 17.1, that the ignition of fusion in a degenerate
core would lead to an explosion. This is because, contrary to ignition in a
nondegenerate gas, igniting a reaction in degenerate gas does not lead to an increase
in pressure and expansion, but only in a runaway reaction rate. This is not the case
for the ignition of nuclear fusion at very high temperatures of T ≳ 109 K because of
high neutrino losses. Even a small increase above the ignition temperature results in
increased cooling by neutrino losses, so very strong neutrino cooling prevents a
runaway of the reaction rate.

Figure 26.2. Energy generation by several fusion reactions (blue lines) and the energy loss by neutrinos (black
line) as a function of temperature in the cores of massive stars. The density is assumed to vary as
ρ ≅ × T10 ( /10 )6 9 3 g cm�3 (Equation (8.22)). Stable fusion, indicated by the red dots, occurs when ϵn ≈ ϵν.
(Reproduced from Woosley et al. 2002. Copyright 2002 by the American Physical Society.)
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26.3 Pre-supernovae

Near the end of the life of a star, the subsequent fusion phases result in a chemical
structure of nested shells. Just before a massive star ends as a supernova, it has an
onion-skin chemical structure with successive layers of fusion products.

This is shown in Figure 26.4 for a star of solar composition with an initial mass
of 60Mʘ and an initial rotational velocity of 300 km s�1. After the Si-fusion
phase it has a mass of 14.6Mʘ. The star has lost 45.4Mʘ, mainly in the form of H
and He. The star consists of four zones, each with its own chemical composition.
From outside in, these zones are the result of He-fusion, C-fusion, O-fusion, and
Si-fusion.

Figure 26.5 shows the distribution in mass that has taken part in the different
fusion phases, as a function of initial mass for stars with solar metallicity, a
convective overshooting parameter of 0.1, and an initial rotation velocity of either
0 or 300 km s�1.

Notice the following trends.
– At the end of the Si-fusion phase, rapidly rotating stars have lost considerably
more mass than nonrotating stars (see Section 25.3).

Figure 26.3. Central evolution of a nonrotating star of solar metallicity with an initial mass 60Mʘ in the (ρcTc)
diagram. The dashed red arrow shows the predicted trend of Tc ∼ (ρc)

1/3. The full green line is the boundary
between nonrelativistic electron degenerate gas and ideal gas and the dashed green line is the limit between
relativistic degenerate gas and ideal gas for μe = 2. The conditions at the ignitions of several core fusion phases
are indicated in blue. (Reproduced from Hirschi et al. 2004, with permission. ª ESO.)
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Figure 26.5. Mass of the various regions at the end of the Si-fusion phase as a function of initial stellar mass
for stars of solar composition. Left: nonrotating stars. Right: stars with initial rotation velocities of 300 km s�1.
Thick line at top: final mass at the end of Si-fusion. Red: H-rich envelope; blue: He-rich layer; green: C-, O-,
and Ne-rich layers; purple: Si- and S-rich layer; gray: Ni- and Fe-core. (Figure is from Hirschi et al. 2004.)

Figure 26.4. Schematic figure of the mass distribution of a rapidly rotating star of solar abundance with an initial
mass of 60Mʘ just before the supernova explosion. The zones are the result of He-fusion, C-fusion, O-fusion, and
Si-fusion. The mass of each zone and its chemical composition is indicated, with the values in parentheses
indicating the mass percentage of each element. (Reproduced from Hirschi et al. 2004, with permission.ª ESO.)
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– Nonrotating stars with Mi < 40Mʘ still have a substantial H envelope when
they explode. They end their lives as red supergiants and produce H-rich SNe.
For rapidly rotating stars, this limit is 20Mʘ. The difference is due to the
larger mass-loss rate of the rotating stars.

– All stars have about 1 or 2Mʘ of He at the end of their lives. Stars with Mi >
40Mʘ have produced much more He, but a large fraction of it was lost during
the WR phase (see Section 24.3).

– Rapidly rotating stars with 12 ≲ Mi ≲ 40Mʘ, experience rotation-induced
mixing and have higher mass fractions of C-, O-, and Ne-fusion products than
nonrotating stars. For rapidly rotating stars of Mi ≳ 40Mʘ, the very high
mass-loss rates experienced during the LBV and WR phases reduce the
amount of mass of the final He shell and the C/O layer, as compared to
nonrotating stars.

– Most of the mass at the end of the Si-fusion phase is in the form of C and O.
– Stars of Mi ≲ 15Mʘ do not reach Ne-, O-, and Si-fusion.
– The Fe core and the Si shell surrounding it make up about 2Mʘ in all stars of
Mi > 15Mʘ.

– The masses of the Fe core and the Si shell are almost independent of rotation
and mass loss. This is because the conditions in the core, i.e., ρc and Tc, are
hardly affected by the masses of the outer layers.

26.4 Summary
1. Stars with initial masses in excess of ∼12Mʘ go through all nuclear fusion

and photodisintegration phases. The duration of each next phase is shorter
than the previous one, with the phases after C-fusion lasting less than about a
year. This is due to strong neutrino losses.

2. Because each fusion phase requires a higher central temperature, and takes
place in a smaller fraction of the stellar mass, the star develops a chemical
onion-skin structure with the most massive element concentrated toward the
center. The amount of mass and composition in each shell depends on the
internal mixing of the star.

3. Massive stars have lost a substantial fraction of their mass by means of a
stellar wind or by eruptions during the luminous blue variable phase. This
mass-loss rate is strongly dependent on the rotation of the star. Stars with
initial masses less than 40Mʘ still have a H envelope, but rapidly rotating
stars have lost more mass. For stars with an initial rotation velocity of 300
km/s, this limit goes down to 20Mʘ. Stars more massive than that have also
lost part of their He envelope due to mass loss.

Exercises
26.1 Figure 26.4 shows the composition of a star withMi = 60Mʘ in the pre-SN

phase. Each shell contains a mixture of chemical elements. Explain these
mixtures.
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26.2 Explain why most of the mass of stars with Mi > 20Mʘ is in the form of C
and O.

26.3 Explain why the difference in structure of pre-SN stars between non-
rotating and fast-rotating stars is much larger in the mass range of Mi <
40 Mʘ than for Mi > 40Mʘ.
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Chapter 27

Supernovae

The sudden appearance of bright stars in the sky was attributed in historical times to
the visit of a “guest star” or the birth of a new star, hence the name “nova.” Later,
the intrinsically brightest of these new stars were called “supernovae.” Now we
know that supernovae are not the beginning but the end of the life of a star.

Massive stars end their lives with a huge explosion. At the end of all possible
fusion phases, discussed in the previous chapters, a star has a core consisting of Fe
and finds itself without an energy source because Fe-fusion consumes energy instead
of generating it. The balance between the inward force of gravity and the outward
force from the gradient in gas pressure or radiation pressure is thus finally broken
and gravity wins: the core of the star collapses. As the core collapses, the rest of the
star explodes as a supernova. In this chapter, we discuss the process of core-collapse
and the subsequent explosion. There are different types of supernovae and we
discuss their possible origins in terms of stellar evolution. We also consider the
possible remnants.

27.1 Light Curves of Supernovae
Supernovae are discovered by their sudden brightening. The light curves of two
characteristic types of supernovae (SNe), Type Ia and Type II-P, are shown in
Figure 27.1. Notice the steep rise in a few tens of days and the slow decline over
about a year. The light curve of a Type II-P supernova has a plateau of several dozen
days. Both types reach a peak luminosity of about 109 to 1010 Lʘ, with an absolute
magnitude in the B-filter of MB ≈ −17 to −20. Compare this with the solar value of
MB = +5.47 for the Sun and realize that a star with MB = −20.0 is 1.5 1010 times
brighter than the Sun and almost as bright as the entire Milky Way at MB = −20.4.

27.2 Core Collapse
Stars with an initial mass M > 12Mʘ go all the way through Si-fusion and develop
an Fe core. Because Fe is the last element that creates energy during its formation by

doi:10.1088/978-0-7503-1278-3ch27 27-1 ª IOP Publishing Ltd 2017

http://adsabs.harvard.edu/abs/1989ARA%26A..27..629A 


fusion, the core runs out of nuclear energy. At that time, the core has a temperature
of T ∼ 4 × 109 K and a density of ρ > 108 g cm�3 (see Figure 26.3). The core then
contracts because it has no energy source and its temperature rises. Soon the core
temperature becomes so high, T > 1010 K, that the photons are energetic enough to
break up heavy nuclei via the reaction

γ+ → + nFe 13 He 4 . (27.1)56 4

Since this is an endothermic reaction, it consumes rather than produces energy. This
results in a quick cooling of the core, so the collapse accelerates. Because of the very
high density and the resulting high gravity of the core, the collapse occurs on a very
short timescale of mere milliseconds.

As the core collapses and the density increases without a significant T increase
because of the endothermic nuclear reactions, electrons are captured by protons and
form a degenerate neutron gas. Degenerate neutron stars can support a very high
pressure as long as the degeneracy is not relativistic. This is similar to the structure of
electron degenerate white dwarfs. If the collapsing core has a mass lower than the
Oppenheimer–Volkoff limit (OV limit) for neutron stars, which is about 2Mʘ

(Section 20.5), the pressure of the nonrelativistic degenerate neutron gas can stop the
collapse and a neutron star is formed in the center of the collapsing star. If the
collapsing core has a mass in excess of about 2Mʘ, the pressure of the neutron gas
cannot stop the collapse, so it continues collapsing until a black hole is formed in the
center of the star.

Stars of 8Mʘ ≲ Mi ≲ 12Mʘ do not reach Si-fusion, so they do not produce an Fe
core. They still go into core-collapse at the end of their lives, when at high densities
the electrons are captured by heavy nuclei. This reduces the pressure produced by
electrons and also results in core-collapse.

Figure 27.1. Characteristic light curves of two types of SNe: a thermonuclear SN of Type Ia (red) and core
collapses of Type II-P (blue) that are discussed in Section 27.3. (Adapted from Weiler & Sramek. Reproduced
with permission. ª ESO.)
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27.3 The Core-collapse Supernova Explosion
As the core collapses, the envelope is ejected in the supernova explosion. There are
three major effects that are responsible for the ejection of the outer layers of the star.

– Bouncing shock at the surface of the neutron star. The matter that falls onto
the very compact neutron star experiences a shock. The bounce of this shock
is so strong and so energetic that a shock wave runs outward against the
infalling material. This results in the ejection of the envelope.

– Neutrino pressure. During the collapse, the temperature is so high that
photons are energetic enough to create neutrinos via two processes:

Photoneutrino production γ + → + + ¯− −e e v v ,e e

Pair annihilation γ γ+ → + ¯v v .e e

In the layers just above the neutron star, the density is so high (ρ ∼ 1011

g cm�3) that the neutrinos can be captured by the infalling gas. This is the
case in the layers where the optical depth for neutrinos is τv > 1. The layer
where τv ∼ 1 is called the neutrino photosphere. The capture of the neutrinos
by neutrons and heavier particles near the neutrino photosphere suddenly
heats up the infalling layers so strongly that the infall stops and is converted
into an explosion.

– Fusion in the infalling shells. Near the end of its life, the star consists of nested
shells (see Figure 26.4), some of which are still fusing. When the core collapses
and drags these layers down, the efficiency of the fusion increases dramati-
cally due to the increase in T and ρ. This suddenly creates a large amount of
nuclear energy that heats the infalling layers and produces so much gas
pressure that the envelope explodes.

These mechanisms work together to eject the layers outside the neutron star. If the
neutron star captures more mass than about 2Mʘ, the collapse continues and a black
hole is formed.

27.4 Energetics of Core-collapse Supernovae of Massive Stars
The potential energy released during the core-collapse, when its radius decreases from
its initial core radius Rci to its final core radius Rcf, is

≃ − + ≃ ≈ ×E
GM
R

GM
R

GM
R

3 10 erg. (27.2)c c c
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In this estimate, we have assumed that the core withMc ∼ 1.4Mʘ (the Chandrasekhar
limit) collapses into a neutron star with Rcf ∼ 20 km.

