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Preface

These notes were written as I taught the junior/senior undergraduate
course on stars at Michigan State University in the autumn semesters of
2012, 2014, and 2016, and were finally put into manuscript form, with
additional figures and exercises, during the spring and summer of 2018.
The motivation for assembling the notes was to make a self-contained
package that could be inexpensively distributed to students instead of a
textbook.

In addition to deriving a basic physical description of how stars work,
a secondary goal of the course is to train students to make simple physi-
cal models and order-of-magnitude estimates. This is a crucial skill that is
not incorporated enough into the typical undergraduate physics courses.
In keeping with this goal, many of the exercises ask the students to
make estimates or to employ simple models, such as constant density
throughout the star, rather than to perform elaborate calculations. There
are some exercises in the text that must be solved numerically, and the
course does include a group numerical project.

The text layout uses the tufte-book LATEX class1: the main 1 https://tufte-latex.github.io/
tufte-latex/features are a large outer margin in which the students can take notes

and the tight integration of text, figures, and sidenotes. Exercises are
embedded throughout the text. The exercises range from comprehension
checks to longer, more challenging problems. This layout is meant to
encourage students to actively work through the notes, and it will be
interesting to see if that in fact occurs. Because the exercises are spread
throughout the text, there is a “List of Exercises” in the front. I’ve also
added boxes containing more advanced material that I felt students
should be exposed to, but were not essential to the main development of
the course.

One evening I tried to liven up the chapter titles. I noticed that the
first two chapters had titles that were also titles for pop songs. I then de-
cided to find song titles that would fit for the remaining chapters. When
selecting titles, I imposed a rule that they all could plausibly go together
on a playlist. This was challenging since the chapters originally had titles
such as “The equation of state” or “The radiative opacity”. The credits for
the chapter titles, in order, go to Muse, Queen/David Bowie, Greta van
Fleet, Dio, Deep Purple, David Bowie, and the Traveling Wilburys.

Please be advised that these notes are under active devel-
opment; to refer to a specific version, use the eight-character stamp
labeled “git version” on the copyright page.

https://tufte-latex.github.io/tufte-latex/
https://tufte-latex.github.io/tufte-latex/
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1
Starlight

1.1 Introduction: Our Sun

Let’s start by considering the star we know best: the Sun. We’ll denote
the Sun with the symbol⊙. From the orbits of the planets we can deduce
the mass of the sun from Kepler’s laws: Astronomy in the US uses the CGS system

of units, whereas physics tends to use
MKS. In these notes I follow the lead of
undergraduate physics texts and also use
MKS.

M⊙ = 1.99× 1030 kg.

This is roughly 106 times the mass of the Earth, and is 1 000 more mas-
sive than Jupiter. Radar ranging of the solar system, combined with
orbital periods, gives us the mean Earth-Sun distance, known as an as-
tronomical unit:

1 AU = 1.5× 1011 m.

The sun subtends an angle of about 0.5◦ across its diameter. Knowing the
Earth-Sun distance and the angular size of the sun then tells us its radius:

R⊙ = 6.96× 108 m.

From measurements of the radiant flux and the distance, we then can
infer the sun’s radiant power, or luminosity:

L⊙ = 3.86× 1026 W.

E X E R C I S E 1 . 1— Suppose we wish to replace the Simon power plant with a
grid of solar panels. Under ideal conditions (direct light and 100% efficient
panels), how many square meters of solar panels are needed to generate 70MW
(70× 106 W)?

When we observe a star, we collect only a small fraction of this power:
if a telescope (or our eye) has a collecting areaA and is a distance d from
the star, then it intercepts a fractionA/(4πd2) of the star’s light. We call
F = L/(4πd2) the flux. The units of flux are Wm−2.
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E X E R C I S E 1 . 2— What would the flux be from a star with L = 0.1 L⊙ at a
distance of 10 pc? Recall that a parsec (pc) is defined by the relation

1 AU
1 pc

= 1′′ =
1

206 265
.

1.2 The nature of light

k
λ

E

B

Figure 1.1: Schematic of the electric
field (blue arrows) and magnetic field
(red arrows) for a wave traveling along
direction kkk with wavelength λ.

Charges feel an electric force. When we detect light, what happens at
the atomic level is that the charges in our detector (antenna, CCD, eye)
feel an electric (and magnetic) force that oscillates with frequency ν.
Imagine setting up a grid of detectors and measure the electric force
per unit charge at each point in space and at each instant of time. We
call this force per charge the electric field EEE(xxx, t). If a ray of light was
beamed through this grid, we would notice a sinusoidal pattern traveling
at speed1 c = 299 792 458m/s with a wavelength λ = c/ν. The amplitude1 This velocity is exact; the meter is

defined in terms of the speed of light. of the light at our detector is proportional to |EEE|2 + |BBB|2.
Suppose we put a filter in front of our detector that only accepted light

in a narrow range of wavelengths (λ, λ + Δλ). We would find that energy
is deposited into our detector in discrete quanta of magnitude hc/λ = hν.The symbol h = 6.63 × 10−34 J s denotes

Planck’s constant. It sets the scale
for quantum mechanics.

We call these quanta photons. The light emitted by our sun (or any
other source) consists of a huge number of photons distributed over a
wide range of wavelengths, known as a spectrum.

E X E R C I S E 1 . 3— The peak of the sun’s spectrum is at a wavelength of
approximately 500 nm. Estimate the number of photons from the sun striking
1m2 of Earth each second.

1.3 Intensity and specific flux

CCD

mask

ΔA

ΔΩ

Figure 1.2: Schematic of radiative inten-
sity

Take a detector (a CCD, an eye, a photographic emulsion) and place in
front of the detector a filter that only lets through light with wavelengths
in a range Δλ. Place a mask over the detector with a small pinhole of
area ΔA that restricts the light falling on the detector to fall in a narrow
cone of solid angle ΔΩ about the normal to the detector (see Fig. 1.2).
Then measure the energy ΔE incident on the detector in a time Δt. The
quantity

Iλ ≡
ΔE

Δt ΔA Δλ ΔΩ
(1.1)

is known as the intensity. It is the basic quantity describing radiation.
In situations in which the wavelength is small (relative to the system

in question), light propagates along rays. By a ray of light, we mean
the light emitted into a small cone of opening solid angle dΩ about a
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direction k̂kk. In the absence of any interactions with matter, the intensity
is conserved along a ray if both source and receiver are stationary with
respect to one another (Exercise 1.4).

Box 1.1 Solid angles

Imagine that your are at the center of a great sphere of radius
R, and you shine a light that emits rays into some solid angle.
Orient your coordinates so that the rays are traveling along the
z-axis. The light will illuminate an area

A = R2
∫ 2π

0

∫ θ

0
sin θ dθ dφ.

Here θ is the opening half-angle of the cone. The solid angle into
which the light is emitted is Ω = A/R2. Astronomers often ex-
press the integral by changing variables to μ = cos θ, so that the
solid angle is

ΔΩ =

∫ 2π

0

∫ 1

1−Δμ
dμ dφ.

If we integrate over all angles (0 ≤ θ ≤ π, or−1 ≤ μ ≤ 1, then we
get the area of a sphere, A = 4πR2.

E X E R C I S E 1 . 4— Your friend flashes a light: in a time Δt it emits a energy
ΔEemit in a waveband Δλ. The opening through which the light passes has area
ΔAemit, and the light goes into a cone of opening solid angle ΔΩemit (see Fig. 1.3).
Your friend therefore calculates her intensity as

Iλ,emit =
ΔEemit

Δt ΔAemit Δλ ΔΩemit
.

You stand a distance d (d2 ≫ ΔAemit, ΔAobs) from your friend with a camera. The
aperture on your camera has area ΔAobs.. Show that the intensity you receive is
Iλ,obs = Iλ,emit.

1. Calculate the incident energy that falls on your camera aperture ΔEobs.

2. What solid angle ΔΩobs is subtended by the rays entering the aperture?

3. Now compute your intensity

Iλ,obs =
ΔEobs

Δt ΔAobs Δλ ΔΩobs
.

and show that this is the same as what your friend calculated.

To compute the specific flux Fλ, we multiply the intensity by cos θ,
where θ is the angle between the ray and the normal of our area2 and 2 this gives the projected area
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What your friend sees

ΔAobs/d2

ΔΩemit

What you see

ΔAemit/d2

ΔAobs

ΔAemit

ΔΩemit

d

Figure 1.3: Schematic for exercise 1.4.

integrate over angle:

Fλ =

∫
Iλ cos θ sin θ dθ dφ. (1.2)

The specific flux has dimensions

[Fλ] ∼
energy

time · area · wavelength
.

1.4 Thermal emission

Imagine we had a material that emits and absorbs equally well at all
wavelengths. We then made from this material a hollow box, and we
heated this box to a temperature T. The hot atoms in the walls of the
box would emit (and absorb) photons bouncing around in the cavity
in this box, until the photons were in thermal equilibrium3 with the3 Meaning that the radiation field is on

average neither gaining or losing energy
from the walls of the box

walls of the box. If we then drilled a small hole in the side of the box,
some photons would escape (but not so many as to disturb the thermal
equilibrium). The intensity emerging from such a box is known as the
Planck spectrum:

Iλ(Planck) ≡ Bλ(T) =
2hc2

λ5

[
exp

(
hc

λkBT

)
− 1
]−1

. (1.3)

Here kB = 1.381 × 10−23 JK−1 denotes Boltzmann’s constant.
This spectrum is also known as a blackbody spectrum, because it is
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emitted from a material that absorbs (and therefore emits) equally well
at all wavelengths. The emission is peaked at a wavelength λpk ∼ hc/kBT.
Fig. 1.4 displays Planck’s spectra for various temperatures. Note that Bλ

increases at all wavelengths as the temperature increases.

102 103 104

 [nm]

103

104

105

 [
]

3000 K

4000 K

5000 K
6000 K

7000 K

Figure 1.4: Thermal spectra for tempera-
tures ranging from 3000K to 7000K.

E X E R C I S E 1 . 5— Show that the peak of the thermal spectrum, temperature
T, occurs (i.e., where Bλ is maximum) at a wavelength

λpk = 290 nm
(

10 000K
T

)
.

This result is known as Wien’s law. Check this: what is the peak wavelength of
the sun’s emission? What is the peak wavelength for the cosmic microwave
background (TCMB = 2.73K)?

The Planck spectrum, expressed in terms of frequency, is

Bν(T) =
2hν3

c2

[
exp

(
hν
kBT

)
− 1
]−1

. (1.4)

E X E R C I S E 1 . 6— What is the frequency corresponding to λpk in
Exercise 1.5? Compute the frequency νpk at which Bν is maximum. Is νpk the
same as the frequency corresponding to λpk?

Suppose we try to compute the specific flux using Eq. (1.2). Since Bλ

doesn’t depend on angle, the integral is easy:

Fλ = Bλ

∫ 2π

0

∫ π

0
cos θ sin θ dθ dφ = 0.

E X E R C I S E 1 . 7— Explain, without using mathematical expressions, why
there is no net flux for thermal emission.

Although the net flux is zero, if we just want the radiation escaping
from our cavity, we only want to integrate over the angles 0 ≤ θ ≤ π/2.
If we do this, then our outward-going specific flux is

Fλ(outward) = Bλ

∫ 2π

0

∫ π/2

0
cos θ sin θ dθ dφ = πBλ. (1.5)

To find the total power emitted per area for thermal radiation, we need to
integrate Fλ over wavelength:

F =

∫ ∞

0
Fλ(outward) dλ =

∫ ∞

0

2πhc2

λ5
dλ

exp (hc/λkBT)− 1
. (1.6)

By changing variables to x = hc/λkBT, we can write this integral as The integral over x can be converted into
a Riemann zeta function; for further in-
formation, consult a text on mathematical
methods in physics.
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F =
2πk4B
h2c

T4 ×
∫ ∞

0

x3

ex − 1
dx︸ ︷︷ ︸

=π4/15

=

[
2π5

15
k4B
h2c

]
T4.

The quantity in [·] is called the Stefan-Boltzmann constant:

σSB = 5.7× 10−8 Wm−2 K−4;

The total energy radiated per second per area from a thermal emitter of
temperature T is thus σSBT4.

Real stars are not blackbodies! That being said, their spectra are
roughly thermal, so we can define an effective surface tempera-
ture

Teff =
[
F

σSB

]1/4
.

The total power output, or luminosity, of a star of radius R is thus

L = 4πR2σSBT4
eff.

For the sun, Teff = 5780K.

1.5 The radiation energy density

We introduced

Iλ ≡
dE

dt dA dλ dΩ
as the radiant energy dE crossing an area dA in a time dt, directed into a
solid angle dΩ, and carried by photons with wavelengths in a range dλ.
Notice that in time dt, these photons will fill a volume dV = cdt × dA.
Hence we can write the intensity as

Iλ = c
dE

dV dλ dΩ
.

Using this expressions, we define the radiant energy density per wave-
length as

Uλ ≡
dE

dV dλ
=

1
c

∫
Iλ dΩ. (1.7)

If the radiation is thermal, that is, if Iλ = Bλ, then

Uλ =
Bλ

c

∫ 2π

0

∫ π

0
sin θ dθ dφ =

4π
c
Bλ,

and the total radiant energy density is

U =

∫ ∞

0
Uλ dλ =

4
c

π
∫ ∞

0
Bλ dλ =

[
4σSB
c

]
T4.
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In this expression,

a =

[
4σSB
c

]
= 7.566× 10−16 Jm−3 K−4.

and we have used equations (1.5) and (1.6). The energy density of ther-
mal radiation is U = aT4.

It is common to denote the average (over angle) intensity as

Jλ =
1
4π

∫
Iλ dΩ; (1.8)

the specific energy density is thus

Uλ =
4π
c
Jλ.

Box 1.2 Momentum transport and radiation pressure

In addition to transporting energy, photon also carry momen-
tum. You will learn in your quantum mechanics course that the
momentum of a photon of energy hν traveling along direction k̂kk is

ppp =
hν
c
k̂kk =

h
λ
k̂kk.

Here ν and λ = c/ν are the frequency and wavelength of the pho-
ton. Hence the momentum carried by photons of energy Eν along
direction k̂kk is E/c. Since Iν is the amount of energy carried by
photons per area per time along the direction k̂kk, the momentum
transported by those photons per area per time along direction k̂kk
must be (Iν/c)k̂kk.

To relate this momentum transport to the radiation
pressure, suppose we have a sheet of absorbing material with
a normal n̂nn being impinged by a ray of photon traveling along k̂kk.
As the photons are absorbed, they transfer momentum (along
direction n̂nn) of (Eν/c)n̂nn · k̂kk to the matter. The projected area of the
ray on the matter is dA n̂nn · k̂kk. The rate of momentum transfer along
n̂nn per area per frequency is therefore

Pν =
1
c

∫
Iν
(
n̂nn · k̂kk

)
︸ ︷︷ ︸
proj. area

(
n̂nn · k̂kk

)
︸ ︷︷ ︸

comp. of ppp along n̂nn

dΩ

=
1
c

∫ 2φ

0

∫ 1

−1
Iνμ2 dμ dφ. (1.9)

A change in momentum per time is a force; hence equation (1.9)
represents the force per area, or pressure, exerted by photons
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Box 1.2 continued

with frequencies in [ν, ν + dν]. The two factors of μ = cos θ ac-
count for the projected area and the component of momentum
along the normal to the surface n̂nn.

If the radiation is thermal, so that Iν = Bν and is independent
of angle, then

Pν =
4π
3c

Bν.

We can integrate Pν over frequency to get the total radiation
pressure,

Prad =
4π
3c

∫ ∞

0
Bν dν =

4
3c

σSBT4 =
1
3
aT4. (1.10)

Note that the pressure is 1/3 of the energy density for thermal
radiation. This is in general true for a gas of relativistic particles
that have momentum proportional to energy.

1.6 Magnitudes

When observing a star, astronomers are collecting light over a range of
frequencies. To compare observations, astronomers typically pass the
light through standard filters and measure the transmitted flux. The flux
in a given band is then

Fband =

∫
Fλ T(λ) dλ.

Here T(λ) is the transmission function for that filter and specifies
how much light is let through as a function of wavelength. The trans-
mission functions for some common UV/optical/IR filters are shown in
Figure 1.5. For example, the V-band filter is centered at λ = 551 nm and
has a width at half-max of 88 nm.

E X E R C I S E 1 . 8— Suppose you wished to observe a sun-like star, and you
wanted to observe wavelengths near the peak of the spectrum. Which filter
would you choose, and why? What about for a star with a surface effective
temperature Teff = 8 000K?

When making observations, it is common to compare the fluxes in a
particular band between two stars. Optical astronomers therefore define
the apparent magnitude asNB. Throughout this text, log ≡ lg

denotes log10 and ln denotes loge.

m(A)−m(B) = −2.5 log
[
F(A)
F(B)

]
. (1.11)

Here F(A) and F(B) are two different measurements of flux (from two
different stars, for example) in a particular waveband. It is common to
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Figure 1.5: Some standard UV/optical/IR
filters. The T(λ) are normalized so that
max(T) = 1.

300 400 500 600 700 800 900

/
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1.0
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U B V R I

use the label of the waveband in place ofm. Thus, for example, when an
astronomer says, “The V-magnitude is 16.6”, what she means is that the
apparent magnitude measured with a standard V-filter is 16.6.

As an application of this, imagine comparing the flux from a star,
at a distance d, with that from an imaginary identical star located at a
distance of 10 pc. We’ll call the magnitude of this imaginary star at 10 pc
the absolute magnitude M and define the distance modulus as

DM ≡ m−M = m(d)−m(10 pc)

= −2.5 log
[

L/4πd2

L/4π(10 pc)2

]
= −2.5 log

[(
10 pc
d

)2
]

= 5 log
(

d
pc

)
− 5. (1.12)

Since the absolute magnitude is a measure of the flux from the star if it
were at a specified distance, the absolute magnitude is a proxy for the
luminositymeasured in a given filter.

We can also compare the flux from two different filters
for the same star. The difference in magnitudes for two different
filters defines a color index, which is a measure of the star’s spectrum
(and, roughly, its temperature). For example,

B− V ≡ mB −mV = −2.5 log

[∫
B−band Fλ dλ∫
V−band Fλ dλ

]
measures the ratio of fluxes in the B and V bands for a particular star.
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E X E R C I S E 1 . 9— How would the B− V index of the sun compare to that of
a hotter star, e.g., one with Teff = 8 000K?



2
Under Pressure

2.1 Hydrostatic equilibrium

Consider a fluid at rest in a gravitational field. By a fluid, we mean
that the pressure is isotropic1 and directed perpendicular to any given 1 Meaning the pressure is the same in all

directions.surface. Let’s now imagine a small fluid element, as depicted in Fig. 2.1.
The gravitational acceleration is in the direction−r̂rr; the fluid element
has thickness Δr along the direction of the gravitational force and cross-
sectional area ΔA.

ΔA

Δr

ΔA P(r+dr)

ΔA P(r)

Δm g = (ρ ΔA Δr) g

Figure 2.1: A fluid element in hydrostatic
equilibrium.

Since our fluid is at rest, the forces must balance. This implies that the
pressure only depends on r, so that there is no net sideways force on our
fluid element. If the fluid has a density (mass per unit volume) ρ, then
the mass of the fluid element is ρΔAΔr, and the gravitational force on the
fluid element is−(ρΔAΔr)g(r)̂rrr. This gravitational force is balanced by
the difference in pressure P(r) between the upper and lower faces of the
element.

The pressure force on the upper face is−ΔA× P(r+ Δr)̂rrr; on the lower
face, ΔA × P(r)̂rrr. For the element to be in hydrostatic equilibrium the
forces along r̂rrmust balance,

ΔA [−P(r+ Δr) + P(r)− Δrρg(r)] = 0.

Dividing by Δr and taking the limit Δr → 0 gives us the equation of
hydrostatic equilibrium:

dP
dr

= −ρg(r). (2.1)

This is a differential equation describing how the pressure varies in
the star. We don’t have enough information yet to solve it, because we
haven’t specified either the gravity g(r) or the density ρ.

Constant gravity, incompressible fluid

Let’s try a simple case: an incompressible (density is fixed) fluid in con-
stant gravity. This isn’t a good approximation for a star, but it is a good
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approximation to Earth’s oceans: the density of sea water changes by less
than 5% between the surface and ocean floor.

E X E R C I S E 2 . 1— Water is nearly incompressible and has a density
ρ = 103 kgm−3. Solve eq. (2.1) to get an equation for the pressure as a function
of depth in the ocean. How deep would you need to dive for the pressure to
increase by 1 atm = 1.013× 105 Pa? Does this agree with your experience?

The SI unit of pressure is the Pascal:
1 Pa = 1Nm−2. The mean pressure at
terrestrial sea level is 1 atm = 1.013 ×
105 Pa. Other common units of pressure
are the bar (1 bar = 105 Pa) and the Torr
(760 Torr = 1 atm). Let’s look at this in a bit more detail. Suppose we take our fluid layer

to be thin, so that g is approximately constant. Then we can write equa-
tion (2.7) as ∫ P(z)

P0

dP = −g
∫ z

0
ρ dz.

Now consider a cylinder of cross-section ΔA that extends from 0 to z. The
mass of that cylinder is

m(z) = ΔA×
∫ z

0
ρ dz.

and its weight ism(z)g.

P(z) ΔA

P(0) ΔA

mg = g ΔA ∫ρ(z) dz’

Figure 2.2: The mass of a column of fluid.

The difference in pressure between the bottom and top of the cylinder
is just

P0 − P(z) = gm(z)/ΔA,

that is, the weight per unit area of our column. Let’s apply this to our
atmosphere: if we take the top of our column to infinity and the pressure
at the top to zero, then the pressure at the bottom (sea level) is just the
weight of a column of atmosphere with a cross-sectional area of 1m2.

The isothermal ideal gas

In general the density ρ depends on the pressure P and temperature T via
an equation of state. Let’s relax our condition of constant density,
but keep gravity and temperature constant and assume the fluid is an
ideal gas2. For N particles in a volume V at pressure and temperature P

2 By ideal gas, we mean that the particles
are non-interacting; as a result, the energy
of the gas only depends on the kinetic
energy of the particles and in particular is
independent of the volume.

and T, the ideal gas equation of state is

PV = NkBT. (2.2)

In chemistry, it is convenient to count the number of particles by moles.
One mole of a gas has NA = 6.022 × 1023 particles3, and the number of3 The constant NA is known as Avo-

gadro’s number. moles in a sample is n = N/NA. If we divide and multiply equation (2.2)
by NA, then our ideal gas equation becomes

PV = n [NAkB]T ≡ nRT,

where R = NAkB = 8.314 JK−1 mol−1 is the gas constant. This is perhaps
the most familiar form of the ideal gas law—but it is not in a form useful
to astronomers.
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We astronomers don’t care about little beakers of fluid—we have
whole stars to model! Put another way, volume isn’t a useful quantity
since we are working in the middle of a large mass of fluid. Instead, de-
fine the number density as the number of particles per volume, N/V.
The mass of each particle isA× mu, wheremu has a mass of one atomic
mass unit.4 Hence the mass per volume of our fluid is 4 1 u = 1.661 × 10−27 kg is 1/12 of

the mass of 1mol of 12C atoms in their
ground stateρ = Amu ×

N
V
.