The potential energy necessary to expel the envelope with mass Menv = M − Mc,
where M is the total mass of the star when the core collapses, is
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We have usedM >Mc andMenv ∼ 10Mʘ and Renv >> Rci. For the initial core radius,
we adopted the radius of a WD of Rwd ∼ 104 km. This is a severe overestimate
because in the middle step we used a radius Rci for the full envelope. A more realistic
model, with a mean radius of the envelope of ≈ ʘR Renv , gives ∼ ×E 3 10env

pot 50 erg.
The envelopes of supernovae are ejected at a velocity on the order of 104 km s�1,

so the kinetic energy of the envelope is

= ≈ × ≈ ≈ʘ
−E M V M M V

1
2

6 10 erg if 6 and 10 km s . (27.4)env
kin

env
2 51

env
4 1

The peak luminosity of a Type II SN is typically ∼109Lʘ and lasts about 60 days, so
the radiative energy of the SN is about Erad ≈ 1049 erg. This shows that

+ + ≪E E E E . (27.5)env
pot

env
kin

rad collapse

We conclude that only a small fraction of the energy released in the core-collapse is
used for ejecting the envelope and emitting light.Most of the energy comes out in the
form of neutrinos!

Q (27.1) Could you have guessed that most of the energy is carried away by neutrinos?

27.5 Observed Types of Supernovae
Originally, supernovae were classified into two types, depending on their emission
line spectrum after the explosion.

– Type I: no H lines in the spectrum
– Type II: H lines in the spectrum

More recent research has resulted in further subdivisions related to the spectral
appearance, the evolution of the light curve, and the origin of the supernova (the
awkward naming of these types is a reminder that one should never use Roman
numbers to indicate types of objects or phenomena because Roman numbers have
no decimals).

Here are the current main subdivisions of supernova types:
– SN Ia: no H lines, Si II lines.
These result from the collapse of a white dwarf in a binary system when mass
transfer has pushed the mass over the Chandrasekhar limit. The collapse
ignites C-fusion in a degenerate core, resulting in a thermonuclear explosion
(Section 18.8). The WD explodes and leaves no remnant. Because Type Ia’s
are all thought to arise from a WD exceeding the Chandrasekhar limit, they
form a rather homogeneous group with about the same peak luminosity.
They can be used as standard candles for distance determination up to large
distances.

– SN Ib: no H lines, no Si II lines, strong He I lines.
The fact that these are found only in star-forming galaxies indicates that they
are collapsing massive stars. The lack of H lines and the presence of strong He
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lines shows that they are likely explosions of WR stars that have lost their H
envelope.

– SN Ic: no H lines, no Si II lines, absent or weak He lines.
This suggests that they are formed from Wolf–Rayet (WR) stars that have
lost all their H and even most of their He envelope.

– SN II: strong H lines.
These are the endpoints of massive stars that exploded due to the core
collapse of red supergiants. Their initial masses must have been in the range
of 8 ≲ Mi ≲ 30Mʘ.

– SN II-P: strong H lines and a long brightness plateau after maximum.
These result from the core-collapse of red supergiants that still have most of
their H envelope. The presence of the thick envelope is the reason for the
luminosity plateau (hence “P”), and their initial mass range is therefore
estimated to be 8 ≲ Mi ≲15Mʘ (more massive stars would have lost a larger
fraction of their H-rich envelope through stellar winds; this mass range is also
supported by observations of Type II-P progenitors in pre-explosion imaging).

– SN II-L: H lines and a steep and linear luminosity decline after maximum.
These may result from the core-collapse of red supergiants that have lost
more H than Type II-P progenitors; their light curves decline linearly with
type (hence “L”).

– SN IIb: H lines in early spectra, with later spectra showing He lines and no H.
These are thought to result from the core-collapse of red supergiants that
have little H left in their outer envelope.

– SN IIn: H lines, some spectral lines are atypically narrow.
The narrow lines are possibly due to interaction by the supernova ejecta with
circumstellar material that was produced by strong mass loss shortly before
the core collapsed.

A small subset of stripped-envelope supernovae have been observed in conjunc-
tion with long duration (>2 seconds) gamma-ray bursts (GRBs). GRBs are extremely
energetic SN explosions that produce a very short burst of highly energetic γ-rays,
lasting from milliseconds to tens of seconds, followed by an x-ray and optical
afterglow lasting days. While the physical mechanism driving this brief flash of high-
energy emission is still unclear, it is thought to be a consequence of accretion onto a
newly formed rotating black hole produced during the core-collapse of a massive
star with a rapidly rotating core.

It should be pointed out that the initial mass ranges that are quoted above depend
strongly on the adopted mass-loss rate and core mass of stars. These are uncertain
because they may be strongly influenced by rotation (as we have seen in Section 26)
and metallicity.

Figure 27.2 shows a schematic division of the supernova types, with an indication
of their connection to stellar evolution.
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27.6 The Case of Supernova 1987A
On 1987 February 23, a supernova was detected in the Large Magellanic Cloud
(LMC). The blue supergiant Sk −69°202 of spectral type B3 I that was originally of
V = 13.5 magnitude suddenly increased in visual brightness by a factor of 4 × 103,
reaching V = 4.5 within a day. This was the first time that the progenitor of an SN
was observed and it enabled the first study of a supernova explosion of a star with
known properties. The supernova also emitted a large flux of neutrinos that were
measured by three neutrino detectors. These detections made it possible to determine
the time of explosion accurately and to connect the early photometric and
spectroscopic observations to the moment of core-collapse.

We have argued before that massive stars undergo core-collapse when they are
either red supergiants with a substantial H-rich convective envelope (e.g., Section
23.2) or as a blue Wolf–Rayet star without a H envelope (e.g., Section 24.4).
Surprisingly, the progenitior of SN 1987A is in-between these two possiblities. As a
B3 supergiant with Teff ∼ 20,000 K, it was too warm to be a red supergiant and too
cool to be a Wolf–Rayet star. Moreover, the spectrum was clearly not that of an
RSG nor that of a WR star, but of a normal B3 supergiant with a H envelope. This
showed that the progenitor was a massive star and that the explosion was due to
core-collapse. The SN spectra showed H lines, defining it as a type II supernova.

The fast initial rise in brightness within a day was due to the shock from below
breaking out through the surface of the H-rich envelope. As the shock temperature

Figure 27.2. Schematic picture of the different types of SNe and their progenitors. Full boxes indicate the core-
collapse SNe of massive stars. The dashed box indicates the explosion of a WD in a binary system when it
exceeds the Chandrasekhar mass limit. The main characteristic of each type is described. (Reproduced from
Turrato 2003. ª Springer-Verlag Berlin Heidelberg.)
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was high, 105 to 106 K, a flash of UV radiation was produced that ionized the
circumstellar material that was later observed as a three-ring structure. Early
spectra, taken within a day of the discovery, revealed strong H lines with velocities
exceeding 30,000 km s�1. For summaries, see, e.g., Arnett et al. (1989), Podsialowski
(1992), and Woosley et al. (1997).

Figure 27.3 shows the subsequent bolometric light curve of SN1987A during
about two years. After the initial rise within a day, the flux drops in about 10 days
due to rapid adiabatic cooling. After about 20 days, the luminosity rises again. This
is due to heating of the gas by radioactive decay of 56Ni formed in the layers
surrounding the core-collapse. The half lifetime of 56Ni is only τ1/2 = 6 days, so after
about day 80 the luminosity starts to decrease due to the diminishing radioactive
decay. After day 100, the luminosity is provided by the radioactive decay of 56Co,
which has a halflife time of τ1/2 = 77 days. This explains the logarithmic decrease in
luminosity by Δlog L ≈ −1.6 between day 140 to day 500.

Studies of the pre-SN spectra of Sk −69°202 suggest that it was a star with an
initial mass of16 ≲Mi ≲ 22Mʘ with a He core of about 5 to 7Mʘ. The spectrum after
outburst shows that the envelope contained about 10Mʘ of H. The ejecta, with a
velocity of ≳30,000 km s�1, has an unexpected large He/H ratio of 0.2 by number,
i.e., Y = 0.4. The spectra also show evidence of enrichment by s-process elements
such as barium. Additional evidence of its pre-SN evolution comes from the study of

Figure 27.3. Bolometric light curve of SN 1987A expressed in log L, based on observations with the Cerro
Tololo Inter-American Observatory (CTIO) and the South African Astronomical Observatory (SAAO). The
plateau around day 80 is caused by heating of the expanding envelope by radio active decay of 56Ni. The
gradual decrease later on is due to radioactive decay of 56Co. (Figure adapted from Arnett et al. 1989.)
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the UV spectra of the circumstellar material, which indicates that the star had
previously ejected a low-velocity N-rich wind.

Figure 27.4 shows the three-ringed structure around SN 1987A. The inner and
outer rings have semi-major axes of 0.21 pc and 0.45 pc, respectively. The rings are
due to the light echo of the circumstellar material that was illuminated by the UV
flash at the time of the SN explosion. The rings show the structure of material lost by
the star in its previous evolutionary phases as red and blue supergiants. The
nonspherical structure indicates that the star had a strong aspherical wind, probably
due to fast rotation, in the red supergiant phase.

Various sets of evolutionary models have been used to try to explain the pre-SN
evolution of Sk −69°202. None of these are completely successful unless some ad hoc
assumptions are made. For reviews, see, e.g., Podsialowski (1992) andWoosley et al.
(1997). The most successful models are those in which a fast-rotating star has gone
through an RSG phase, lost a substantial amount of mass, and contracted to a
smaller radius (i.e., to the higher Teff of a blue supergiant). The assumption of fast
rotation is attractive for several reasons: (a) it brings CNO products to the surface at
an early phase, which would explain the N-rich circumstellar material, (b) rotation-
induced mixing helps explain the high He/H ratio of the ejecta, and (c) it explains the
system of rings that are observed since the late phase around SN 1987A and may
have been formed by aspheric mass loss during the RSG phase. However, explaining

Figure 27.4. Hubble Space Telescope image of the three-ringed structure around SN 1987A. (Figure courtesy
of ESA.)
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the full set of properties depends crucially on the adopted mass-loss rates in the
various phases and on the amount and depth of the mixing.

Figure 27.5 shows a possible evolutionary track of Sk −69°202 before core
collapse. The star had an initial mass of 20Mʘ and an LMCmetallicity of Z = 0.25 Zʘ.
Mass loss, semi-convection, and mixing due to differential rotation were included in
the calculation of its evolutionary history. The star evolved from an MS star into an
RSG. Core He-fusion was ignited in the RSG. During core He-fusion, the star made
a blue loop, as described in Section 23.1. At the end of the core He-fusion phase, the
core contracts. At this time, the star had a He- and a H-fusion shell, which both
acted as a “mirror.” So, as the core contracted, the intershell zone expanded and the
envelope contracted. This explains the final blue loop, that started 3 × 104 yr before
the explosion. During the subsequent C-fusion and later phases the star was a B-type
supergiant until it exploded.

An alternative scenario for the evolution of SN 1987A involves the merging
of Sk −69°202 during the RSG phase with a lower-mass companion via a
common envelope phase. This scenario has the advantage of explaining the
unusual abundance of the circumstellar nebula: He/H = 0.15 by number,
corresponding to Y = 0.37, and the observed enhanced N/O ratio. It also
explains the rapid rotation of the RSG by the accreted angular momentum of
the merged star. During the common envelope phase, the star experiences high

Figure 27.5. Evolutionary track of a 20Mʘ star of LMC metallicity that explodes as an SN when it is a blue
supergiant. Thin lines indicate fast evolution phases. Thick lines indicate slow evolution phases: 1 = MS phase,
core H-fusion (9 Myr); 2 = RSG phase, ignition, and first part of core He-fusion (0.15 Myr); 3 = BSG phase,
remaining part of core He-fusion (0.4 Myr). The final blueward loop is due to the contraction of the C-core at the
end of the core H-fusion. The star indicates the location in the HRD when core-collapse occurs. (Reproduced
from Langer 1991, with permission. ª ESO.).
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aspherical mass loss, which is needed to explain the three-ringed structure of the
circumstellar nebula. Dynamical models show that the circumstellar nebula was
ejected about 20,000 yr before the explosion (Podsiadlowski 1992 and Menon &
Heger 2017).

27.7 The Remnants of Stellar Evolution
We have seen above that stars with different initial masses may end their lives
differently. Figure 27.6 shows the final fate of stars with an initial composition of
Z = 0.02 as a function ofMi in a schematic way.

– Stars with initial masses less than about 8Mʘ have lost a large fraction of
their mass in the AGB wind and end their lives as white dwarfs.

– Stars with 8 ≲Mi ≲ 22Mʘ have lost a small fraction of their mass in the
RSG wind. They eject a substantial fraction of their mass in the SN explosion
and leave a neutron star behind (the apparent sudden disappearance of mass
loss by winds in the RSG phase atMi = 8Mʘ in Figure 27.3 is artificial and a
result of the discontinuity in the adopted mass -loss formulae for low- and
high-mass stars).

– Stars with 22 ≲Mi ≲ 100Mʘ have lost a substantial fraction of their mass in
winds during their O star phase, as an LBV, and as a WR star. They eject a
small fraction of their mass in the SN explosion and leave a black hole
behind.

Figure 27.6. Fate of nonrotating stars of solar metallicity as a function of their initial mass. The orange regions
indicate mass lost by stellar winds. The green region indicates the mass ejected in the SN explosion. The gray
region indicates the mass and type of the remnant. (Reproduced from Podsiadlowski 1992.)
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The fate of stars withMi > 20Mʘ is uncertain. The final fate of stars depends not
only on their initial mass but also on metallicity, mass loss, and rotation velocity.
For instance, we have shown in Figure 26.5 that the pre-supernova mass of rapidly
rotating stars is smaller than that of nonrotating stars. This implies that the amount
of mass ejected during the SN explosion is strongly reduced by the fast rotation.

27.8 Summary
1. Stars with an initial mass ofMi > 8Mʘ end their lives with an SN explosion.

These SNe are the result of core-collapse when a star has no nuclear fusion
source left.

2. If the collapsing core has a mass less than about 2Mʘ, the collapse stops
when a neutron star is formed. IfMc is larger than this limit, the collapse
passes through the degenerate neutron phase and the collapse continues to a
black hole.

3. The explosion of the outer layers is the combined result of three effects:
– the bounce of a shock on the hard surface of the neutron star,
– the pressure due to the capture of neutrinos in the neutrino photosphere,
and

– the sudden increase in the reaction rates of the infalling fusion shells.
4. Most of the potential energy gained in the core-collapse is carried off by

neutrinos.
5. Different types of SNe, distinguished by their spectra and light curves, can be

related to the nature of their collapsing progenitor stars.
– Type II supernovae with H lines in their spectra are thought to be
collapsing red supergiants or LBVs

– Type Ib and Ic supernovae without H lines in their spectra are thought
to be collapsing Wolf–Rayet stars.

– Type Ia supernovae are thermonuclear explosions in the degenerate
core during the collapse of a WD when its mass goes over the
Chandrasekhar limit. This could be caused either by mass transfer
from a binary companion, or by merging of two WDs.

6. Supernova 1987A was a core-collapse type II SN that exploded when it was
neither a Wolf–Rayet star nor a red supergiant, but a blue B3 supergiant with
unusual abundances. The calculated evolution of a single pre-SN star involved
mass loss, semi-convection, rotation induced mixing and aspherical mass loss
with fine-tuned parameters. Alternatively, a model consisting of a binary of 16
and 7Mʘ that merged during the red supergiant phase of the primary is more
successful in explaining most of the observed characteristics.

Exercises

27.1 Stellar evolution calculations suggest that solar metallicity stars withMi ≲
22Mʘ will become neutron stars and stars above this limit will end their
lives as black holes. In which direction would this limit change if all
massive stars were rapidly rotating?
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27.2 Massive stars end their lives in a core-collapse SN explosion of type I or II.
Explain how the number ratio between types I and types II depends on
stellar rotation and metallicity.

27.3 Type Ia SNe are assumed to be the result of mass accretion onto a WD in
a binary system when the mass of the WD exceeds the Chandrasekhar
limit. There is an alternative suggestion that Ia’s may be the result of the
merging of two WDs. Can you think of ways to discriminate between
these scenarios after the SN has exploded?
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Chapter 28

Principles of Close Binary Evolution

A considerable fraction of all stars, possibly as many as half, are born in a binary
system. For stars with M ≳ 30 Mʘ, the fraction might be even higher. The evolution
of a star in a binary system will be affected by the presence of the companion if the
two stars are within a distance of roughly a few stellar radii from each other. This
might happen early in the evolution if the stars are born in a tight system, or later on
when one or both stars expand. This interaction may lead to mass transfer from a
star to its companion. Mass transfer not only changes the evolution of the two stars
but also leads to changes in the orbits of the two stars. This chapter deals with the
principal effects of binary evolution: periods and angular momentum, stable or run-
away mass transfer, orbital changes, and contact phases. In the next chapter, these
principles will be applied to understand the formation of various types of observed
interacting binaries.

28.1 Periods and Angular Momentum
The period of a binary in a circular orbit is described by Kepler’s third law

⎛
⎝⎜

⎞
⎠⎟

π ω= = +
P

G M M
a

2 ( )
, (28.1)

2
2 1 2

3

where P is the orbital period, ω is the angular velocity,M1 andM2 are the masses of
the two components and a is the separation between their centers of gravity.

The angular momentum of the system around the center of gravity is

= +J Ma v M a v , (28.2)1 1 1 2 2 2

where v1 and v2 are the orbital velocities of the two stars around the center of gravity
and a1 and a2 are the distances from the center of gravity with a1 + a2 = a. The center
of gravity is defined by

doi:10.1088/978-0-7503-1278-3ch28 28-1 ª IOP Publishing Ltd 2017

http://adsabs.harvard.edu/abs/1983ApJ...268..368E


= =
+

Ma M a
M M

M M
a

( )
. (28.3)1 1 2 2

1 2

1 2

The velocities of the system are

ω ω ω= + = + =v v v a a a. (28.4)1 2 1 2

Substitution of Equations (28.1), (28.3), and (28.4) into (28.2) results in an
expression for the angular momentum of a system in circular orbit
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. (28.5)2 1
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1 2

We have ignored the rotation of the stars and the possible ellipticity of the orbit.

28.2 Equipotential Surfaces of Binaries
Figure 28.1 shows the definition of the parameters and the geometry of a binary
system in circular orbits in the equatorial plane that co-rotates with the orbit.

A particle located at r in the co-rotating system has an effective potential
energy of

Φ = − − − ΦGM
r

GM
r

, (28.6)c
1

1

2

2

where −Φc = ½ ω2r2 is the potential of the centrifugal acceleration at r, with ω given
by Equation (28.1). This results in
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An equipotential surface is the locus of points that have the same value of Ω. A
particle can move along an equipotential surface without loss or gain of energy.

Figure 28.1. Location of points in the equatorial plane of a binary system of masses M1 and M2 in a circular
orbit. The center of gravity is indicated by a cross.

Understanding Stellar Evolution

28-2



Figure 28.2 shows the equipotential surfaces in the orbital co-rotating plane of a
binary system with a mass ratio of M1/M2 = 2. The shape of the equipotential
surfaces, scaled to a, depends only on the mass ratio of the components. The deepest
potentials are those closest to the stars. Moving to a surface with less negative
potential will require energy.

One particular equipotential surface is shown by a thick line. This is the Roche
lobe, which is the tightest equipotential surface that includes both stars. It is named
after the French mathematician Edouard Roche (1820–1883). The place where the
Roche lobe crosses the connecting line between the two stars is called the inner
Lagrangian point L1, named after the Italian–French mathematician Joseph-Louis
Lagrange (1736–1813), who contributed to many fields in mathematics, in particular,
the theory of mechanics. The Roche lobe is the tightest surface where gas can flow
freely from star 1 to star 2 without gaining or losing energy. Each of the components
has its own Roche lobe, with the two lobes meeting at L1. Other interesting points
are the outer Lagrange points L2, close toM2, and L3, close toM1. Matter outside L2

and L3 is still bound to the binary, but it cannot maintain corotation.

Q 28.1 Follow the equipotential surface that goes through L2 and L3 and try to understand its
shape. Argue that matter within this surface must co-rotate with the system. Hint: consider
the energy.

Figure 28.2. Equipotential surfaces in the corotating orbital plane of a binary system with M1/M2 = 2 as seen
from the orbital pole. The coordinates are normalized to the distance between the two stars, a. A blue cross
marks the center of gravity. The thick inner 8-shaped figure is the Roche lobe. The location of the Lagrangian
points L1, L2, and L3 are indicated.
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We have described the shape of the equipotential surfaces in the orbital plane. In
reality, they are 3D surfaces whose shape can be derived by means of the 3D version
of Equation (28.7) by adding the height, z, above or below the orbital plane to
Equation (28.7). This yields
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where = +r r z( )z
1

2
1
2 2 and = +r r z( )z

2
2

2
2 2 are the distances in the 3D corotating

Cartesian coordinate system and r is the distance from the axis of rotation.
Close to the orbital plane, the 3D Roche lobe has a shape that closely resembles

that of the 2D shape, rotated around the axis connecting the stars. Further away
from the plane, it has an open structure, resembling a hollow tube that is
perpendicular to the orbital plane.

We will show below that the effect of binary evolution depends on the volume of
the Roche lobe of each star. The volume within the 3D Roche lobe of a component
of a binary can be expressed in terms of an effective Roche lobe radius, RL, that is
defined by the volume

π= RVolume (Roche lobe)
4
3

, (28.10)L
3

where RL will be different for both components. For mass ratios in the range of 0.1 <
M1/M2 < 10, the result can be approximated by
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proposed by Eggleton (1983).

28.3 Contact Phases
Binaries interact when the size of one of the two components reaches or overflows its
Roche lobe. When that happens, matter can flow freely to the other star. This
depends on the separation and the radius of the two components.

The left panel of Figure 28.3 shows the potential wells of a binary system with a
mass ratio of M1/M2 = 2 along the line connecting the two stars. M1 is the more
massive star, so its potential well is deeper and wider. The location of the
Lagrangian points L1, L2, and L3 is indicated. Colors indicate the situation for
different diameters of the two components. Green refers to stars that safely fit inside
their Roche lobe: matter cannot flow freely from one star to the other. This is called
a detached system. Blue refers to the case when star 1 (the more massive one) fills
its Roche lobe: gas can freely flow from star 1 and fall onto star 2. This is called a
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semi-detached system. Red refers to stars that both fill their Roche lobe: they are in
contact with one another. This is called a contact system. The right panel of Figure
28.3 shows the location of the stars within their Roche lobes for these three systems.

We have seen so far that the radius of a star can increase during several
evolutionary phases:

– during the main-sequence phase. This radius increase is small.
– during the H-shell fusion phase when the star expands and develops a
convective envelope. This happens for low-mass stars during evolution toward
the RGB and for massive stars when they expand to become red supergiants.

– during the rise along the Hayashi track with a fully convective envelope (i.e.,
during the AGB phase of low-mass stars and the increasing luminosity phase
for red supergiants).

The evolution of interacting binaries is classified into three cases, according to the
evolutionary phase when the first mass transfer occurs.

Case A: when the first contact occurs during the MS phase.
Case B: when the first contact occurs during H-shell fusion.
Case C: when the first contact occurs while the star is on the Hayashi track.

Figure 28.3. Left: the depth of the potential wells of a binary system with M1/M2 = 2 along a line connecting
the centers of the two stars. Vertical axis: the potential (Equation (28.7)) in units of G(M1 + M2)/a. Horizontal
axis: distance from the center of gravity in units of a. The locations of the Lagrange points L1, L2, and L3 are
indicated. Green, blue, and red indicate detached, semi-detached, and contact systems, respectively. Right:
sketch of the corresponding configurations. The vertical dashed line indicates the rotation axis of the system.
(Adapted from Pols 2011.)
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Figure 28.4 (upper left panel) shows the evolutionary tracks of single stars of 1.6,
4, and 16Mʘ. The other panels show the radius evolution of these stars. Each of these
panels shows horizontal lines that separate the evolutionary phases when the star
might be in contact with a close companion: case A (during MS), case B (during H-
shell fusion), and case C (when the star climbs the Hayashi track). The blue dashed
lines separate the early phases when the outer envelope is in radiative equilibrium
from the later phases when it is convective. The larger the increase in radius at some
phase, the more likely it is that the binary reaches contact at that phase.