We call ρ the mass density, or density for short. This quantity appears
in equation (2.1).

Starting with eq. (2.2), dividing by V and then multiplying and divid-
ing byAmu gives

P =

(
AmuN

V

)
kB
Amu

T ≡ ρ
kB
Amu

T. (2.3)

Equation (2.3) is the form most convenient for fluid dynamics, because it
is in terms of an intrinsic fluid property—the density ρ—rather than in
terms of the volume.

E X E R C I S E 2 . 2— Let’s take a stab at modeling Earth’s atmosphere with
equation (2.1). Take Earth’s atmosphere to be dry (no water, so we don’t have to
worry about condensation) and model it as an ideal gas. Also assume the
temperature doesn’t change with altitude. The average molecular mass of dry air
isA = 28.97. Integrate eq. (2.1) from z = 0, where P(z = 0) = P0, to a height z.
Show that the solution is P(z) = P0e−z/HP , where HP is the pressure scale
height—the height over which the pressure decreases by a factor 1/e. Evaluate
HP for dry air at a temperature of 288K (15 ◦C). Is the answer reasonable, based
on your experience? Is the assumption of an isothermal atmosphere a good one?
Explain why or why not.

The massA of an atom or nuclei, when expressed in atomic mass We denote an atomic isotope or nuclide
as AEl, where A is the atomic number
(total number of neutrons and protons
in the nucleus) and El is the element
abbreviation (corresponds to number of
protons in the nucleus).

units, is approximately equal to the atomic number A (Table 2.1). The
electron mass isme = 0.0005485 u. Unless we need high accuracy, we can
neglect the electron mass and take the mass of an atom or nuclide to be
A×mu.

Table 2.1: Selected atomic masses
nuclide A A (|A − A|/A) (%)
n 1 1.00865 0.865
1H 1 1.00783 0.783
4He 4 4.00260 0.065
12C 12 12.00000 0.000
16O 16 15.99491 0.032
28Si 28 27.97693 0.082
56Fe 56 55.93494 0.116

2.2 Mass density and the mean molecular weight

For a mixture with different types of particles, it is useful to introduce
the mean molecular weight μ. This is computed by taking the total
mass of a sample of particles and dividing by the total number of parti-
cles, so that

μ =
ρ

muntot
=

1
mu

∑
imi ni∑
i ni

. (2.4)

Some examples may make this clearer. Suppose we star with molecular
hydrogen (H2). The mass of a sample of nmolecules is≈ 2mu × n,
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since each molecule has 2 nucleons. The total number of particles in our
sample is n, so

μ(H2) =
2mu × n
nmu

= 2.

Now suppose we raise the temperature and dissociate those molecules
into individual atoms. For n atoms, the mass is 1 u × n, so μ = 1. It be-
comes a little trickier when the atoms are ionized. Let’s raise the temper-
ature further, so that the gas ionizes into electrons and nuclei (protons).
The electrons contribute negligibly to the mass, so if we have n atoms, the
mass is still 1 u × n. The total number of particles has doubled, however,
since for each atom there are now 2 particles (electron and nucleus). The
mean molecular weight is therefore

μ(1H+ e−) =
nmu

2nmu
=

1
2
.

In terms of the mean molecular weight, the ideal gas EOS becomes

P = ρ
(

kB
μmu

)
T. (2.5)

E X E R C I S E 2 . 3— What is μ for a fully ionized 4He gas (A = 4, with 2
electrons per atom)?

2.3 The mass distribution

Now let’s look at how gravity varies within a star. Suppose we are at a dis-
tance r from the stellar center. Newton discovered that the gravitational
force inside a spherical shell vanished. This means that the net gravi-
tational force arising from portions of the star exterior to our position
vanishes. The gravitational force depends only on the amount of mass
interior to our position. This mass is

m(r) = 4π
∫ r

0
ρ(r)r2 dr, (2.6)

with ρ being the mass density.
Furthermore, the gravitational force from a spherically symmetric

mass is identical to that of a point particle of the same mass. Thus, the
gravitational force at a radius r from the center is simply

g(r) =
Gm(r)
r2

.

Using this expression for g, we can write eq. (2.1) as

dP
dr

= −ρ
Gm(r)
r2

. (2.7)
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E X E R C I S E 2 . 4— What happens tom(r) and g(r) at the center (r → 0)?
Before doing any calculation, see if you can argue that g(r) → 0 at the center. If
this is so, then what is dP/dr at the center? Assuming that ρ → ρc ≈ const. near
the center, integrate eq. (2.6) over a small radius Δr to getm(Δr) and hence
g(Δr). Show explicitly that g(Δr) → 0 as Δr → 0.

To recap, we now have two differential equations, (2.6) and (2.7), that
describe the structure of a star. These equations are for the pressure P(r)
and density ρ(r) in the star. We can’t solve these equations yet, however,
because we don’t have a relation between P and ρ. For example, the ideal
gas equation of state relates P and ρ via a temperature T, so we need at
least an equation for T(r). Before doing that, let’s see what we can learn
from just these two equations; to proceed, we shall assume a simple form
for ρ(r), such as a constant density, and see what we can infer.

E X E R C I S E 2 . 5— Let’s suppose that ρ is constant throughout the star. In
what follows, you should be able to express everything in terms of the star’s mass
M and radius R, along with physical constants such as G and kB.

1. First, find ρ in terms of the total massM and radius R.

2. Next, solve equation (2.6) to findm(r) in terms ofM and r/R.

3. Use this expression form(r) and your expression for ρ to integrate
equation (2.7) and to find the pressure at the center, Pc = P(r = 0).

4. Now that we have an expression for the central pressure in terms ofM and R,
let’s try to understand what it means. Use your result from parts 1 and 3, as
well as equation (2.5) to find the central temperature of the star, in terms of G,
M, R, and the mean molecular weight of the gas μ. Evaluate Tc forM = M⊙,
R = R⊙, and μ = 0.6. Do you get a reasonable result?

2.4 A closer look at hydrostatic equilibrium

What would happen if the star fell out of equilibrium? Suppose we could
turn off the pressure. If we did that, the star would implode. To un-
derstand how long this would take, let’s calculate the amount of time a
particle would need to free-fall from the surface to the center. We can
get this from Kepler’s law. Start with a circular orbit and deform it while
keeping the center at one focus, as shown in Fig. 2.3.

The limit of these increasingly eccentric orbits is a fall into the center.
The time is one-half of an orbital period, and the semi-major axis in this
limiting case is a = R/2:

τff =
T
2
=

π√
GM

(
R
2

)3/2

.

Notice that we have the combination
√
R3/M. Let’s convert this into an
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expression involving the mean density ρ̄:

τff =
(

3
32π

)1/2( 1
G

4πR3

3M

)1/2

=

(
3

32π

)1/2 1√
Gρ̄

. (2.8)

The time to collapse is proportional to 1/
√
Gρ̄ and depends on the

average density of the star. We call tdyn ≡ 1/
√
Gρ̄ the dynamical

timescale of the star.

R

Figure 2.3: Deformation of an orbit until
it becomes a fall to the center, denoted by
the yellow dot.

Let’s avoid a collapse by turning the pressure back on. If part of the
star is falling inward, the gas within the star will be compressed, the
pressure will rise, and hydrostatic equilibrium will be restored. How
quickly can the star respond? A change is pressure is communicated to
the rest of the star by sound waves, which travel at a speed (see Box 2.1)

cs =
(

γ
P
ρ

)1/2

=

(
γ
kBT
μmu

)1/2

. (2.9)

Here γ is the adiabatic index: for an ideal monatomic gas, γ = 5/3.
How long would it take for a sound wave to go a distance R? Using the
expression for the average temperature of a constant density sphere
(cf. eq. [2.23]), we find

τsc =
R
cs

= R
(

3R
GM

)1/2

=

(
3

2
√

π

)
1√
Gρ̄

.

Both the sound-crossing time, τsc, and the free-fall time, τff, are approx-
imately equal to the dynamical timescale 1/

√
Gρ̄. This is another way of

looking at hydrostatic equilibrium: the star is able to remain in balance
because the time for pressure disturbances to propagate, τsc, is compara-
ble to the time for large-scale motions of the fluid, τff.

Box 2.1The sound speed

Suppose we have a long tube filled with gas at pressure
P(x, t) = P0, density ρ(x, t) = ρ0, and velocity u(x, t) = U0 = 0.
We then tap on one end of the tube; this causes a disturbance to
propagate down the tube. Denote the cross-sectional area of the
tube by A, and consider the volume AΔx located between x and
x+ Δx; the mass in this small volume is ρA Δx.

As a result of the disturbance, the pressure in the tube becomes
P(x, t) = P0 + σP1(x, t). In this expression, σ is a bookkeeping
parameter that we’ll eventually set to unity. We will expand our
equations and keep only terms that are linear in σ. The fluid will
also acquire a velocity u(x, t) = σu1(x, t). This compresses or rari-
fies the gas: ρ(x, t) = ρ0 + σρ1(x, t). Because the pressure in the
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Box 2.1 continued

tube is no longer uniform, our small mass will accelerate:

ρA Δx
∂u
∂t

= A Δx (ρ0 + σρ1)
∂(0+ σu1)

∂t

≈ σ
[
A Δxρ0

∂u1
∂t

]
+O(σ2).

The corresponding force on our mass is

A [P(x)− P(x+ Δx)] ≈ −σA [P1(x+ Δx)− P1(x)] ;

equating this to the expression—to order σ—for the acceleration,
taking the limit Δx→ 0, and canceling common factors gives

∂u1
∂t

= − 1
ρ0

∂P1

∂x
. (2.10)

Because of the non-uniform velocity, the volume and hence den-
sity of our little mass will also change:

∂V
∂t

= A [u(x+ Δx)− u(x)] = σA Δx
[
u1(x+ Δx)− u1(x)

Δx

]
or

1
V
∂V
∂t

= σ
∂u1
∂x

. (2.11)

This change in volume is related to the change in pressure. We are
interested in fluctuations that are sufficiently quick that no heat
is transferred into or out of our mass. This is an adiabatic process,
for which PVγ = const.. Here γ is called the adiabatic index; for an
ideal gas, this is the ratio of specific heats, γ = CP/CV. (We shall
discuss adiabatic processes again more thoroughly in chapter 6.)

As the pressure changes adiabatically from P0 to σP1, the vol-
ume changes as

dV
V

= d lnV = −1
γ
d lnP.

Hence

∂ lnV
∂t

= −1
γ
∂ ln(P0 + σP1)

∂t
≈ − σ

γP0

∂ lnP1

∂t
= σ

∂u1
∂x

. (2.12)

The last equality comes from equation (2.11).
We therefore have two equations for the perturbed velocity to

order σ:

∂u1
∂t

= − 1
ρ0

∂P1

∂x
∂u1
∂x

= − 1
γP0

∂P1

∂t
;
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Box 2.1 continued

differentiating the top equation with respect to x and the bottom
with respect to t, and equating the expressions for ∂2u1/∂t∂x
gives

∂2P1

∂t2
=

(
γP0

ρ0

)
∂2P1

∂x2
. (2.13)

This is the equation for a wave: the solutions are P1(x, t) = P1(x ±
cst), where the sound speed is cs =

√
γP/ρ.

For the sun, ρ̄ = 1400 kgm−3 = 1.4 g cm−3; this is just a bit denser
than you. The dynamical timescale for the sun is about one hour.

E X E R C I S E 2 . 6— The central temperature Tc is a measure of the average
kinetic energy of a particle at the stellar center. Use the central temperature that
you found for the constant density star in exercise 2.5 and estimate the time that
such a particle would take to cross a distance R. How does this time compare to
the orbital period of a satellite orbiting just outside the stellar surface?