Q 28.2 Describe the radius evolution of the star of 4Mʘ in terms of an evolutionary track and
identify the different evolution phases.

Figure 28.4. Upper left: the HRD with the evolutionary tracks of stars of 1.6, 4, and 16Mʘ and lines of
constant radius. Other panels: the radius evolution of the three stars. The dotted horizontal lines indicate the
range in radius when case A, B, and C contacts occur. The blue dashed line indicates the radius at the time
when the outer envelope goes from radiative to convective equilibrium. (© Pols 2011.)
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28.4 Changes in Period and Separation during Mass Transfer
When one of the binary stars reaches its Roche lobe, matter may overflow to its
companion. Let us call the initially most massive star the primary, and the initially
least massive star the secondary. In the early lifetime of binaries, the primary will
reach Roche lobe overflow first, because it evolves on a shorter timescale. In that
case, the primary is the donor (d) and the secondary is the accretor (a). In later
phases, however, the secondary might be the donor that transfers mass to the
primary. An example is the case of an expanding low-mass red giant transferring
mass to a white dwarf that originates from an initially more massive star.

If all gas lost by the donor is accreted by the receiving star, the mass transfer is
called conservative, indicating that all mass is conserved in the system. If the receiver
is unable to accept all gas from the donor, the mass transfer is nonconservative
because mass is lost from the system. This could be the case, for instance, when the
transfer rate of the donor is so high that the accretor cannot adjust fast enough to
accommodate the accretion rate.

Mass transfer changes the period and the separation of a binary system. Consider
the time derivatives of the stellar masses, indicated by Ṁ1, Ṁ2, etc. In case of
conservative mass transfer

− ̇ = ̇ ̇ =M M Jand 0. (28.13)1 2

Differentiating Equation (28.5) for the angular momentum results in
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The easiest way to derive this equation is by taking the time derivative of the natural
logarithm of Equation (28.5) and using dln(x)/dt = ̇x x/ . For conservative mass
transfer, specified by conditions (28.13), this gives
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IfM1 is the mass of the donor star (so ̇ <M 01 ), then the orbit will shrink ifM1 >M2

and expand ifM1 <M2. If the donor is more massive than the accretor, the orbit will
shrink. The minimum orbit is reached when the stars have equal mass.

The change in a can be derived directly from the conditions that J and M1 + M2

are both constant. Equation (28.5) for J shows that
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This implies that after mass transfer, we can express the ratio between the final
separation a and its initial value ai, and between the period P and its initial value
Pi, as
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where the subscript i indicates the initial value and the last equation follows from
Kepler’s third law.
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28.5 Stable and Runaway Mass Transfer
Mass transfer occurs when one of the two components fills its Roche lobe. When
mass is transferred from a donor to an accretor, three properties must be considered:
the change in radius of the donor, the change in radius of the accretor, and the
change in separation. They all contribute to a change in the size of the Roche lobes.
Depending on these changes, the mass transfer may be stable, unstable, or even a
runaway process, as discussed below.

(1) Stable mass transfer on the evolution timescale of the donor.
This occurs when the radius of the donor decreases, due to mass transfer,
faster than the size of the Roche lobe. In this case, the transfer of an amount
of mass leads to shrinking of the donor radius, moving it back within its
Roche lobe. The stellar evolution of the donor will then make the radius
expand again until it fills its Roche lobe and again transfers mass to the
accretor. This results in stable mass transfer on the timescale of the
evolution of the donor. This happens in case A transfer when the donor is
still on the main sequence with a radiative envelope.

(2) Runaway mass transfer: dynamically unstable mass transfer.
This occurs when the transfer of mass results in a shrinking of the Roche
lobe, while the donor radius does not shrink fast enough or even keeps
expanding. In that case, the mass transfer is so fast that the donor is out of
hydrostatic equilibrium. Runaway mass loss occurs in stars with deep
convection zones (i.e., if the donor is on the Hayashi track). This happens
in case C mass transfer.

The reason that interacting binaries on the Hayashi track will suffer
dynamically unstable mass loss is because their luminosity is set by the core
mass and their Teff is almost constant. This means that their radius is
independent of the mass of the envelope. As the AGB star transfers mass to
a lower mass companion, their separation decreases, which decreases the
Roche lobe volume, so more of the envelope mass of the AGB star will be
transferred. This results in a runaway process. It will end when the donor
has lost almost all of its envelope and contracts on its way to becoming a
WD in the case of the low-mass donor, or a WR star if the donor is
massive.

(3) Unstable mass transfer on the thermal timescale of the donor.
This situation is in between the two extremes discussed above. In this case,
the donor is out of thermal equilibrium (i.e., out of energy balance), but the
mass transfer is slow enough for the donor to remain in hydrostatic
equilibrium because the timescale for mass transfer is longer than the
dynamical timescale. Readjustment to thermal equilibrium occurs on a
Kelvin–Helmholtz timescale, so in this case the mass transfer is self-
regulating and the timescale is the Kelvin–Helmholtz timescale. This
happens in stars with radiative envelopes (i.e., in case B transfer of massive
stars) that are expanding after the MS but have not yet reached the Hayashi
track.
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28.6 Summary
1. The Roche lobe is the smallest equipotential surface that includes both stars.

The volume within this 3D surface is the Roche volume.
2. When evolution forces a star to increase its size beyond the Roche volume,

mass can be transferred to its companion. If the companion can accom-
modate this mass (i.e., in the case of conservative evolution), the orbit will
shrink if the donor is more massive than the accretor and expand if the donor
is less massive than the accretor. The minimum separation is reached when
the two masses are equal.

3. The transfer may occur in three evolutionary phases of expansion of the
donor star:

– when the donor expands during the main-sequence phase: case A,
– when the donor expands to become a red giant after the main-sequence
phase: case B,

– when the donor expands while it is on the Hayashi track with a
convective envelope: case C,

4. Mass transfer can be stable or unstable:
– If the donor is a main-sequence star, the mass transfer is stable. This
happens in case A transfer.

– If the donor is an AGB star or a red supergiant with a convective
envelope, runaway mass transfer occurs that ends when the donor has
lost its convective envelope. This happens in case C transfer.

– If the donor star is expanding during the H-shell fusion phase, the mass
transfer is unstable on a Kelvin–Helmholtz timescale. This happens in
case B transfer.

Exercises

28.1 Calculate the change in period and separation of a close binary with
conservative mass transfer. Star 1 has a mass of 25Mʘ and a He core of
10Mʘ at the end of the MS phase. Star 2 has a mass of 10Mʘ and is still on
the MS. The orbits are circular and the initial period is five days.

a. Calculate the orbital separation (in Rʘ).
b. Show that star 1 filled its Roche lobe shortly after the TAMS (use

Appendix D).
At the end of the MS phase, star 1 expands and mass transfer starts. The
mass transfer continues until star 1 has lost its envelope and only the He
star remains.

b. Calculate the minimum period and the minimum separation.
c. Calculate the final period and separation.

28.2 Suppose that star 1 of Exercise 28.1 loses 10Mʘ by a stellar wind that is
not captured by the secondary. Suppose that this mass loss happens
instantaneously.

a. Calculate the initial angular momentum.
b. Calculate the angular momentum that is removed from the system.
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c. Calculate the new orbital separation and period.
d. Will the system go through case A, case B, or case C contact? Or no

contact phase at all?
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Chapter 29

Close Binaries: Examples of Evolution with
Mass Transfer

In this section, we discuss a few examples of close binary evolution with mass
transfer. Case A transfer leads the Algol systems and blue stragglers. Case B transfer
may lead to a system containing a low-mass Wolf–Rayet star and a more massive
O-star. This happens in the case of conservative mass transfer (i.e., all mass lost by the
donor is accepted by the receiver). Case C leads to binaries with a common envelope.
In this case, the mass transfer is nonconservative (i.e., the receiver cannot accrete all
mass transferred from the donor), so part of this mass is lost from the system. Friction
on the common envelope causes the binary stars to spiral in. This may result in either
the merging of the two stars or the formation of a narrow binary system with two
stripped stars. We will also discuss the scenarios for the formation of low-mass X-ray
binaries and high-mass X-ray binaries. Novae are erupting variables, consisting of a
white dwarf that accretes matter from a companion. The large outbursts of classical
novae are due to the sudden ignition of H-fusion at the bottom of the accumulated
layer on top of the white dwarf. Dwarf novae show recurrent outbursts of lower
luminosity, which are due to variations in the accretion rate.

29.1 Algol Systems: Conservative Case A Mass Transfer
An Algol system consist of a (sub)giant that fills its Roche lobe and a more massive
main-sequence star. The existence of these systems was a puzzle for a long time,
since the giant was expected to be more massive because the evolution time is shorter
for more massive stars. This was called the Algol paradox. It was solved in 1967 by
Kippenhahn and Weigert, who showed that Algol systems are the natural result of
close binary evolution with mass transfer (Kippenhahn & Weigert 1967).

Figure 29.1 shows the evolution in the HRD and the mass transfer rate of a
binary system with a metallicity of Z = 0.004 and with initial masses of M1 = 10.0
for the primary and M2 = 8.9Mʘ for the secondary in a circular orbit with an initial
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separation of 20Rʘ and a period of 2.2 days. The stars, with radii of R1 = 3.2 and
R2 = 3.0Rʘ, are initially detached but at point B star 1 has expanded to a radius of
7.2Rʘ and fills its Roche lobe. At that point, the system becomes semi-detached.
Between B and C, star 1 transfers mass to star 2. The donor, which is still fusing H on
the MS, loses mass so its luminosity decreases, whereas star 2 gains mass and
becomes more luminous. The transfer is slow so that the stars have time to adjust
and stay in hydrostatic and thermal equilibrium. As mass is transferred and the two
stars become more equal in mass, the separation shrinks (Section 28.4). The Roche
lobes of both stars also shrink but their radii do not. Star 2 remains on the MS and
does not fill its Roche lobe. On the other hand, the shrinking Roche lobe of star 1
implies that it must lose mass at a higher rate of ∼10−5 Mʘ yr−1. At this high transfer
rate, star 1 is out of thermal equilibrium. This stops when star 1 becomes the less
massive of the two. Continuing mass transfer from now on will increase the
separation. Star 1, which remains on the MS, is still filling its Roche lobe so it keeps
transferring mass to star 2, albeit at a lower rate. At point C, star 1 has lost 4Mʘ soM1

= 6Mʘ and M2 = 12.9Mʘ. Between C and D, the mass transfer has settled to the
nuclear timescale of star 1 (i.e., the core H-fusion timescale). Point Dmarks the end of
the MS phase of star 1: the star shrinks briefly, so the mass transfer stops (D-E-F).
During the subsequent H-shell fusion phase, F-G, the star expands and the resulting
high-mass transfer rate occurs on the Kelvin–Helmholtz timescale.

During this evolution, the giant is less massive than its MS companion after phase
C, as is observed in Algol systems. If this evolution occurs in a cluster and star 2
reaches a mass that is higher than the turn-off mass of that cluster, it will be a blue
straggler (see Figure 2.7). Blue stragglers are MS stars in clusters that are more
massive that the turn-off mass and can only be formed by mass transfer in a close
binary system.

Figure 29.1. Left: the evolutionary tracks of the two components of a binary of M1 = 10Mʘ (red) and M2 =
8.9Mʘ (blue) with an initial period of P = 2.2 day and a separation of 20Rʘ. Right: the mass-loss rate of star 1
as a function of time. Letters indicate specific evolutionary phases that are discussed in the text. The stars have
a metallicity of Z = 0.004. (ª Pols 2011.)

Understanding Stellar Evolution

29-2



29.2 Massive Interacting Binaries: Conservative Case B Mass
Transfer

The fraction of main-sequence O stars (luminosity class V) that have one or more
bound companions is very high, suggesting that massive stars are often formed in
multiple systems (Sana, et al. 2014). This implies that binary interactions play a
critical role in massive star evolution from the main sequence straight through core
collapse (Sana et al. 2012; De Mink et al. 2014).