2.5 Virial Equilibrium

With the assumption that ρ = constant, we showed (exercise 2.5) that
the central temperature and pressure depended on the total massM,
total radius R, and the gravitational constant G as

Tc =
1
2

{
GM
R

μmu

kB

}
(2.14)

Pc =
3
8π

{
GM2

R4

}
. (2.15)

Our task now is to show that the scalings of Tc and Pc withM and R—the
quantities in { }—hold in general for an a star in mechanical equilibrium.

To show this, we are going to employ a form of the virial theorem. Sup-
pose we have a collection of N particles, all moving about and exerting
forces on one another. If we let this system settle down into some kind
of bound configuration, then we can add up the kinetic and potential
energies of all the particles to get a total kinetic energy K and a total po-
tential energy Ω. The virial theorem asserts that K is proportional to, and
comparable in magnitude to, Ω; indeed if the potential between a pair of
particles scales as r−1, r being the distance between the particles, then
K = −Ω/2, as we’ll now show.

Let us take the position and momentum of particle i to be rrri =

(xi, yi, zi) and pppi = (px, py, pz). Then the total kinetic energy is

K =
1
2

N∑
i=1

pppi ·
drrri
dt
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=
1
2

[
d
dt

(
N∑
i=1

pppi · rrri

)
−

N∑
i=1

rrri ·
dpppi
dt

]
. (2.16)

The quantity G =
∑

i pppi · rrri is called the “virial” of the system. By express-
ing the force FFFi = dpppi/dt on particle i as the gradient of a potential Ω,
FFFi = −∇iΩ, we can rewrite eq. (2.16) as

2K =
dG
dt

+

N∑
i=1

rrri · ∇iΩ. (2.17)

So far, we’ve just shuffled and relabeled terms. The crucial step comes in
taking the time-average of the kinetic energy, which we’ll denote by ⟨ ⟩:

⟨f ⟩ ≡ lim
τ→∞

1
τ

∫ τ

0
f(t) dt.

Applying this to equation (2.17) gives

2⟨K ⟩ =

⟨
dG
dt

⟩
+

⟨
N∑
i=1

rrri · ∇iΩ

⟩

= lim
τ→∞

[
1
τ

∫ τ

0

dG
dt

dt
]
+

⟨
N∑
i=1

rrri · ∇iΩ

⟩

= lim
τ→∞

[
G(τ)− G(0)

τ

]
︸ ︷︷ ︸

I

+

⟨
N∑
i=1

rrri · ∇iΩ

⟩
︸ ︷︷ ︸

II

Now, if the system is bound and in mechanical equilibrium, then the
positions and momenta of all particles are finite: none of the particles
can escape, and the system doesn’t violently collapse so that momenta
are diverging. Hence both G(τ) and G(0) are finite numbers, so as τ →
∞, term I vanishes.

As for term II, we can show that if the potential between pairs of
particles depends on 1/r, where r is the distance between those particles,
then term II is just−Ω (see Box 2.2). For now, I’ll give a rough argument
of why this is so: in a spherically symmetric system, then the potential
just depends on the distance r from the origin; and since

r
∂

∂r

(
1
r

)
= −1

r
,

the last term is just−Ω and our equation is

2⟨K ⟩+ ⟨Ω⟩ = 0. (2.18)

This is the virial theorem, applied to a r−1 potential.
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Box 2.2 Working with vectors

In this sidebar we’ll show that the second term in equa-
tion (2.17) is

N∑
i=1

rrri · ∇iΩ = −Ω. (2.19)

First, we need an expression for Ω. Suppose we pick a pair of
particles, i and k. The potential between this pair is

−Gmimk

rik
= − Gmimk√

(rrri − rrrk)2
.

Our total potential consists of a sum over the potentials between
all N(N− 1)/2 unique pairs of particles,

Ω = − Gm1m2√
(rrr1 − rrr2)2

− . . .− Gmimk√
(rrri − rrrk)2

− . . .

When we take the derivative in eq. (2.19), we apply rrri · ∇i to each
term in the potential. For the term with the pair i, k, this will give
N∑
i=1

rrri · ∇i

(
− Gmimk√

(rrri − rrrk)2

)

= −Gmimk

[
rrri · ∇i

(
1√

(rrri − rrrk)2

)
+ rrrk · ∇k

(
1√

(rrri − rrrk)2

)]
.

Since many of you aren’t yet comfortable with vector expressions,
we’ll do this in detail for the x-component:[

rrri · ∇i

(
1√

(rrri − rrrk)2

)
+ rrrk · ∇k

(
1√

(rrri − rrrk)2

)]
x

= xi
∂

∂xi

(
1√

(rrri − rrrk)2

)
+ xk

∂

∂xk

(
1√

(rrri − rrrk)2

)

= − xi(xi − xk)
(rrri − rrrk)3/2

+
xk(xi − xk)
(rrri − rrrk)3/2

= − (xi − xk)2

(rrri − rrrk)3/2

The y- and z-components are similar, giving
N∑
i=1

rrri · ∇i

(
− Gmimk√

(rrri − rrrk)2

)
= Gmimk

(rrri − rrrk)2

(rrri − rrrk)3/2

= −

(
− Gmimk√

(rrri − rrrk)2

)
.

This can be done for every term in the sum, with the final result
that

N∑
i=1

rrri · ∇iΩ = −Ω.
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For an ideal monatomic gas in thermal equilibrium, the mean kinetic
energy of a particle in the gas is K = (3/2)kBT, and we therefore may
define an average temperature

2K = 3NkBT̄ = −Ω. (2.20)

The total number of particles is N = M/(μmu), and so

T̄ = − 1
3

Ω
μmu

MkB
. (2.21)

The total potential of the system depends on only three parameters: G,
M, and R. The only way to make a quantity having dimensions of energy
is for

Ω ∝ −GM
2

R
,

and so

T̄ ∝ GM
R

μmu

kB
.

By using the ideal gas law, P̄ = ρ̄(kB/μmu)T̄, we find

P̄ ∝ GM2

R4 .

As a concrete example, let’s compute Ω for a constant density sphere. If
we bring a small amount of mass dm from infinity onto a sphere of mass
m and radius r, then the change in potential is

dΩ = −Gm
r

dm.

For a constant density, r = R(m/M)1/3; upon substituting for r we have

Ωconst. den. = −
∫ M

0

GM1/3m2/3

R
dm = −3

5
GM2

R
. (2.22)

Using this in equation (2.21) gives us the mean temperature, and hence
pressure, for a constant density sphere,

T̄ =
1
5
GM
R

μmu

kB
, (2.23)

P̄ =
3

20π
GM2

R4 . (2.24)

These are comparable to the central values, eqn. (2.14) and (2.15).

B2 B8 F0 F5 G5 M0 M7
M/M⊙ 9.8 3.8 1.6 1.3 0.92 0.51 0.12
R/R⊙ 5.6 3.0 1.5 1.3 0.92 0.60 0.18
L/L⊙ 5800.0 180.0 6.5 3.2 0.79 0.08 0.003

Table 2.2: Masses, radii, and luminosities
for selected stellar types. The type—B2,
B8, F0, and so forth—indicates what
features are present in the star’s spectrum
and indicates the star’s surface effective
temperature.
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E X E R C I S E 2 . 7— We can infer a great deal from our simple virial scalings.
Table 2.2 provides masses, radii, and luminosities, in units ofM⊙, R⊙, and L⊙, for
stars from type B (hot blue stars) to type M (cool red stars). Using the constant
density model, compute ρ/ρ⊙, Tc/Tc,⊙, and Pc/Pc,⊙. You should find that each
quantity depends only onm = M/M⊙ and r = R/R⊙. Describe your findings: do
Pc/Pc,⊙, ρ/ρ⊙, and Tc/Tc,⊙ vary in a similar fashion? If not, how do they change
with stellar type?

2.6 Contraction to the main sequence

Stars are born when a cold, dense5 cloud of gas and dust becomes un-5 Dense is a relative term; here we mean
∼ 100 atoms per cubic centimeter stable to gravitational collapse. The details of this process is a topic of

current research; for our purposes, however, after a period of time a
pre-main sequence star forms. This object is in hydrostatic balance, but
with a radius much larger than its main-sequence value and a cool central
temperature. What happens to this object?

The pre-main sequence star is in hydrostatic balance, so it doesn’t
collapse. But the interior, and hence the surface, is warm, so it radiates
energy. The only source of energy is gravitational, so the pre-main se-
quence starmust contract. How long would this take? For our sun, the
total energy is

E⊙ = K+ Ω = Ω/2 ≈ −
GM2

⊙
R⊙

;

the time to radiate this energy away is

tKH =
|E⊙|
L⊙
≈

GM2
⊙

R⊙L⊙
≈ 3× 107 yr. (2.25)

This timescale is called the Kelvin-Helmholtz timescale. Since
tKH ≫ tdyn = (Gρ̄)−1/2 the star is, to an excellent approximation, in
hydrostatic equilibrium throughout the whole contraction.

E X E R C I S E 2 . 8— Using the constant density model (constant here means
“constant throughout the star at any given time”) of exercise 2.5 and the virial
relations, give a qualitative sketch for how the pressure, density, temperature,
radius, and total energy change with time as the protostar contracts.

E X E R C I S E 2 . 9— Using the constant density model, derive an expression
for the total energy (kinetic plus potential) as a function of central temperature.
Plot this relation. What happens to the central temperature if additional heat is
injected into the star?
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E X E R C I S E 2 . 1 0— Let’s examine the behavior of a thin layer at the surface
of our constant density model. The pressure on the upper surface of our layer
vanishes, and the pressure on the bottom surface of our layer is P(R).

1. As a mathematical preliminary, suppose we have a function f(x) = Axα and
that we expand about a point x0 with f0 = Axα

0 . Show that to lowest order in
δx,

f(x0 + δx) ≈ f0
(
1+ α δx

x

)
.

2. Write dP/dr as ΔP/Δr, where Δr is the thickness of the layer, and then
integrate the equation of hydrostatic balance (2.7) over the surface to show
that

4πR2P(R)− GMm
R2 = 0, (2.26)

wherem = 4πR2ρΔr is the mass of the layer. For the rest of this exercise, we
shall takem as fixed.

3. Now suppose of star expands by a small amount δR. Use the result of part 1 to
find the new density ρ′ in terms of the original density ρ and δR, to lowest
order in δR/R.

4. If the contraction is adiabatic, then the new pressure obeys a relation
P′V′γ = PVγ (cf. Box 2.1). For our shell of massm, show that this implies that
P′ρ′−γ = Pρ−γ , and thus find P′ in terms of P, δR/R, and γ, to lowest order in
δR/R.

5. Insert the expressions for P′ and R′ = R+ δR into equation (2.26) and cancel
any common factors; you should find that the pressure and gravitational
forces no longer balance. Express the residual force in terms of GMm/R2, γ
and δR/R.

6. Equate this residual force with the acceleration of the shell,mδ̈R, and show
that the shell oscillates. For γ = 5/3 (appropriate for an ideal gas), find the
period of oscillation in terms of ρ = 3M/4πR3.





3
Edge of Darkness

We saw in chapter 2 that the equilibrium central temperature of a self-
gravitating object—such as a star—with an ideal gas EOS depends solely
on the mass, radius, and composition of that star. For the Sun, this
temperature is≈ 15MK and is much higher than the surface effective
temperature Teff,⊙ = 5780K. The photons emitted from the Sun are
therefore coming just from the cooler surface layers.

Photons in a plasma, such as in the interior of the sun,
transport energy. Were the sun transparent, these photons would
immediately stream out, and the sun would release its stored energy in a
fiery blast. This doesn’t happen: a photon can only travel a short distance
before being scattered or absorbed. The net effect is that radiation gener-
ated in the core must travel a tortuous path, rather like a pinball, before
reaching the surface and escaping.

3.1 Interaction of radiation and matter

How far does a photon—or any particle, for that matter—travel, on
average, in the interior of the sun? Imagine a particle traveling with
speed v. Draw a cylinder, of length ℓ and cross-sectional areaA, around
its path, as shown in Fig. 3.1. What the particle “sees” is that the cylinder
is partly blocked by obstacles—other particles in its path.

l

σ

A

v

Figure 3.1: Schematic of a particle inci-
dent on a group of scattering or absorbing
particles.

What is the probability of our particle making it through the cylinder
unscathed? The probability of the particle hitting an obstacle is the ratio

P =
total area covered by obstacles

area of cylinder

Denote the cross-sectional area of the other particles by σ. If the density
of obstacles is n, then the number of obstacles in the cylinder is n× (Aℓ),
and therefore the fraction of the area blocked by the obstacles is We are taking ℓ andA sufficiently small

that we don’t have to worry about parti-
cles overlapping.

P =
n× (Aℓ)× σ

A
= nσℓ. (3.1)
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The particle will suffer a collision when P → 1, or when

ℓ =
1
nσ

. (3.2)

We call ℓ the “mean free path”: it is the mean distance the particle travels
freely before colliding.

1

L

L

Figure 3.2: Schematic for Exercise 3.1

E X E R C I S E 3 . 1— Suppose we have a flat, slippery surface on which hockey
pucks are sliding around, as shown in Fig. 3.2. The pucks bounce off the walls as
they slide around. Suppose there are N pucks, each with unit diameter, and the
table is square with sides of length L. Estimate the mean free path of a puck.

Although we have motivated this derivation with a classical picture,
the cross-section σ is just related to the probability of an interaction and
can therefore be defined for quantum mechanical systems.

E X E R C I S E 3 . 2— In the sun, free electrons scatter photons; the
cross-section for this is

σTh =

(
8π
3

)(
e2

mec2

)2

= 6.65× 10−29 m2.

What is the mean free path against this process for a photon at the average
density of the solar interior?

As the ray of light traverses a small distance Δs through some matter,
the probability of a photon being absorbed is P = nσΔs. Thus, out of
every N photons, ΔN = N × P = N × nσΔs are absorbed. Since the
intensity Iν is proportional to the number of photons, the change in
intensity is just

ΔIν = −nσIνΔs.

Taking the limit Δs → 0, we obtain an equation for the absorption of
light,

dIν
ds

∣∣∣∣
absorption

= −nσIν. (3.3)

Rather than work with the microscopic cross-section, it is convenient to
define the absorption opacity,

κabs
ν =

nσ
ρ
,

so that dIν/ds = −ρκabs
ν Iν. The units of opacity are cm2/g. We use a

subscript ν to indicate that the opacity is a function of frequency. In
terms of the opacity, the photon mean free path is ℓ = (ρκabs

ν )−1.
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E X E R C I S E 3 . 3— A ray of light crosses a slab of absorbent material.
Calculate the intensity Iν as a function of distance traveled. Your expression
should be in terms of ρ and κabs

ν . How far does the ray go before its intensity has
dropped to 1/e of its original value?

In addition to absorbing photons, the matter can also spon-
taneously emit them. Denote the power emitted per wavelength per
volume per angle by ρjν. After traveling a distance Δs through matter
with this emissivity, the ray will increase in intensity by ρjνΔs; or

dIν
ds

∣∣∣∣
emission

= ρjν. (3.4)

E X E R C I S E 3 . 4— Suppose a ray traverses matter that both absorbs (opacity
κabs

ν ) and emits (emissivity jν), so that

dIν

ds
= ρjν − ρκabs

ν Iν.

Solve for Iν(s), and show that as s → ∞, Iν → jν/κabs
ν .

Finally, the matter can also scatter light. This removes pho-
tons from a ray, similar to absorption, but it also adds them into a ray
propagating in a different direction. If we assume that the direction into
which the photon is scattered is random and isotropic (as is most often
the case), then if the intensity in our ray is greater than the angle-average
Jν, scattering will cause a net reduction in intensity as more photons are
scattered out of the ray than are scattered into it. Conversely, if Iν < Jν,
then more photons will be scattered into the ray than out of it. Thus, the
effect of scattering can be described via

dIν
ds

∣∣∣∣
scattering

= −ρκsca
ν (Iν − Jν) . (3.5)

3.2 The equation of radiative transfer

Combining our expressions for absorption, emission, and scattering gives
us the full expression for how the intensity changes along a ray,

dIν
ds

= −ρ
(

κabs
ν + κsca

ν

)
Iν + ρjν + ρκsca

ν Jν. (3.6)

This is a complicated integrodifferential equation: it contains
both the derivative dIν/ds of the intensity as well as its integral Jν =

(4π)−1
∫
Iν dΩ.
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In general, eq. (3.6) must be solved numerically; but conditions in the
deep interior of the star and near the surface allow us to make simpli-
fying approximations and to obtain a solution that gives some insight
into the physics. First, let’s clean up the equation: divide through by
ρκν ≡ ρ(κabs

ν + κsca
ν ),

1
ρκν

∂Iν
∂s

= −Iν +
[
jν + κsca

ν Jν

κν

]
.

Next, define a new quantity, the optical depth τν via the equation

∂τν

∂s
= ρκν = ρ(κabs

ν + κsca
ν ),

which allows us to change variables, dIν/ds = (dIν/dτν) · (dτν/ds); and
finally define the source function Sν as the term in [·]. Doing all that
gives us the simpler-looking equation,

dIν
dτν

= −Iν + Sν.

This prettifying doesn’t advance us any closer to the solution, but notice!
The optical depth has a simple meaning:

τν =

∫ s

0
ρκν ds =

∫ s

0
nσν ds =

∫ s

0

ds
ℓ
.

That is, the optical depth measures distance along the ray in units of
mean free path. Said differently, if you have traveled one optical depth,
then you have gone one mean free path. We also see from this equation
that Iν → Sν as τν →∞ (cf. exercise 3.4).

Thus, if your object has τν ≪ 1, then photons are hardly affected by
the medium and the object is nearly transparent; if, on the other hand,
τν ≫ 1, then photons cannot go through the object: it is opaque, and the
emission is determined by the emissivity (via the source function Sν) of
the matter.

E X E R C I S E 3 . 5— For the electron scattering cross-section (Exercise 3.2),
estimate the optical depth between the solar center and the solar photosphere.

Suppose we are in a cavity in which the radiation and mat-
ter are in a steady-state. The matter is not gaining or losing energy
to the radiation. This requires balancing

(energy emitted per unit volume) = ρ
∫

jν dν dΩ

with

(energy absorbed per unit volume) = ρ
∫

κabs
ν Iν dν dΩ,
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so that ∫ ∞

0

(
jν − κabs

ν Jν

)
dν = 0. (3.7)

We don’t include scattering in this expression because scattering doesn’t
transfer energy between the radiation and the gas.

If, in addition, the matter and radiation are in thermal equilibrium, so
that Jν = Bν, then eq. (3.7) implies that

jν
κabs

ν
= Bν(T). (3.8)

Now jν and κabs
ν are properties of the matter, and do not depend on the

state of the radiation field. Hence, equation (3.8) must hold whenever
the matter is in equilibrium, regardless of the state of the radiation field.

3.3 Radiative diffusion

We can now examine how heat transport works in the deep interior of
a star. First, we need to adjust our coordinates. In equation (3.6), the
coordinate s is distance along a ray; but we are considering many different
rays. We shall therefore use radial distance r as a coordinate, and measure
the optical depth it: dτν = ρκν dr. Since dr = μ ds, where μ = cos θ is the
cosine between ds and dr (Fig. 3.3), the equation of transfer becomes

μ
dIν
dr

= −ρκν (Iν − Sν) . (3.9) θ

r

ds

dr
 =

 μ
 ds

Figure 3.3: Schematic of the coordinate
system used for solving the radiative
transport equation.

Let’s examine the typical scales of terms in the radiative
transfer equation, for conditions in the deep solar inte-
rior. We’ll start with eq. (3.6), and indicate some expected scales:

μ
dIν
dr︸ ︷︷ ︸

∼Iν/R⊙

= − ρκνIν︸ ︷︷ ︸
∼Iν/ℓ

+ρκνSν.

If we are far from the surface of the star, then we should expect the in-
tensity to change over lengthscales comparable to R⊙. Of course, it won’t
be exactly this, but—as we’ll show—the exact value doesn’t matter so
long as |dIν/ds| is in the ballpark of Iν/R⊙. Notice the enormous disparity
in scales:

|dIν/dr|
ρκνIν

∼ ℓ

R⊙
;

the left-hand side is smaller than the terms on the right by the ratio
of the mean free path to the solar radius. This implies that conditions
are nearly homogeneous. They are also isotropic, so that Iν = Jν. We
expect that collisions are fast enough so that the matter is in thermal
equilibrium and jν = κabs

ν Bν. We also know from exercise 3.4 that Iν →
jν/κabs

ν = Bν.
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We can’t have Iν = Bν exactly, however, since in that case there is no
net flux! We’ll treat the intensity as being thermal plus a perturbation:

Iν = Bν + I(1)ν ,

where the superscript “(1)” indicates that this is a small correction. In-
serting this expansion into eq. (3.6) and keeping only the lowest-order
terms on each side gives

I(1)ν = −μ
dBν

dτν
. (3.10)

Bν depends on the temperature T, so dBν/dτν = dBν/dT · dT/dτν. To get
the flux, multiply eq. (3.10) by μ and integrate over angles:

Fν =

∫
μI(1)ν dΩ = −

∫
μ2 dBν

dT
dT
dτν

dΩ = −4π
3

dBν

dT
dT
dτν

.

We can switch back to the radial coordinate:

Fν = −4π
3

[
1

ρκν

∂Bν

∂T

]
dT
dr

. (3.11)

The term in [·] controls which frequencies are most responsible for energy
transport.

E X E R C I S E 3 . 6— Let’s examine the term [·] in eq. (3.11) more closely.
Fig. 3.4 shows Bν and dBν/dT (top panel) and a hypothetical κν (middle). Sketch
Fν on the bottom panel. For which frequencies is it maximum?
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Figure 3.4: The specific flux for a hypo-
thetical opacity

To get the total flux, we integrate Fν over all frequencies.

F =

∫ ∞

0
Fν dν = −4π

3

[∫ ∞

0

1
ρκν

∂Bν

∂T

]
dT
dr

≡ −4π
3

1
ρκR

∂

∂T

[∫ ∞

0
Bν dν

]
dT
dr

.

Here we’ve defined the Rosseland mean of the opacity:

1
κR

=

(∫ ∞

0

∂Bν

∂T
dν
)−1 ∫ ∞

0

1
κν

∂Bν

∂T
dν. (3.12)

This is done to put the equation in more familiar terms. Since (cf. eq. [1.6])∫
Bν dν = σSBT4/π = caT4/4π, we can write the equation for the flux as

F = − 1
3

c
ρκR

d
dr

aT4. (3.13)

Equation (3.13) is known as the equation for radiative diffusion, for
reasons that will become apparent in the next section.

If we multiply the flux by the surface area of a shell in the star we
obtain the luminosity L = 4πr2F; we can therefore recast eq. (3.13) into
an equation for the thermal gradient:

dT
dr

= − 3ρκR
4acT3

L(r)
4πr2

. (3.14)
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E X E R C I S E 3 . 7— Let’s dissect eq. (3.13) to see how it sets the luminosity.