Short period binaries with P ≲ 20 days consisting of a massive O star and a less
massive Wolf–Rayet star are typical examples of the results of such interactions. The
Wolf–Rayet star was originally the more massive one, but it has been stripped by
case B mass transfer.

Figure 29.2 shows the evolution of a massive binary with an initial mass of M1 =
10 and M2 = 8Mʘ and a period of P = 12 days. This corresponds to an initial
separation of a = 60Rʘ. This will result in case B mass transfer because star 1 will fill
its Roche lobe in the H-shell fusion phase.

Star 1 fills its Roche lobe at point B, when it is crossing the Hertzsprung gap
during the H-shell fusion phase, and starts transferring mass to the companion. The
expansion of the donor happens on the Kelvin–Helmholtz timescale. As the orbit
shrinks, this results in a high mass transfer rate and a steep drop in luminosity. This
is because the mass transfer is so fast that the star is out of thermal equilibrium: the
core cannot produce sufficient nuclear energy to keep up with the expansion of the
envelope, so the luminosity of the star drops dramatically between points B and C.
At the same time, star 2 is gaining mass and moves up along the MS. At point C, the
two stars have reached about equal mass, M1 = M2 = 9Mʘ, and the separation is at

Figure 29.2. Left: the evolution of a binary with an initial mass of M1 = 10 (red) and M2 = 8Mʘ (blue), an
initial period of P = 12 days, and a separation of a = 60Rʘ. The thin gray line indicates the track of a single
star of 10Mʘ. The locations of the ZAMS and the He main sequences are shown as dashed lines. Right: the
mass transfer rate as a function of time. Notice that most of the mass transfer occurs during a short time of
only 5 × 103 yr. The letters refer to phases that are discussed in the text. (ª Pols 2011.)
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its minimum. From then on, the separation increases when mass is transferred to star
2, so the mass transfer rate drops. Star 1 regains thermal equilibrium again and its
luminosity increases to the value that agrees with its core mass. At point D, when
core He-fusion is ignited in star 1, it has lost so much of its envelope that it shrinks
and the mass transfer stops. At point E, the star has evolved toward the He main
sequence as a Wolf–Rayet star. Meanwhile, the companion has reached its final
mass and continues its evolution as a massive star, so in the end the system has
evolved into a close binary system in which the initially more massive star is now a
low-mass WR star and the initial secondary is a more massive O star.

29.3 Common Envelope Stars: Case C Mass Transfer
Figure 29.3 shows a sequence of events that leads to a common envelope system.
The initial configuration is shown in A. If mass transfer occurs when the donor is on
the Hayashi line, the mass transfer will be unstable (B). This will lead to rapid
shrinking of both the orbital separation and the size of the Roche lobes, while the
donor star keeps expanding. This results in such a high mass-loss rate that the
receiver is unable to adjust. The accreted mass is piled on top of the receiver, which
may fill its Roche lobe. As the donor keeps expanding and transferring mass, the
orbit keeps shrinking and the Roche lobes of both stars may be overfilled: the stars
develop a common envelope (C). As the two stars orbit inside the common envelope,
friction heats the envelope and matter is lost from the system (D).

At the same time, friction will also lead to the spiral-in of the two stars (E).

Figure 29.3. Schematic picture of the evolution of a binary that leads to a common envelope phase. The
vertical dashed line indicates the location of the center of gravity. A: initial configuration; B: the AGB star fills
its Roche lobe; C: formation of a common envelope (light red) due to runaway mass transfer; D: dynamical
friction leads to heating of the envelope and mass loss; E: spiral-in due to dynamical friction and ejection of the
common envelope; and F: two possible results: bare cores in a very close orbit or the merging of the two stars.
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Once the orbital separation is so small that the system consists of the two cores
rotating inside a common envelope, friction will slow down the orbital motion of the
cores and cause the orbits to shrink even more. This may result in two possible
outcomes (F).

– The energy released by the friction and the shrinking of the orbit heats the
common envelope to such high temperatures that the envelope escapes,
leaving two bare cores in a very close orbit.

– The slow-down of the orbital motion by friction leads to a spiral-in and finally
the merging of the two cores surrounded by one envelope (i.e., into one single
star).

Which one of these two scenarios is realized depends on the amount of energy
that is produced by the friction and the shrinking of the system, Efric, minus the
radiative losses, Erad. The net energy is Enet = Efric − Erad. If Enet is more than the
energy needed to unbind the common envelope, Eenv, this common envelope will be
expelled and the spiral-in will stop, leaving two separate bare cores. If Enet < Eenv,
the friction and the spiral-in of the two cores within the common envelope will
continue until the two cores merge completely within their common envelope.

29.4 The Formation of High-mass X-ray Binaries
Massive X-ray binaries are the result of merging and spiral-in (Van den Heuvel
1983). As an example of a high-mass X-binary system, we adopt the system LMC
X-3. It consists of a B star of 8Mʘ and an accreting black hole of 10Mʘ in an orbit
with a period of 1.7 days. A possible evolutionary scenario that would lead to such a
system is shown in Figure 29.4. The letters refer to the phases described below.

a. The initial configuration is a system of M1 = 71.9Mʘ and M2 = 8.6Mʘ in an
orbit with an initial period of 132.9 days. Star 1 is so massive that it loses
about 10% of its mass via a stellar wind.

b. The primary fills its Roche lobe when it leaves the main sequence and its
radius expands, which results in runaway mass loss as discussed in Section
28.5. The star goes through a common envelope phase with spiral-in due to
dynamical friction. The energy gained by the spiral-in and by friction heats
the envelope of star 1 to such a degree that it is expelled. This process
happens so fast that star 2 accretes only a small fraction of the mass. Star 2 is
spun up by the angular momentum of the accreted mass and develops a
rotation induced disk.

c. At the end of the common envelope phase, the primary has lost about half of
its mass, from 63.8 to 31.6Mʘ, leaving only the He core. The mass of star 2 is
hardly increased. The orbit has been shrinking from about 500Rʘ (P= 164.3
days) to less than 10Rʘ (P = 0.5 days). The change in orbital radius is so
large that the scale in the right side of Figure 29.4 is enlarged drastically.

d. Star 1 is a Wolf–Rayet star and has a high radiation-driven mass-loss rate: its
mass decreases from 31.6 to 23.6Mʘ.
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e. The Wolf–Rayet star explodes as a Type Ib or Ic SN, leaving behind a black
hole of 13.6Mʘ.

f. Star 2 fills its Roche lobe and transfers mass to the black hole. This creates
an accretion disk that produces X-rays. The system has thus evolved into a
high-mass X-ray binary.

29.5 The Formation of Low-mass X-ray Binaries
Low-mass X-ray binaries are also the result of binary evolution with spiral-in (Van
den Heuvel 1983). As an example of a low-mass X-ray binary, we adopt the system
Sco X-1, which consists of a neutron star of 1.4Mʘ and a low-mass 0.42Mʘ

companion with an orbital period of 0.88 days. A possible evolutionary scenario
that would lead to such a system is shown in Figure 29.5. The letters refer to the
phases that are described below.

a. The system consists of star 1 with M1 = 11Mʘ and star 2 with M2 = 1Mʘ in
an orbit with an initial period of 300 days and an orbital separation of a =
430Rʘ.

b. The primary fills its Roche lobe when it becomes a red giant with a He core
of 2.5Mʘ. Because the star has a convective envelope, this leads to runaway
mass transfer (Section 28.5) with a common envelope phase and a rapid
spiral-in by dynamical friction. This phase is so fast that star 2 accretes very
little mass; however, it is spun up by the angular momentum of the accreted
mass (this is similar to phase b of the high-mass X-ray binary evolution in
Figure 29.4).

Figure 29.4. Evolution of a close binary system of 71.9 and 8.6Mʘ with a period of 132.9 days that leads to the
formation of a high-mass X-ray binary similar to LMC X-3. Notice the different scales of the initial (left) and
later (right) phases. (ª Pols and Verbunt 2011.)
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c. The energy released by the spiral-in and the friction has expelled the envelope
of star 1, leaving behind a He star with a mass of 2.5Mʘ. The orbital radius
decreased from 430 to 3.4Rʘ and the period decreased from 300 days to 0.38
days.

d. Star 1 explodes as an SN, leaving behind a neutron star of 1.35Mʘ. Star 2
is still a main-sequence star. The sudden loss of mass from the system
results in a widening of the orbit with an increased period of 1.66 days.
Because the explosion of the supernova was asymmetric, the neutron star
received a kick velocity. This results in an elliptical orbit with an
eccentricity of e = 0.56.

e. Due to tidal interaction, the orbit circularizes, resulting in the final config-
uration of a neutron star with a main-sequence companion in a circular orbit
with a period of 0.94 days and a separation of 5.5Rʘ. When star 2 expands,
the accretion onto the neutron star produces the X-ray luminosity.

29.6 Novae: WDs in Semi-detached Systems
Novae are stars that show recurrent outbursts. They are close binary systems with
orbital periods of about 1 to 10 hours, consisting of a WD and a star of spectral type
G or later with a mass of about 1Mʘ or less (Gallagher & Starrfield 1978). There are
two types of novae: classical novae and dwarf novae.

In a classical nova outburst, the brightness increases within a few hours from that
of a typical red dwarf (Mv ∼ +5, L ∼ Lʘ) to as high as Mv = −6 to −9, which
corresponds to a luminosity of about L ≈ 2 × 104 Lʘ to 3 × 105 Lʘ. After maximum,
which lasts a few days, the brightness decreases over a period of tens to hundreds of
days to its normal level.

Figure 29.5. Evolution of a binary system of stars with initial masses of 11Mʘ and 1Mʘ, in an orbital period of
300 days and a separation of 430Rʘ. The evolution of such a system results in a low-mass X-ray binary system
quite similar to Sco X-1. Notice the different scales of the initial (left) and later (right) phases. (ª Pols and
Verbunt 2011.)
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In a dwarf nova, the brightness increases by only a factor of 10 to 100. Such
eruptions may occur at intervals of 30 to 300 days. Typical light curves for a classical
nova and a dwarf nova are shown in Figure 29.6.

The spectrum of a nova before outburst shows the presence of an accretion disk in
the system, indicating that mass transfer occurs from the companion that fills it
Roche lobe to the WD. The accumulation of matter onto the WD triggers a
thermonuclear outburst on the surface of the WD. The outburst and post-outburst
spectrum show wide blueshifted absorption lines: evidence of mass loss from the
system with a velocity on the order of 103 km s−1.

Let us try to explain the physical effects and energies involved in the outburst of a
classical nova. For a WD with a mass MWD and radius RWD accreting matter at a
rate of Ṁa, the accretion energy rate is

= ̇L M M RG / . (29.1)a aWD WD

Assume that the nondegenerate photosphere of the WD has a thickness h, a mean
particle density n, a mean mass per particle μmH, and an envelope mass

π μ  =  M R hn m4 . (29.2)env WD
2

H

The total thermal energy of the envelope is

π μ= × =E R hnkT M kT m4 (3/2 ) 3/2 ( / ). (29.3)envth WD
2

H

Figure 29.6. Typical light curves of two novae. The top panel is for nova V1500 Cyg that had an outburst on
1975 August 30, when its visual brightness increased by 13 magnitudes. Notice the slow decrease in visual
magnitude over a period of about three years. The lower panel is for the recurrent dwarf nova SS Cyg. The
recurrence time of the outbursts, when the visual brightness increases by 4 mag, is about 60 days. (Data are
from the AAVSO https://www.aavso.org/lcg.)
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If the accretion energy is completely converted into thermal energy, the temperature
of the envelope will increase at a rate of

⎛
⎝⎜

⎞
⎠⎟ μ μ× ̇ = × → =  ̇GM

R
M m

dT
dr

M
dT
dt

GM
R M

m
k

M(3/2 k/ ) 2/3 . (29.4)WD

WD
a H env

WD

WD env

H
a

The temperature increase of a nondegenerate H-rich envelope of Menv = 10−5Mʘ

and μ = ½ of a CO white dwarf with a mass of 1 Mʘ and a radius of 0.011Rʘ

(Equation (20.2)) is

≈ × ̇dT
dt

M1 10
K
yr

. (29.5)13
a

The observed accretion rates of novae are of the order of − −10 to 109 8 Mʘ yr−1. At
such an accretion rate, the envelope will be heated to the ignition temperature for
H-fusion via the CNO cycle of 107 to 108 K in about 102 to 103 years. At this time,
about 10−6 to 10−5Mʘ has been accumulated. For lower accretion rates, the
accumulation time increases inversely.