1. To keep the algebra simple, assume that F is constant throughout the star and
that aT4 is linear in r—that is, aT4 = aT4

c (1− r/R). Since F is constant, you
can express it in terms of the luminosity at the surface L. Use this to
transform eq. (3.13) into an expression for L in terms of R and Tc (along with
ρ, κR, and c).

2. Write the luminosity as L = Eγ/τ, where Eγ is the total radiative energy of the
star, and τ some as-yet-undetermined diffusion timescale. Give an estimate of
Eγ in terms of the mean temperature T and the radius R of the star.

3. Finally, assume that the photon mean free path ℓ = (ρκR)
−1 is constant.

Substitute the results from parts 1 and 2 into equation (3.13). After
simplifying, you should end up with a simple expression for τ in terms of c, R,
and ℓ. For Thomson scattering, what is τ (express in years)?

3.4 Diffusion

In the presence of scattering or absorption, the photons crossing the face
can travel one mean free path ℓ. Imagine a small cube with sides of length
ℓ and filled with photons. The total radiant energy in the cube is ΔE. In a
time Δt = ℓ/c, all of the energy will leave this cube. The total luminosity
is ΔE/Δt = cΔE/ℓ. If everything is isotropic, then the flux out of any one
face is 1/6 of the luminosity, divided by the area of that face:

F =
1

6ℓ2
cΔE
ℓ

=
1
6
cU,

where U = E/ℓ3 is the radiative energy density.
Now place two of these cubes against one another, with their common

face located at position x. The energy density of the two cubes need not
be the same; the energy density of the left cube is U(x−ℓ) and of the right
cube is U(x + ℓ) (see Fig. 3.5). The net flux traveling in the x-direction
through the common face is then

F =
1
6
cU(x− ℓ)− 1

6
cU(x+ ℓ) ≈ − 1

3
cℓ

dU
dx

.

This is an expression for a diffusive flux. Although we gave a heuristic
explanation, the formula is in general true:

(flux of something) = − 1
3
× (speed of carriers)× (MFP of carriers)

×∇(density of something) (3.15)

For radiation, the “something” is “radiative energy” and the carriers are
photons.

xx−l x+l
Figure 3.5: Illustration of net flux crossing
a face between regions with slightly
different energy densities.
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E X E R C I S E 3 . 8— Compare this crude diffusion model,

F = − 1
3
cℓ

dU
dr

,

with eq. (3.13). Using the results of exercise 3.6, give a succinct description for
why the effective mean free path ℓ = 1/(ρκR) is computed using a weighting
function ∂Bν/∂T.

Figure 3.6: Schematic of a random walk of
50 steps.

As an alternate take on our estimation, let’s model the
transport as a photon that is randomly walking through-
out the interior. The photon moves at speed c, but it can only go one
mean free path ℓ before being absorbed or scattered, at which point it is
sent off in a random direction. The path of the photon will therefore look

To keep things simple, we’ll imagine that
after absorption the atom immediately
emits an identical photon in a random
direction.

something like that in Fig. 3.6.
We will just do our calculation for motion along a diameter, with the

photon starting at the center. At each hop, the photon either goes left
or right with equal probability. On average, the photon doesn’t go any-
where; but after enough hops, there is some probability for the photon to
reach the edge of the star and escape. Figure 3.7 shows the distribution
of positions for walks of length n = 10, 30, 100, 300 steps, with each step
having length 1.0. Suppose the edge of the star is at x = ±10 (red dotted
lines). Although the average position is at x = 0, for n ≳ 100 steps, there
is a reasonable probability of the photon escaping.

Figure 3.7: Distribution of positions after
n steps in a random walk.
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To make this into a workable model, let us first recall the basic features
of a random walk. It is described by a binomial distribution: after n steps,
the probability thatm of them were to the right is

Pn(m; p) =
n!

m!(n−m)!
pm(1− p)n−m. (3.16)

Here p is the probability of any single step being to the right. The mean
and root variance ofm are

⟨m⟩ = np (3.17)[⟨
(m− ⟨m⟩)2

⟩]1/2
= [np(1− p)]1/2 . (3.18)
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We can use these to estimate the diffusion timescale τ.

E X E R C I S E 3 . 9—

1. Show from equation (3.17) that the mean distance traveled by the photon
after n steps is ⟨d⟩ = ℓ(2np− n), so for p = 1/2, ⟨d⟩ = 0.

2. If all the steps were in the same direction, how many steps would be needed to
reach the edge, at a a distance R from the center? Assume all steps have the
same length ℓ.

3. We want the distribution of steps (cf. Fig. 3.7) to be wide enough to reach the
edge. Set the root variance—a measure of the width of the probability
distribution—equal to the number of steps found in part 2 and use
equation (3.18), [⟨

(m− ⟨m⟩)2
⟩]1/2

=
[
nedgep(1− p)

]1/2
,

to find nedge in terms of R and ℓ.

4. What is the total distance traveled by the photon after nedge steps? If the
photon traveled at speed c, how long did it take? Compare your answer with
that for part 3 of exercise 3.7.

3.5 The photosphere

We are now ready to investigate heat transport near the edge, where
the optical depth τν ≲ 1 and photons begin to freely escape. We can no
longer use the approximation of radiative diffusion, because conditions
in the star are now changing over distances of a mean free path. Let’s
return to equation (3.6) for radiative transport:

dIν
ds

= −ρ
(

κabs
ν + κsca

ν

)
Iν + ρjν + ρκsca

ν Jν.

In general, this is difficult to solve: for some frequencies, the atmosphere
will be nearly transparent, while for other frequencies it is quite opaque.
Rather than develop the numerical machinery to solve the equation, we
shall adopt a few simple approximations (indicated by highlighted bold
text in the margins) that will allow us to obtain an approximate solution
for the temperature of the stellar atmosphere.

Opacities are grayFirst, we assume that the opacity is gray—that is, independent of
frequency. This is unphysical, but the solutions for temperature and
pressure will have the correct overall behavior. Because the opacity is
gray, we shall drop the “ν” subscript in κ and τ.

E X E R C I S E 3 . 1 0— Does matter with a gray opacity in thermal equilibrium
also have a gray emissivity jν?
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We next define a coordinate system. Since we are in a thin layer near
the edge of the star, we will adopt planar coordinates, with z being the
altitude above some point. We’ll pick z = 0 to be a point deep enough in
the star that Iν ≈ Bν. Then we define the optical depth as

τ =

∫ ∞

z
ρ
(

κabs + κsca
)

dz; (3.19)

differentiating this expression gives

dτ
dz

= −ρ
(

κabs + κsca
)
.

Note the “−”: in these coordinates, as z gets larger, τ gets smaller.
We may rewrite the equation (2.1) of hydrostatic balance as

−ρg =
dP
dz

=
dP
dτ

dτ
dz

= −ρκ
dP
dτ

,

dP
dτ

=
g
κ
. (3.20)

Since we are in a thin layer, we can take the gravitational acceleration g
as being approximately constant. By integrating hydrostatic equilibrium
from where τ = 0,P = 0 to where τ = 1, we can get an approximate value
of the photospheric pressure,

Pph =

∫ Pph

0
dP =

∫ 1

0

g
κ
dτ ≈ g

κ
.

The surface gravity sets the pressure at the photosphere, the location where the
optical depth is of order unity and where photons can escape from the star.

E X E R C I S E 3 . 1 1— Suppose you observe a star that has a 10% larger mass
and 10% larger radius than the Sun. All else being equal, how does the pressure at
the photosphere of this star compare to that of the Sun?

Atmosphere is in steady-state LTE For our second approximation, we assume that the matter is in lo-
cal thermal equilibrium (LTE). This means there is a well-defined
temperature at each depth. Furthermore, the emissivity is related to the
absorption opacity,

jν = κabsBν.

Note that this does not imply anything about the radiation field. We
can now take the radiative transfer equation (3.6) and substitue our
definition of optical depth (eq. [3.19]) to obtain

μ
dIν
dτ

= Iν − Sν. (3.21)

Here

Sν =
jν + κscaJν

κ
=

κabsBν + κscaJν

κ
.
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If, in addition, the matter is in steady-state, then the rate at which energy
is absorbed from the radiation field,

∫
κabsIν dν dΩ, must equal the rate at

which energy is emitted,
∫
jν dν dΩ. Since we are in LTE,∫ (

jν − κabsIν
)

dν dΩ = 4πκabs
∫

(Bν − Jν) dν = 0.

Since J =
∫
Jν dν =

∫
Bν dν = B, it follows that S =

∫
Sν dν = B as well:

For a gray atmosphere in steady-state, local thermal equilibrium, the integrated
source function and mean intensity equal the Planck value:

S(τ) = J(τ) = B(τ),

Note that this does not imply that Iν = Bν or Jν = Bν.
We still have the problem that eq. (3.21) includes both the deriva-

tive and integral of Iν. To get around this, we are going to expand Iν in
Legendre polynomials,

Iν(τ, μ) = Iν,0(τ)P0(μ) + Iν,1(τ)P1(μ) + Iν,2(τ)P2(μ) + . . .

and then only include the first two terms, P0(μ) = 1,P1 = μ. Thus, Iν is
linear in μ: Iν = Iν,0(τ) + Iν,1(τ)μ. Intensity is linear in μ

In terms of this expansion, the angle-averaged specific intensity is

Jν(τ) =
1
4π

∫
Iν dμ dφ = Iν,0(τ),

and hence the specific energy density is Uν = 4π/c · Jν = 4π/c · Iν,0. The
specific flux is

Fν(τ) =
∫

μIν dμ dφ =
4π
3
Iν,1(τ).

We can therefore write the intensity as

Iν(τ) = Jν(τ) +
3μ
4π

Fν(τ) =
c
4π

Uν(τ) +
3μ
4π

Fν(τ). (3.22)

Box 3.1 Expansion in Legendre polynomials

You may recall from electrostatics that we can decompose
the field from a set of charges into a sum of moments: dipole,
quadrupole, and so on. The basis functions for this are the Legen-
dre polynomials Pn(cos θ), defined by the expansion

1√
1− 2μz+ z2

≡
∞∑
n=0

Pn(μ)zn,

for−1 < μ < 1, |z| < 1. The first four polynomials are

P0(μ) = 1 P2(μ) =
1
2
(3μ2 − 1)
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Box 3.1 continued

P1(μ) = μ P3(μ) =
1
2
(5μ3 − 3μ),

and the first eight Legendre polynomials are plotted below.

= = = =

= = = =

As n increases, the angular variations become finer.
The Legendre polynomials are orthogonal in the following

sense: ∫ 1

−1
Pn(μ)Pm(μ)dμ =

{
0 m ̸= n

2
2n+1 m = n

. (3.23)

As a result of this orthogonality, we can decompose the radiative
intensity into multipoles:

I =
∞∑
n=0

InPn(μ). (3.24)

E X E R C I S E 3 . 1 2— Use eq. (3.23) to show that (4π)−1 ∫ I dΩ = I0
and

∫
μI dΩ = (4π/3)I1, for I = I0 + I1μ.

Insert the expansion (3.22) into the radiative transfer equation (3.21)
and integrate over all angles and frequencies. Since τ is gray, we can pull
the derivative out from the integral,

d
dτ

∫
μIν dν dΩ =

∫
Iν dν dΩ − κabs

κ

∫
Bν dν dΩ − κsca

κ

∫
Jν dν dΩ

d
dτ

∫
Fν dν =

4π
κ

[
(κabs + κsca)

∫
Jν dν − κabs

∫
Bν dν − κsca

∫
Jν dν

]
dF
dτ

= 4π
κabs

κ

∫
(Jν − Bν) = 0.

Here we used κ = κabs + κsca to simplify the right-hand side.

For a steady-state gray atmosphere in local thermal equilibrium, the total flux
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F =
∫
Fν dν is constant.