Models show that the H-fusion is ignited at the bottom of the envelope if the
envelope has a mass of ∼10−5 to 10−4Mʘ at a density of about ×2 102 g/cm3. This
fusion via the CNO cycle produces a luminosity of the order of105 Lʘ in a layer with
a mass of about 10−6Mʘ (Starrfield et al. 2000). The amount of energy generated
by the fusion of 10−6Mʘ of H is ∼1046 erg. This energy can sustain a luminosity of
105 Lʘ for about a year. However, the peak luminosity of a nova only lasts for a few
days (in the case of a fast nova) to 100 days (for a slow nova). This implies that a
large part of the generated energy is lost in the ejection of a shell. The potential
energy of one gram at the surface of the WD is ×2 1017 erg and the kinetic energy of
gas ejected at a speed of a few times 103 km/s is ×5 1017 erg, so the energy created by
the fusion is sufficient to eject a shell of about 10−6 to 10−5Mʘ, roughly in agreement
with the estimates of the observed mass.

The eruptions in dwarf novae are not due to the ignition of thermonuclear fusion
but to large variations in the accretion rate. The spectra of novae during quiescence
show that most of the luminosity comes from the accretion disk. The luminosity of
an accretion disk is directly coupled to the accretion rate. At quiescence, the
accretion rate is small and on the order of −10 11 to −10 10 Mʘ yr−1. During outburst,
the rate increases to −10 9 to −10 8 Mʘ yr−1. The variation in the accretion rate is
probably due to an instability in the accretion disk around the WD, although a
variation in the mass transfer rate from the donor star has also been suggested
(Sparks et al. 1977).

29.7 Summary
1. Algol systems, consisting of a giant andamoremassivemain-sequence star, are

the result of close binary evolutionwith caseAevolution and conservativemass
transfer. The primary fills its Roche lobe when it is still in the core H-fusion
phase. The receiver is also an MS star and gets more massive than the donor.
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2. This evolution also explains the existence of blue stragglers in clusters with a
turn-off mass that is lower than the final mass of the receiver.

3. If mass transfer occurs when the primary is an AGB star or a red supergiant,
the shrinking of the orbit combined with the case C very high mass transfer
rate results in a common envelope surrounding both stars. Dynamical
friction leads to rapid shrinking of the orbit. If the released energy is
insufficient to remove the common envelope, the stars will merge into a
single star. If the released energy is sufficient to remove the common
envelope, the system ends as a very close binary consisting of the two bare
cores.

4. Massive binaries consisting of a Wolf–Rayet star and a more massive O star
are the result of case B close binary evolution with conservative mass
transfer. The primary fills its Roche lobe when it is expanding during
H-shell fusion. The shrinking of the orbit combined with the rapid expansion
of the star results in a short phase of very high mass transfer that strips the
primary down to its He core. The primary becomes a Wolf–Rayet star with a
more massive O star companion.

5. High-mass X-ray binaries are the result of the nonconservative evolution of a
close binary system consisting of two massive stars that pass through a
common envelope phase. The primary fills its Roche lobe and the resulting
unstable mass transfer rate is so high that the secondary cannot accept it. The
primary loses so much mass that it becomes a Wolf–Rayet star that later
explodes as an SN, leaving behind a black hole. When the secondary, whose
mass has hardly increased, later fills its Roche lobe and transfers mass to the
black hole, the system becomes a high-mass X-ray binary.

6. Low-mass X-binaries form basically in the same way as high-mass X-ray
binaries, but originate from a lower-mass system. In this case, the primary
leaves a neutron star behind when it explodes. The mass of the secondary
remains small because it cannot accrete the mass that is lost in the common
envelope phase.

7. Classical novae are close binaries consisting of a WD receiver with a G-type
or later donor. When the accumulated H on top of the WD reaches a mass of
about 10−5Mʘ and a temperature of ∼108 K, H-fusion is ignited. This results
in a sudden increase in brightness up to about 103 −105Lʘ and the ejection of
part of the envelope. The recurrence time of the outbursts is of the order of
102 to 103 yr.

8. Dwarf novae are also close binaries with an accreting WD and a cool
companion. The recurrent outbursts of dwarf novae are due to variations in
the accretion rate, triggered by an instability in the accretion disk.

For a more extensive discussion of binary evolution, the reader is referred to the
excellent lecture notes of the course “Binary Stars” by our Utrecht colleagues Onno
Pols and Frank Verbunt at https://www.astro.ru.nl/~onnop/education/binaries_
utrecht_notes/.
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Exercises

29.1 Estimate the mass of the two stars at the end of the case A mass transfer
phase of the Algol system shown in Figure 29.1 and at the end of the case
B mass transfer of a massive binary shown in Figure 29.2.

29.2 Consider a binary system consisting of two stars with 10 and 1Mʘ in
circular orbits. Calculate the initial period and initial separation for mass
transfer to start during core H-fusion, during core He-fusion, and during
double-shell fusion of the most massive component.

29.3 The rapid increase in brightness at the beginning of a nova outburst is
called the “fireball phase.” In this exercise, you are going to calculate the
radius and duration of the fireball phase. Assume that the mass ejection
occurs at a constant rate, ̇ = × −M 3 10ej

6 Mʘ yr−1, at a constant velocity,
V = 1000 km s−1, and lasts more than 10 days.

a. Derive an expression for the density at distance r in the shell.
b. Show that the outer radius of the shell Rout(t) is much larger

than RWD after about 10 seconds. Thus, we can safely adopt
Rout(t) = V × t.

c. Derive an expression for the radius of the photosphere, Rphot(t),

defined by ∫τ κρ= = dr2
3 R

R

phot

out
, with κ = σe = 0.3 cm2 g�1. Show

that the photospheric radius varies with time as = +
R t Vt X

1
( )

1 1

phot

and derive an expression for X.
d. Plot the value of Rphot(t). What is the physical meaning of X?
e. Explain in physical terms why Rphot(t) approaches a constant value,

whereas Rout keeps increasing.
f. Calculate the time t1 when Rphot(t1) ≈ X. How large is Rout at that

time? What is the mass in the envelope at that time?
g. Assume that the temperature of the outflow during the fireball

phase remains constant at T ≈ 105 K. How large is the peak
luminosity?
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Understanding Stellar Evolution

Henny J.G.L.M. Lamers and Emily M. Levesque

Chapter 30

Chemical Yields: Products of Stellar Evolution

Stars are formed from interstellar material. During their life cycles, they produce a
wide range of chemical elements by nuclear fusion or neutron capture. A consid-
erable fraction of their initial mass is returned to the interstellar medium by means of
stellar winds or supernova explosions. The ejected material is partly chemically
enriched. This results in a steady chemical enrichment of the interstellar matter. The
amount of mass of a given chemical element that is produced in a star and returned
to the interstellar medium is called the stellar yield. As H is destroyed in stars, the
stellar yield of H is negative. In this section, we will summarize the evolution of
single stars and describe the resulting chemical yields. The very presence of life on
Earth owes its thanks to the chemical yields of previous generations of stars, before
the Sun and the solar system were even born.

30.1 A Summary of the Evolution of Single Stars
The yields of a star depend on its nuclear evolution and onmass loss by winds or SNe.
We therefore briefly summarize the evolution of single stars that were discussed in
the previous sections.

0.01 ≲ Mi ≲ 0.8Mʘ: the lifetime of these stars is larger than the age of the Universe,
so they are still in their MS phase. They have not yet contributed to the enrichment
of the ISM (Section 13.5)

0.8 ≲Mi ≲ 8Mʘ: after core H-fusion as an MS star and shell H-fusion as a red giant,
these stars go through core He-fusion with H-shell fusion as an HB star. They lose
only a small fraction of their mass by a stellar wind in the red giant phase. During
the subsequent AGB phase, they go through dredge-ups and thermal pulses that
bring the products of the CNO cycle, and later the He-fusion products and s-process
elements, to the surface (Section 18). AGB stars have a high mass-loss rate produced
by radiation pressure on dust and pulsation (Section 15.3). The combination of
severe mixing with high mass-loss rates results in large chemical yields.

doi:10.1088/978-0-7503-1278-3ch30 30-1 ª IOP Publishing Ltd 2017

http://adsabs.harvard.edu/abs/1992A...A...264..105M


8 ≲ Mi ≲ 25Mʘ: these stars go through all fusion phases, even through Si-fusion,
before exploding as SNe in the red supergiant (RSG) phase. RSGs have deep
convective envelopes and severe mass loss, which, together with the SN explosion,
results in large chemical yields (Section 23).

25 ≲Mi ≲ 50Mʘ: these stars go through all fusion phases and explode as SNe during
the Wolf–Rayet phase. During their evolution, they experience high mass-loss rates
as RSGs and WN stars, when most of the products of the CNO cycle are ejected,
and as WC stars when the products of He-fusion are ejected (Section 24).

50 ≲ Mi ≲ 120Mʘ: these stars go through all fusion phases and explode as SNe
during the Wolf–Rayet phase. Before doing so, they have gone through high mass-
loss phases as LBVs with multiple eruptions, where CNO-cycle products are lost,
and as WN and WC stars.

30.2 Chemical Yields of Single Stars
Stars lose mass during their evolution due to stellar winds and supernova explosions.
The total amount of mass of a given chemical element E that is lost by a star during its
evolution can be written as

∫= ×M X t
dM
dt

dt( ) , (30.1)E E
S

where X t( )E
S is the mass fraction of element E at the surface of the star (because mass

is always ejected from the stellar surface) and dM/dt is the mass-loss rate at time t.
The integral is over the full lifetime of the star.

The stellar chemical yield YE of element E is defined as the amount of mass of
element E that is lost by the star, minus the initial amount of that element in the
ejected mass. The star had an initial composition described by the mass fraction XE

i

at the time of formation of the star, so the yield can be written as

∫= − ×{ }Y X t X
dM
dt

dt( ) . (30.2)E E
S

E
i

If the chemical composition of the ejected mass is higher than its initial composition,
the yield is positive. This is, for instance, the case for He that is formed by fusion in
the star and ejected in the wind. The yield of H is negative, because H is destroyed by
nuclear fusion.

The total chemical yield,YE
tot, is the chemical yield per star, multiplied by the relative

number of the stars (i.e., by the stellar initial mass function). The total chemical yield,
in Mʘ, can be calculated per unit volume of the galaxy. It can also be calculated as
a fraction for a given total stellar mass. In the latter case,YE

tot is dimensionless.

30.2.1 Chemical Yields of Low-mass Stars

Let us consider the chemical yields of low-mass stars of 1 ≲ Mi ≲ 6Mʘ, with initial
composition X = 0.687, Y = 0.293, and Z = 0.020, derived from the stellar
evolutionary calculations by Karakas (2010). These calculations include the
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evolution of thermal pulsing AGB stars. Figure 30.1 shows the amount of mass of
several chemical elements ejected during the evolution, expressed as a fraction of the
initial stellar mass,Mi. Most of the ejected matter is in the form of H and He, with a
small contribution of C, N, and O.

Figure 30.2 shows the amount of C, N, and O ejected by the stars as a fraction of
the initial mass. The amount of C includes 12C and 13C, N is mainly in the form of
14N, and O is the combination of 16O, 17O, and 18O (the values for the individual
isotopes are given in Karakas 2010).

The adopted initial mass fractions are, respectively, 0.293 for He, 0.0034 for C,
0.0011 for N, and 0.0096 for O. The peak in the yield of 12C at ∼ 3Mʘ is due to the
large number of dredge-ups during the thermal pulses of these stars. The number of
thermal pulses decreases toward higher mass. At M > 4Mʘ, the temperature of the
H-fusion shell in-between the thermal pulses is higher than about 3 × 107 K, so
the H-fusion occurs via the CNO cycle. This increases the abundance of 14N at the
expense of 12C and 16O (Section 8.4.3). In AGB stars, this process is called
Hot-Bottom Burning (see Section 18.5).