The radiative energy is just passing through. Since the flux at τ = 0, out-
side the star, is F = σSB T4

eff, we can substitute that value in our expression
for the intensity,

I(μ, τ) =
c
4π

U(τ) +
3μ
4π

σSBT4
eff. (3.25)

To solve for U(τ), multiply eq. (3.21) by μ and integrate over all angles
and frequencies:

d
dτ

∫
μ2Iν dΩ dν =

∫
μIν dΩ dν −

∫
μSν dΩ dν

c
4π

d
dτ

∫
μ2U dΩ +

3
4π

σSBT4
eff

∫
μ3 dΩ = F−

∫
μS dΩ

c
3
dU
dτ

= σSBT4
eff (3.26)

In going from the first to the second line we have used eq. (3.25). In
going from the second to the third line, the integrals of μ3 and μS vanish
because S is independent of angle and

∫ 1
−1 μ dμ =

∫ 1
−1 μ3 dμ = 0.

Equation (3.26) is a first-order ODE, which upon integration yields

U(τ) =
3
c
F(τ + τ0), (3.27)

where τ0 is an integration constant. Our intensity is thus

I(μ, τ) =
3
4π

σSBT4
eff (τ + τ0 + μ) .

To fix the integration constant τ0, let’s go to where τ = 0. Here all of the
radiation must be outward-bound. Hence if we integrate μI(μ, τ = 0)
over 0 ≤ μ ≤ 1, we should recover the flux:

σSBT4
eff =

∫ 2π

0

∫ 1

0
μI(μ, τ = 0) dμ dφ =

3
4

σSBT4
eff

(
τ0 +

2
3

)
,

which fixes τ0 = 2/3.
To finish this, we note that J = B since we are in steady-state local

thermal equilibrium. The radiative energy density is thus U = (4π/c)J =

(4π/c)B = 4σSB/cT4. Substituting this into eq. (3.27) then yields

T4 =
3
4
T4
eff

(
τ +

2
3

)
. (3.28)

This equation, along with eq. (3.20), determines the structure of the
stellar atmosphere.
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Box 3.2 Decomposition of intensity into moments

It is often useful to describe the intensity in terms of mo-
ments. A moment is simply an angle-weighted average of the
radiative intensity, where the weight is a power of μ. For exam-
ple, to take the zeroth-order moment, we multiply Iν by μ0 = 1,
integrate over all angles, and divide by 4π. This is just the average
intensity Jν = (4π)−1

∫
Iν dΩ. To take the first-order moment Hν,

we use a weight μ1:

Hν =
1
4π

∫ 2π

0

∫ 1

−1
μIν dμ dφ.

To take the second-order moment Kν, we use a weight μ2:

Kν =
1
4π

∫ 2π

0

∫ 1

−1
μ2Iν dμ dφ.

The first three moments have physically interpretable mean-
ings: the specific radiative energy density, flux, and pressure are
Uν = (4π/c)Jν, Fν = 4πHν, and Pν = (4π/c)Kν, respectively.

By taking moments of the radiative-transfer equation (3.21),
we reduce the complicated integro-differential equation into a
simpler ordinary differential equation. This comes at a cost, how-
ever; because the left-hand side contains μd/dτ, the left hand
side will have a higher-order moment than the right-hand side.
By multiplying eq. (3.21) by successively higher powers of μ and
integrating, we will generate an infinite series of ODE’s for suc-
cessively higher moments of Iν. The trick is to adopt a closure
relation that truncates this series. The classic scheme, due to
Eddington, is to take K = J/3. The Eddington closure scheme is
equivalent to expanding the radiative intensity to terms linear in
μ.

E X E R C I S E 3 . 1 3— Show that if we approximate the intensity as
Iν(μ, τ) = Iν,0(τ) + μIν,1(τ) (cf. eq. [3.22]), then Kν = Jν/3 identically.
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E X E R C I S E 3 . 1 4— Deep in the star, we expect the radiation to be nearly
isotropic, while it becomes outward-bound as τ → 0. Let’s investigate this. We’ll
measure the anisotropy of the radiation field using the first two moments of the
intensity (Box 3.2).

1. Demonstrate that Hν/Jν = 0 if the radiation is isotropic.

2. Next, suppose the radiation is completely anisotropic: all the photons are
headed along precisely the same direction μ = 1. We describe this
mathematically as

Iν(μ) = aν δ(μ − 1), (3.29)

where δ(x) is the Dirac delta function (see Box 3.3). Show that
Hν/Jν = 1 for this case.

3. Now compute H(τ)/J(τ) for our gray atmosphere.What is the degree of
anisotropy at τ = 0? at τ = 2/3? at τ = 10?

Box 3.3The Dirac delta function

The Dirac delta function δ(x) has the following properties:
δ(x) = 0,∀x ̸= 0; and ∫ ε

−ε
δ(x) dx = 1.

From this definition, one can show that∫
f(x)δ(x− a) dx = f(a),

where the integral is over any domain containing x = a.





4
Rainbow in the Dark

Now that we’ve discussed radiative transport in the star, we’ll explore
how the emergent spectrum of a star serves as a diagnostic of ambient
conditions in the photosphere; we’ll then discuss how nuclear reactions
generate the luminosity in chapter 5.

4.1 Overview

If light from the Sun is passed through a grating (a piece of glass with
finely etched lines), the light is dispersed in wavelength and creates a
spectrum, such as the highly detailed one show in Fig. 4.1.

Figure 4.1: Visible spectrum of the Sun.
Frequency increases along a row from left
to right, and by rows from top to bottom.
Credit: N.A.Sharp, NOAO/NSO/Kitt Peak
FTS/AURA/NSF.

Superposed on the slow variation from red to violet are dark absorp-
tion lines. The ions, atoms, and molecules in the solar atmosphere
absorb light at specific frequencies and create these lines.

Beginning in the late 1800’s, astronomers began classifying stars by
the observed absorption lines in the spectra. At this time, Edward Pick-
ering and Williamina Fleming of the Harvard College Observatory began
amassing a vast catalog of stellar spectra. They classified these spectra
according to the strength of observed hydrogen Balmer lines (the first
four are Hα: 657 nm; Hβ: 486 nm; Hγ: 434 nm; Hδ: 410 nm). Stars, such
as Vega, with the strongest Balmer lines were classified as type “A”, those
with the next strongest were type “B”, and so forth. Annie Jump Cannon,
who would later succeed Fleming as curator of astronomical photography
at the observatory, simplified and reorganized the scheme, and added
decimal subdivisions (0 . . . 9) for each type1. When stellar color is taken 1 For example, the Sun’s type is G2

into account, the ordering of stars, from blue to red, is “OBAFGKM”. In
the 1990’s the “L” and “T” classes were added2 for cool stars and brown 2 J. D. Kirkpatrick, I. N. Reid, J. Liebert,

et al. Dwarfs Cooler than “M”: The
Definition of Spectral Type “L” Using
Discoveries from the 2 Micron All-Sky
Survey (2MASS). ApJ, 519:802–833, July
1999

dwarfs (stellar-like objects that do not reach central temperature suffi-
cient for fusion of hydrogen into helium). With the introduction of the
“Y” stellar type3, this classification was further extended to even cooler

3 Michael C. Cushing, J. Davy Kirkpatrick,
Christopher R. Gelino, et al. The Dis-
covery of Y Dwarfs using Data from
the Wide-field Infrared Survey Explorer
(WISE). ApJ, 743:50, December 2011.
doi: 10.1088/0004-637X/743/1/50

objects having Teff ≲ 500K.
Hertzsprung and Russell independently noticed that most stars

tended to lie along a band, termed the main sequence, in a plot of
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absolute magnitude (or luminosity) against stellar type (now known as a
Hertzsprung-Russell diagram). Figure 4.2 shows some standard
main-sequence stars, along with their stellar type and approximate color.
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Figure 4.2: Hertzsprung-Russell diagram
showing standard main-sequence stars.
Colors are approximate translations of the
spectra.

In an influential PhD thesis, Cecilia Payne-Gaposhkin4 applied the

4 C. H. Payne. Stellar Atmospheres; a
Contribution to the Observational Study of
High Temperature in the Reversing Layers of
Stars. PhD thesis, RADCLIFFE COLLEGE.,
1925

Boltzmann and Saha equations to show that different stellar spectra
were consistent with changes in temperature, rather than composition,
of the stellar photosphere. The sequence of stellar types is therefore a
temperature sequence, with “O” stars being the hottest.

4.2 The hydrogen atom

To understand why the Balmer lines are strongest in a certain range of
temperatures, we first need to review the workings of a hydrogen atom.

The electrons bound to an atom or molecule can only occupy states
having a discrete set of energies. For example, the electron in a hydrogen
atom only has energies

En = −13.6 eV× 1
n2 , (4.1)

where n > 0 is an integer known as the principal quantum number.
These energies are negative, relative to a free electron. For example, the
ground state (n = 1) has energy−ERy = −13.6 eV, meaning that 13.6 eV
is required to remove an electron in its ground state from the atom.

Because the electrons in an atom can only have certain energies, the
atom can only absorb or emit light at specific wavelengths, such that
the energy of the photon matches the difference in energy between two
levels. For example, a hydrogen atom in its ground state can absorb a
photon of energy

E1→2 = −ERy

(
1
22 −

1
12

)
= 10.2 eV

corresponding to the energy required to excite the electron from level
n = 1 to n = 2. The wavelengths that can be absorbed by a hydrogen
atom at rest can be found by substituting E = hc/λ into equation (4.1):

λm→n = λ0

(
1
m2 −

1
n2

)−1

, (4.2)

where λ0 = 91.2nm and n > m. The transitions from the lowest levels
are named after their discoverers: Lyman for 1 → n, Balmer for 2 → n,
Paschen for 3 → n. A greek letter is used to denote the higher state: for
example Lyman α (abbr. Lyα) means 1 → 2, with λLyα = 121.6nm. Note
that λm→n > λ0; photons with wavelengths λ < 91.2nm have sufficient
energy to knock the electron out of the atom, thereby producing a hydro-
gen ion and a free electron. The first line transition in the Balmer series
is 2 → 3, and is designated Hα: λHα = 656.3nm. The first 20 lines for
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each of the Lyman, Balmer, and Paschen series are shown in Fig. 4.3; note
the 3 → 4 transition is outside the plot range. The Balmer lines lie in the
visible range.
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Figure 4.3: Spectral lines of neutral
hydrogen

4.3 The Boltzmann Equation

In order to produce a Balmer absorption line, we must have some hydro-
gen atoms in the photosphere with electrons in the energy level n = 2.
The more atoms in a state n = 2, the more absorption and the stronger
the line. To find the number of atoms with energy level n = 2, we make
use of a fundamental result, due to Boltzmann, from statistical (thermal)
physics; namely, that if our sample of atoms is in thermal equilibrium,
then the ratio of the number of atoms with energy Ei to the number of
atoms with energy Ej is

Ni

Nj
=

gi
gj

exp
(
−
Ei − Ej
kBT

)
. (4.3)

Here the number gn gives the number5 of quantum mechanical states 5 gn is known as the degeneracy of a given
level nhaving energy En = −ERy/n2. For an energy level n, there are n2 possible

states, each having a different angular momentum. For each of these n2

states, both the electron and proton may each have 2 possible spins. The
total number of states for energy En is therefore gn = 2× 2× n2.

Suppose we wish to know the fraction of atoms in a given state i: that
is, we wish to know

xi =
Ni

N1 + N2 + . . .+ Ni + . . .
?

Using equation (4.3), we can express xi as

xi =
gie−Ei/kBT

g1e−E1/kBT + g2e−E2/kBT + . . .+ gie−Ei/kBT + . . .

≡ gie−Ei/kBT

Q
. (4.4)

The quantity

Q =
∑
n

gn exp
(
− En
kBT

)
(4.5)

is called the partition function: loosely speaking, it indicates the number
of ways the sample of atoms can be partitioned among the different
energy levels.