Figure 30.3 shows the amount of ejected mass and the yields of He, C, N, and O
in Mʘ/Mi for low-mass stars. Notice that the yield of He is small, although about
25% of the stellar mass was ejected in He; however, the initial composition was XHe

= 0.293, so most of the lost He was not the result of H-fusion in the star. A similar

Figure 30.1. Amount of ejected mass and the remnant mass of low-mass stars, expressed as a fraction of the
initial massMi. Red = hydrogen; blue = helium; green = CNO; and gray is the remnant mass. (Figure is based
on data by Karakas 2010.)

Understanding Stellar Evolution

30-3



Figure 30.2. Amount of C, N, and O ejected during the evolution of low-mass stars. Notice the peak in the C
production due to the loss of the C-rich envelope during the AGB phase and the peak in N production due to
the enrichment of N in the CNO cycle. (Figure is based on data by Karakas 2010.)

Figure 30.3. Ejected mass inM/Mi (dashed lines) and the yields inM/Mi (full lines) of He, C, N, and O. Notice
that the yield of He is low, although a large amount of He was ejected. The yields of O and C are even negative
(red) for stars with Mi > 5Mʘ. (Figure is based on data by Karakas 2010.)
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situation occurs for O. In this case, the yield of O is even negative. This is because O
has been converted into C and N in the CNO cycle in low-mass stars.

Figure 30.4 shows the total yields for an assumed Salpeter stellar mass function of
N(Mi) = 1000 ×Mi

−2.35. The large increase in the total yield of He at low mass is due
to the rapid increase in the number of these stars. Notice the peaks in the yields of C
around 3Mʘ and N around 6Mʘ.

30.2.2 Chemical Yields of Massive Stars

The top panels of Figure 30.5 show the yields of different chemical elements for
massive stars, 9 ≲ Mi ≲ 120Mʘ, with solar metallicity (X = 0.705, Y = 0.275, and
Z = 0.02), as a function of their initial mass, for nonrotating and rapidly rotating
models with vinit = 300 km s−1. The yield of He is roughly constant at about 10% of
the initial stellar mass, except for stars withMi > 60Mʘ, which eject a larger fraction
of He. Stars in the initial mass range of Mi > 15Mʘ contribute strongly to the
enrichment of the ISM with C, O, and α-elements like Ne, Mg, and Si.

The lower panels of Figure 30.5 show the total yield from the same models. It is
the yield of each stellar mass, multiplied by the number of stars, using a Salpeter
IMF of N(M) = 1000 × M−2.35. The figure shows that the contribution to the
enrichment of the ISM by He increases strongly toward low-mass stars. The
enrichment by C is about constant for all massive stars and the enrichment by
α-elements is mainly due to stars in the range of 20 < Mi < 40Mʘ. The much larger
yield of O compared to C by massive stars explains why the cosmic abundance of C
is about a factor of 3 lower than that of O.

Figure 30.5 shows that rapidly rotating massive stars contribute more to the
enrichment of the ISM than nonrotating massive stars, and that their contribution to

Figure 30.4. Total stellar yields, YE ×N(Mi), of He, C, N, and O for an assumed initial mass function of N(Mi)
= 1000 × Mi

−2.35. The yields are positive in the blue area and negative in the red area. (Figure is based on data
from Karakas 2010.)
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the He enrichment of the ISM is larger than for nonrotating models. At the same
time, the rapidly rotating massive starsMi > 60Mʘ contribute less to the enrichment
of C and O than nonrotating stars. This difference is mainly due to the different
mass-loss histories of rotating and nonrotating stars. The rapidly rotating stars lose
most of their mass early after the MS phase when nuclear fusion products have not
yet appeared at the surface, whereas the mass loss of nonrotating stars occurs mainly

Figure 30.5. Chemical yields for nonrotating (left) and rapidly rotating models (right) of solar metallicity, Z =
0.02. Top panels: the yields are expressed as a fraction of the initial stellar mass. Colors indicate different chemical
elements: H (top, white), He (blue), C (light green), O (middle green), and Ne,Mg, and Si (dark green). The dotted
overlaid regions of H, He, and C indicate the mass fraction that is ejected in the wind. The regions that are not
dotted indicate the mass fraction that is ejected in the SN explosion. The mass fraction that remains in the remnant
is shown in gray. The resulting supernova type is also indicated. Lower panels: the total stellar yields,

×Y M N M( ) (E ) in units of Mʘ, of massive stars of solar metallicity Z = 0.02, for a Salpeter IMF of N(M) =
1000 × M−2.35. The vertical scale is the same as for low-mass stars in figure 30.4. (Reproduced from Hirschi et al.
2005, with permission. ª ESO.)
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later during the red supergiant phase or the WN and WC phases when enriched
products have reached the surface.

30.3 The Main Producers of Various Elements
He:

– Most of the He was formed in the Big Bang.
– The most massive stars of 20–120Mʘ and the least massive stars of <10Mʘ

eject He by their winds.
– Stars in the mass range of 10 < M < 20Mʘ eject most of their He in SNe.
– Although the lower-mass stars of M < 10Mʘ eject a smaller fraction of their
mass in the form of He than the massive stars, the large number of low-mass
stars implies that even the stars withM < 20Mʘ contribute significantly to the
enrichment of He

– Most of the enrichment of He comes from stars with 1 < M < 30Mʘ.

C:
– The most massive stars of M > 60Mʘ eject C in their winds as WC stars.
– The stars in the range of 10–120Mʘ also eject C by SNe explosions.
– The low-mass stars of ∼2–5Mʘ eject C in the form of C-rich AGB winds.
– More than half of the C enrichment is by low-mass stars.

O:
– Most of the O enrichment is by SNe of massive stars of M > 10Mʘ, with a
peak contribution between ∼20 and ∼60Mʘ.

– The most massive stars of M > 40Mʘ also lose O in the form of winds from
WC and WO stars.

– Low-mass stars contribute very little to the enrichment of O.

α-elements, Ne-Si:
– The enrichment of these elements is due to SNe from massive stars of
M > 8 Mʘ.

Fe-peak elements and beyond:
– These elements are created and ejected in SN explosions. These could be due
to core-collapse SNe of massive stars or white dwarfs exceeding the
Chandrasekhar limit.

Neutron-rich s-process elements:
– Low-mass s-process elements such as Sr, Y, and Zr, are formed in massive
stars and are ejected in SN explosions.

– The more massive s-process elements, such as Ba and Ce, are formed in low-
mass AGB stars from neutrons that are formed during the He-fusion by the
process 12C + 4He ! 16O (Equation 8.18b).
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Neutron-rich r-process elements:
– These are formed during the gravitational collapse of massive stars and
ejected in SN explosions.

– Merging neutron stars could also provide an important source of n-rich
r-process elements.

Two final comments:
1. The evolution of the stars described above is far from certain. For instance,

meridional circulation, produced by rapid rotation, leads to more and deeper
mixing than in slowly rotating stars. Rapid rotation also results in higher
mass-loss rates by stellar winds. Moreover, the mass-loss rates in the RSG
phase and the eruptions of LBVs are other uncertain factors in the evolution
of stars. One might argue that this hardly matters for predicting stellar yields:
if the products of nuclear fusion are not returned to the ISM by stellar winds,
they will be released in the SN explosion at the end of the life of the star;
however, this argument is too simplistic. The comparison between the yields
of nonrotating and rapidly rotating stars shows that the yields depend on the
timing of the mass loss by winds. If a large fraction of the mass is lost before
the stellar envelope is mixed, the yield of fusion products will be smaller than
if the matter is ejected later, after envelope mixing has been effective.

2. We only discussed the yields of single stars; however, many stars are in
binaries, especially massive stars. We have seen in Sections 28 and 29 that
mass transfer in binaries is a common phenomenon that can change the
evolution of stars considerably. Part of the mass that is attracted by a binary
companion may be lost from the system by nonconservative mass transfer. In
this way, stars could lose a significant fraction of their mass before they are
chemically enriched by nuclear fusion.

30.4 Summary
1. The evolution of stars results in chemical enrichment of the interstellar

medium. The amount of enrichment of a given chemical element is called the
“chemical yield.” It is the mass of an element that is lost by the stellar wind
or SN during the lifetime of the star, minus the initial mass of that element in
the ejecta. The yield can be positive (e.g., for He) or negative (e.g., for H).

2. The chemical yield of a star depends strongly on its internal mixing and on
the evolution phase when the mass is ejected. The yield of rapidly rotating
stars is different from that of slow rotators.

3. The “total chemical yield” is the yield of individual stars of different masses,
integrated over the initial mass function. Because the IMF is strongly biased
toward low-mass stars, the contribution of low-mass stars is significant.

4. Most of the enrichment of the ISM by He is due to stars with 1 <M < 30Mʘ.
The enrichment of C is due to low- and high-mass stars. The enrichment of
more massive elements is only due to stars more massive than about 10Mʘ,
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except for the high-mass s-process elements, which are mainly formed during
thermal pulses in low-mass stars.

5. Interacting binaries also contribute strongly to the enrichment of the ISM.

Exercises.
30.1 Figure 30.1 shows the amount of He (in M/Mi) that is lost during the

evolution of stars as a function of their initial mass. Derive from this figure
the net yield of He for stars of 3, 4, 5, and 6Mʘ and compare your results
with Figure 30.3.

30.2 Derive the net yields of C, N, and O of a star of 4Mʘ from Figure 30.2
and compare your results with Figure 30.3.

30.3 Do you expect the net yields of He, C, N, and O in the mass range of 3 to 6
Mʘ of very metal poor stars (Z = 0.001Zʘ) to be higher, lower, or about
the same as those of solar metallicity stars? Give arguments.
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Appendix A

Physical and Astronomical Constants

A.1 Physical Constants in cgs Units

Speed of light c 2.9979 × 1010 cm s�1

Gravitational constant G 6.6726 × 10−8 dyne cm2 g�2

Planck’s constant h 6.6261 × 10−27 erg s
Boltzmann constant k 1.3808 × 10−16 erg K�1

Atomic mass unit = amu mu 1.6605 × 10−24 g
Mass of electron me 9.1094 × 10−28 g = 5.4858 × 10−4 amu
Mass of proton mp 1.6726 × 10−24 g = 1.0073 amu
Mass of neutron mn 1.6749 × 10−24 g = 1.0087 amu
Mass of He core (α-particle) mα 6.6447 × 10−24 g = 4.0016 amu
Mass ratio proton/electron mp/me 1.8229 × 103

Electron charge e 1.6022 × 10−19 C
e 1.6022 × 10−20 emu = 4.8032 × 10−10 esu

Electron volt eV 1.6022 × 10−12 erg
Gas constant R 8.3145 × 107 erg K�1 mole�1

Radiation density constant a 7.5659 × 10−15 erg cm�3 K�4

Stefan–Boltzmann constant σ = ac/4 5.6705 × 10−5 erg cm�2 K�4 s�1

Temperature corresponding to 1 eV TeV = eV/k 1.1604 × 104 K
Thomson scattering cross-section σT 6.6525 × 10−25 cm2 electron�1

A.2 Conversions from cgs to mks Units

erg → Joule 1 erg = 10−7 J
dyne → Newton 1 dyne = 10−5 N
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A.3 Astronomical Constants in cgs Units

Solar mass Mʘ 1.9891 × 1033 g
Solar radius Rʘ 6.9551 × 1010 cm
Solar luminosity Lʘ 3.8458 × 1033 erg s�1

Astronomical Unit AU 1.4960 × 1013 cm
Year yr 3.1558 × 107 s
Lightyear lyr 9.4607 × 1017 cm
Parsec pc 3.0857 × 1018 cm

pc 2.0626 × 105 AU = 3.2616 l yr
Arcsecond arcsec 4.4816 × 10−6 radian
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Appendix B

Stellar Parameters

B.1 Main-sequence Stars (Luminosity Class V)

Spectral
Type

Teff

(K)
log
L/Lʘ

R/Rʘ M/Mʘ Mbol

mag
B.C.
mag

MV

mag
U−B
mag

B−V
mag

O5 44,500 5.90 15 60 −10.1 −4.40 −5.7 −1.19 −0.33
O8 35,800 5.23 11 23 −8.4 −3.54 −4.9 −1.14 −0.32
B0 30,000 4.72 8.4 17.5 −7.1 −3.16 −4.0 −1.08 −0.30
B5 15,400 2.92 4.1 5.9 −2.7 −1.46 −1.2 −0.58 −0.17
A0 9520 1.73 2.7 2.9 +0.3 −0.30 +0.6 −0.02 −0.02
A5 8200 1.15 1.9 2.0 +1.7 −0.15 +1.9 +0.10 +0.15
F0 7200 0.81 1.6 1.6 +2.6 −0.09 +2.7 +0.03 +0.30
F5 6440 0.46 1.4 1.4 +3.5 −0.14 +3.6 −0.02 +0.44
G0 6030 0.18 1.1 1.05 +4.2 −0.18 +4.4 +0.06 +0.58
Sun 5770 0.00 1.00 1.00 +4.74 −0.09 +4.83 +0.16 +0.64
G5 5770 −0.10 0.89 0.92 +4.9 −0.21 +5.1 +0.20 +0.68
K0 5250 −0.38 0.79 0.79 +5.6 −0.31 +5.9 +0.45 +0.81
K5 4350 −0.82 0.68 0.67 +6.7 −0.72 +7.4 +0.98 +1.15
M0 3850 −1.11 0.63 0.51 +7.4 −1.38 +8.8 +1.22 +1.40
M5 3 240 −1.96 0.33 0.21 +9.6 −2.73 +12.3 +1.24 +1.64
M8 2640 −2.92 0.17 0.06 +11.9 −4.1 +16.0 +1.53 +1.93
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B.2 Giants (Luminosity Class III

Spectral
Type

Teff

(K)
log
L/Lʘ

R/Rʘ M/Mʘ Mbol

mag
B.C.
mag

MV

mag
U−B
mag

B−V
mag

O5 42,500 6.00 18 60: −10.3 −4.05 −6.3 −1.18 −0.32
B0 29,000 5.04 13 20 −8.0 −2.88 −5.1 −1.08 −0.29
A0 10,100 2.02 3.4 4.0 −0.4 −0.42 +0.0 −0.07 −0.03
F0 7150 1.30 2.9 3.0: +1.4 −0.11 +1.5 +0.08 +0.30
G0 5850 1.53 5.7 1.0 +0.8 −0.20 +1.0 +0.21 +0.65
K0 4750 1.78 11 1.1 +0.2 −0.50 +0.7 +0.84 +1.00
M0 3800 2.52 42 1.2 −1.6 −1.25 −0.4 +1.87 +1.56
M6 3240 3.03 100 1.4: −2.9 −2.73 −0.2 +1.16 +1.52

B.3 Supergiants (Luminosity Class Iab)

Spectral
Type

Teff

(K)
log
L/Lʘ

R/Rʘ M/Mʘ Mbol

mag
B.C.
mag

MV

mag
U−B
mag

B−V
mag

O5 40,300 6.04 22 70 −10.5 −3.87 −6.6 −1.17 −0.31
B0 26,000 5.52 25 25 −8.9 −2.49 −6.4 −1.06 −0.23
A0 9730 4.54 66 16 −6.7 −0.41 −6.3 −0.38 −0.01
F0 7700 4.50 100 12 −6.6 −0.01 −6.6 +0.15 +0.17
G0 5550 4.48 190 10 −6.6 −0.15 −6.4 +0.52 +0.76
K0 4420 4.46 290 13 −6.5 −0.50 −6.0 +1.17 +1.24
M0 3650 4.61 510 13 −6.9 −1.29 −5.6 +1.90 +1.67
M6 2600 5.65 3300 15: −9.5 −3.90 −5.6 +1.80 +1.60

Data are from Carroll, B. W. and Ostlie, D. A. 1996 An Introduction to Modern Astrophysics and from Cox, A.
N. 2000 Allen’s Astrophysical Quantities
Values with colons are uncertain.
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Appendix C

Solar Model

r/Rʘ Mr/Mʘ Lr/Lʘ log T
K

log P
dyne cm�2

log ρ

g cm�3
μ

εnucl
erg

g�1 s�1
dT/dr

K cm�1
(dT/dr)ad
K cm�1 equil

0.0011 0.0000 0.0000 7.199 17.377 2.194 0.862 17.910 0.332 0.397 rad
0.0181 0.0007 0.0058 7.195 17.367 2.183 0.852 17.386 0.333 0.397 rad
0.0459 0.0098 0.0791 7.179 17.317 2.126 0.808 14.907 0.331 0.397 rad
0.0709 0.0322 0.2290 7.154 17.243 2.049 0.758 11.829 0.327 0.397 rad
0.0904 0.0601 0.3790 7.131 17.172 1.980 0.723 9.367 0.323 0.397 rad
0.1096 0.0959 0.5291 7.106 17.093 1.908 0.693 7.124 0.317 0.397 rad
0.1311 0.1448 0.6792 7.075 16.996 1.825 0.668 4.955 0.307 0.397 rad
0.1590 0.2183 0.8239 7.034 16.858 1.714 0.646 2.878 0.291 0.397 rad
0.1874 0.3001 0.9140 6.992 16.708 1.597 0.633 1.519 0.272 0.397 rad
0.2141 0.3795 0.9598 6.952 16.557 1.481 0.626 0.792 0.254 0.397 rad
0.2398 0.4541 0.9823 6.915 16.407 1.366 0.623 0.416 0.239 0.397 rad
0.2647 0.5228 0.9933 6.880 16.256 1.249 0.622 0.219 0.227 0.397 rad
0.2893 0.5851 0.9979 6.847 16.106 1.132 0.621 0.077 0.217 0.397 rad
0.3137 0.6410 0.9992 6.815 15.955 1.013 0.620 0.030 0.209 0.397 rad
0.3382 0.6907 0.9997 6.784 15.805 0.893 0.620 0.015 0.203 0.397 rad
0.3628 0.7346 0.9999 6.754 15.655 0.773 0.619 0.008 0.199 0.397 rad
0.3878 0.7732 1.0000 6.724 15.505 0.652 0.619 0.004 0.195 0.397 rad
0.4131 0.8070 1.0001 6.695 15.354 0.531 0.619 0.002 0.193 0.397 rad
0.4390 0.8365 1.0001 6.666 15.204 0.409 0.618 0.001 0.192 0.397 rad
0.4653 0.8620 1.0001 6.637 15.054 0.287 0.618 0.001 0.191 0.397 rad
0.4922 0.8842 1.0001 6.609 14.904 0.165 0.618 0.000 0.191 0.397 rad
0.5197 0.9032 1.0000 6.580 14.753 0.044 0.617 0.000 0.193 0.397 rad
0.5478 0.9196 1.0000 6.551 14.603 −0.077 0.617 0.000 0.196 0.397 rad

(Continued)
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(Continued )

r/Rʘ Mr/Mʘ Lr/Lʘ log T
K

log P
dyne cm�2

log ρ

g cm�3
μ

εnucl
erg

g�1 s�1
dT/dr

K cm�1
(dT/dr)ad
K cm�1 equil

0.5764 0.9337 1.0000 6.521 14.453 −0.198 0.617 0.000 0.202 0.397 rad
0.6055 0.9456 1.0000 6.490 14.303 −0.317 0.617 0.000 0.212 0.397 rad
0.6349 0.9558 1.0000 6.456 14.152 −0.435 0.616 0.000 0.231 0.397 rad
0.6645 0.9644 1.0000 6.419 14.002 −0.549 0.615 0.000 0.269 0.396 rad
0.6939 0.9715 1.0000 6.376 13.852 −0.658 0.611 0.000 0.320 0.396 rad
0.7221 0.9775 1.0000 6.321 13.703 −0.755 0.607 0.000 0.396 0.396 conv
0.7490 0.9824 1.0000 6.262 13.553 −0.845 0.607 0.000 0.396 0.396 conv
0.7739 0.9863 1.0000 6.202 13.403 −0.935 0.608 0.000 0.396 0.396 conv
0.7970 0.9895 1.0000 6.143 13.253 −1.026 0.609 0.000 0.396 0.396 conv
0.8181 0.9920 1.0000 6.083 13.103 −1.116 0.609 0.000 0.396 0.396 conv
0.8550 0.9955 1.0000 5.964 12.803 −1.296 0.611 0.000 0.396 0.396 conv
0.8851 0.9975 1.0000 5.846 12.502 −1.476 0.613 0.000 0.395 0.395 conv
0.9094 0.9986 1.0000 5.727 12.202 −1.656 0.615 0.000 0.394 0.394 conv
0.9284 0.9993 1.0000 5.611 11.908 −1.833 0.618 0.000 0.392 0.392 conv
0.9436 0.9996 1.0000 5.494 11.608 −2.013 0.622 0.000 0.389 0.389 conv
0.9605 0.9999 1.0000 5.321 11.158 −2.284 0.630 0.000 0.381 0.381 conv
0.9813 1.0000 1.0000 4.964 10.158 −2.904 0.664 0.000 0.342 0.342 conv
0.9904 1.0000 1.0000 4.637 9.158 −3.542 0.720 0.000 0.276 0.276 conv
0.9972 1.0000 1.0000 4.258 7.158 −5.054 0.924 0.000 0.136 0.133 conv
0.9998 1.0000 1.0000 3.915 5.158 −6.581 1.247 0.000 0.578 0.249 conv
1.0000 1.0000 1.0000 3.705 4.483 −7.041 1.259 0.000 0.044 0.387 rad

Data are from: http://www.ap.stmarys.ca/~guenther/evolution/ssmyz47_0200.txt.
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Appendix D

Main Sequence from ZAMS to TAMS

column 1 : Mi in Mʘ

columns 2 and 8 : log (L/Lʘ) at ZAMS
columns 3 and 9 : log (Teff) at ZAMS in K
columns 4 and 10 : log (t) at TAMS in yrs
columns 5 and 11 : M(t) at TAMS in Mʘ

columns 6 and 12 : log (L/Lʘ) at TAMS
columns 7 and 13 : log (Teff) at TAMS

Data from: https://obswww.unige.ch/Recherche/evol/tables_grids2011/Z002/
https://obswww.unige.ch/Recherche/evol/tables_grids2011/Z014/

Based on:
Ekstrom, S., Georgy, C., and Eggenberger, P., et al 2012, A&A, 537, 146
Georgy, C.,, Ekstrom, S., and Eggenberger, P., et al 2013, A&A, 558, 103
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Appendix E

Acronyms

AAVSO American Association of Variable Star Observers
AGB Asymptotic Giant Branch
BC Bolometric Correction
BH Black Hole
BSG Blue Super Giant
CD Complete Degeneracy
CMD Color−Magnitude Diagram
CSPN Central Star of Planetary Nebula
EoS Equation of State
GRB Gamma-Ray Burster
HB Horizontal Branch
HBB Hot Bottom Burning
HD-limit Humphreys−Davidson limit
HE Hydrostatic Equilibrium
HRD Hertzsprung−Russell Diagram
IMF Initial Mass Function
ISM Interstellar Medium
ISZ Intershell Zone
KD Kippenhahn Diagram
LBV Luminous Blue Variable
LMC Large Magellanic Cloud
MESA Modules for Experiments in Stellar Astrophysics
MS Main Sequence
NRP Non-Radial Pulsations
NS Neutron Star
PD Partial Degeneracy
PMS Pre-Main Sequence
PN Planetary Nebulae
RD Relativistic Degeneracy
RE Radiative Equilibrium
RGB Red Giant Branch
RL Roche Lobe
RSG Red Super Giant
SC-limit Schönberg−Chandrasekhar limit
SMC Small Magellanic Cloud
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SN Super Nova
TAMS Terminal Age Main Sequence
TE Thermal Equilibrium
TP-AGB Thermal Pulsing Asymptotic Giant Branch
YSG Yellow Super Giant
VT Virial Theorem
WC C-rich Wolf–Rayet Star
WD White Dwarf
WN N-rich Wolf–Rayet Star
WO O-rich Wolf–Rayet Star
WR Wolf−Rayet Star
ZAMS Zero-Age Main Sequence
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