E X E R C I S E 4 . 1— Assuming that the first term g1e−E1/kBT dominates the
sum in the partition function (see Box 4.1), plot the fraction of neutral hydrogen
in its n = 2 state as a function of temperature, for 5 000K < T < 20 000K.
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Box 4.1The partition function for neutral hydrogen

The partition function for neutral hydrogen, eq. (4.5), has some
interesting features. Substituting gn = 4n2 and En = −ERy/n2 and
factoring out common terms gives

Q = 4eβERy
∑
n

n2e−βERy(1−1/n2),

with β = (kBT)−1. The sum diverges, since for n ≫ 1 the indi-
vidual terms approach n2e−βERy . In practice, this isn’t a problem,
as there is an upper limit on n set by ambient conditions. For
example, the mean distance of the electron from the nucleus is
≈ aBn2, where aB = 5.29 × 10−11 cm is the Bohr radius. As a
result, each atom takes up a volume≈ a3Bn

6; if we want the atoms
to not overlap, then the volume per atom, V/N = 1/ξ, must be
larger than this by some factor. Suppose we set that the volume
of an atom must be less than half of that available in our gas; then

ξ =
N
V

<
N

N · 2a3Bn6 .

Thus the maximum level is n < (2a3Bξ)−1/6. For a typical A-star
photospheric density ξ ∼ 1015 cm−3, the energy level cutoff is n ≈
35. In practice the cutoff will be even lower because of collisions.

The precise maximum value of n is not that important for most
applications. The reason is that the terms in the partition func-
tion increase only slowly. As an example, the terms and cumula-
tive sum in the partition function at a temperature T = 104 K are
as follows.

n n2eβERy(1−1/n2) 4
∑n

i=1 i
2e−βERy(1−1/i2)

1 1.00e+00 4.0000
2 2.88e-05 4.0001
3 7.23e-06 4.0001

...
26 9.62e-05 4.0038

...
52 3.78e-04 4.0274

...
268 9.99e-03 7.5901

As we can see from the cumulative sum (rightmost column),
the partition function is insensitive to the precise value of the
cutoff until n is quite large; indeed, for many applications it is
reasonably accurate to just use the first term: Q ≈ 4eβERy .



rainbow in the dark 45

4.4 Ionization: The Saha equation

As the temperature in the gas rises, there are more photons with suf-
ficient energy to eject electrons from an atom. In addition, collisions
between atoms also become sufficiently energetic to ionize the atom. In
astronomical nomenclature, the ionization state is denoted by a small
Roman numeral: Fe i denotes neutral iron, Fe ii denotes singly-ionized
iron (charge+1), Fe iii denotes doubly-ionized iron (charge+2), and so
on. In thermal equilibrium, the rate at which atoms are ionized must
equal the rate at which ions and electrons recombine: for example, in
a gas consisting of hydrogen atoms, hydrogen ions (i.e., protons), and
electrons the reaction

H ii+ e←→ H i

is in equilibrium. We’d like to extend equation (4.3) to find the ratio of
two ionization states Ni+1/Ni. Although deriving this equation, termed
the Saha equation6, is beyond the scope of the course, what we shall 6 Derived by Meghnad Saha in 1920

do is take the equation apart and try to understand how it works. The
Saha equation for the ratio of the populations of two ionization states 7 7 In this context, Ni+1/Ni refers to ratios

such as NFe ii/NFe i. Each population N
can be divided into sub-populations based
on the different electron energy levels.
For example, NH i = NH i,1 + NH i,2 + . . .,
where NH i,2 are the number of hydrogen
in ionization state I with an electron in
the second energy level.

Ni+1 and Ni is
Ni+1

Ni
=

[
2
ne

(
mekBT
2πℏ2

)3/2
]
Qi+1

Qi
. (4.6)

In this equation, ne denotes the electron density—the number of free
electrons per unit volume—andme is the electron mass. The termsQi+1

andQi are the partition functions for the two states, both measured with
respect to the same zero-point for energy.

Let’s start with the term Qi+1/Qi. If both partition functions are
dominated by the ground state term8 then 8 see Box 4.1

Qi+1

Qi
=

gi+1,1

gi,1
e−β(Ei+1,1−Ei,1)

=
gi+1,1

gi,1
e−β Eion

Here Eion = Ei+1,1 − Ei,1 is the energy needed to remove an electron from
an ion in state i and we use the common shorthand β = (kBT)−1. Thus
Qi+1/Qi resembles equation (4.3).

The term in [·] in eq. (4.6) arises because we also need to allow for the
number of free electron states. When the atom is ionized, each electron
quickly acquires an average kinetic energy (3/2)kBT. There are many dif-
ferent states having this energy: the electron can be in different locations
and moving in different directions, for example.

You might think that there would be an infinitude of possible electron
states. Quantum mechanics, however, sets limitations on this number.
First, we have the Pauli exclusion principle: no two electrons can be
in the same location with the same momentum and same spin. What
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do we mean by same location and momentum? Recall the Heisenberg
uncertainty principle: the electrons x-position and x-momentum are
spread about a range of values Δx and Δpx, and these uncertainties are
related via

Δx Δpx ≳ h.

Thus, if we imagine dividing our volume into little boxes of volume

ΔV = Δx Δy Δz ≈ h3

Δpx Δpy Δpz
,

each box can hold two electrons.9 Suppose we have a volume V; how9 Because electrons have spin 1/2, we can
put two electrons into the same position
and momentum state if their spins are
oppositely directed.

many boxes are there? The number of available boxes is

V
ΔV
≈

V Δpx Δpy Δpz
h3

.

To estimate the size of Δpx Δpy Δpz, let’s take Δpx ∼ px and similarly for
Δpy and Δpz; further, if everything is isotropic then px ≈ py ≈ pz on
average, so Δpx Δpy Δpz ∼ p3x . Now the kinetic energy of the electron
is p2/2me, and p2 = p2x + p2y + p2z ≈ 3p2x . Hence the kinetic energy is
(3/2)p2x/me; in thermal equilibrium, however, the kinetic energy has an
average value of (3/2)kBT. The value of p2x is therefore

p2x ≈ mekBT,

and the number of boxes is

V
ΔV
∼ V

p3x
h3
∼ V

(mekBT)
3/2

h3
.

If our volume V contains Ne electrons, then the number of states electron
is

2V
NeΔV

∼ 2V
Ne

(mekBT)
3/2

h3
.

The factor of 2 appears because each box can hold 2 electrons. Recogniz-
ing that Ne/V = ne, we see that this number of states per free electrons
corresponds to the factor in [ ] in equation (4.6). When the numerical
calculation is done correctly, the additional factor of 2π arises.

The number of states per free electron plays an important role in
setting the temperature at which a species ionizes. You might expect,
since a term e−Eion/kBT appears in the ratio Ni+1/Ni, that a species would
ionize at a temperature Eion/kB. In fact the ionization temperature is
much lower. To see how this works, define

ζ = ln

[
1
ne

(
mekBT
2πℏ2

)3/2
]
.

We can then write eq. (4.6)—with the approximation that the partition
functions are dominated by the ground state—as

Ni+1

Ni
=

2gi+1,1

gi,1
exp (ζ − βEion) .
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Now the factor gi+1,1/gi,1 is of order unity. Hence, when the gas ionizes
and Ni+1,1 ≈ Ni,1, we must have that ζ ≈ βEion; put differently, the
ionization temperature will not be Eion/kB but rather Eion/kBζ. Under
conditions in the photosphere of an A star (T ≈ 104 K, n ∼ 1015 cm−3),
ζ ≈ 15.

In more intuitive terms, when an electron is ejected from an atom, it
has an enormously large number∼ e15 number of different states avail-
able. To rejoin with an ion requires being in the right place at the right
time with the right energy. The large number of available states makes
this unlikely, so the electron must wander lonely through a vast and des-
olate phase space until at long last it reunites with an ion. In a sense, the
large number of available states per electron makes ionization easier than
recombination; as a result the temperature at which ionization occurs is
considerably lower than Eion/kB.

E X E R C I S E 4 . 2— Let ni be the density of H i and nii be the density of H ii.
Denote the fraction of neutral hydrogen as x = ni/(ni + nii), so that
1− x = nii/(ni + nii) is the fraction of ionized hydrogen. Take
ni + nii = 1015 cm−3, and assume that all free electrons come from the ionization
of hydrogen, so that ne = nii. Plot x as a function of temperature for
7 500K ≤ T ≤ 15 000K, and find the temperature at which x = 1/2. Then
multiply x by the fraction n2/n1, as set by the Boltzmann equation, to find the
fraction of hydrogen in the n = 2 level.

As shown in exercise 4.2, the Balmer lines, which correspond to tran-
sitions 2 → 3, 2 → 4, …, are most prominent in A stars. These stars
have Teff = (7 500–9 500)K. At lower temperatures, the population of
hydrogen atoms in the level n = 2 decreases as e−E2/kBT and the lines
become weak. At higher temperatures, the number of neutral hydrogen
atoms decreases; most of the hydrogen is ionized, and the Balmer lines
again become weaker.

These arguments apply to other species present in the stellar photo-
sphere. Figure 4.4 displays spectra for selected stellar types at optical
wavelengths. In the hottest stars (type O: Teff > 30000K), hydrogen
is mostly ionized and the lines are from He ii and multiply-ionized met-
als. As the temperature cools into the B and A series, the hydrogen lines
increase in strength. Going from F into G (Teff = (5 000–6 000)K, the hy-
drogen lines decrease, while lines from singly-ionized and neutral metals
such as Ca ii, Ca i, and Fe i become strong. At still lower temperatures in
the K and M (Teff < 3 500K) types, absorption from molecules such as
TiO becomes prominant. An example is the broad trough seen in the K
spectrum near λ = 500nm.
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Figure 4.4: Spectra from main-sequence
stars of spectral types O–K. Data from
Jacoby et al. [1984].
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4.5 Pressure broadening of lines

We’ve now demonstrated how stars may be classified by the absorption
lines in their spectra, and how this classification gives us the photosphere
effective temperature. We can also obtain information about the pres-
sure at the photosphere, and hence the surface gravity of the star, by
looking at the shape of the absorption lines. A zoomed-in view of the Hγ
line (2 → 5 transition in H i) from a main-sequence A1 star is show in
Fig. 4.5. The line is spread over a few nanometers, compared against a
central value of 434nm.
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Figure 4.5: Hγ absorption line ob-
served from the main-sequence A1
star HD16608. Spectrum from Jacoby
et al. [1984].

To understand what sets the shape, and width, of the ab-
sorption line, we need to model our atomic transition. Consider an
electronic transition in an atom between two energy levels, Em and En.
The natural frequency of this transition is ν0 = |En − Em|/h. Light inci-
dent on the atom with frequency ν ̸= ν0 drives the electron at frequency
ν.

Since the transition between two states has a definite frequency as-
sociated with it, let’s start with a simple harmonic oscillator, which is
described by an equation

d2x
dt2

+ ω2
0x = 0.

Here ω0 = 2πν0. Light is described as an electromagnetic wave, so
classically the electron feels a force eE cos(ωt), where ω = 2πν. An accel-
erating electron radiates, which damps the acceleration of the electron.
The damping can be modeled as a force that is proportional to the ve-
locity,−mΓdx/dt. Classically, the transition in an atom can therefore
be modeled as an electromagnetic oscillator with damping and driving
terms,

d2x
dt2

+mΓ
dx
dt

+ ω2
0x =

eE
m

cos(ωt).

This has a well known solution (see Box 4.2). The amplitude of oscillation
is proportional to the energy removed from the incident light, which is
proportional to the cross-section. The classical cross-section for absorp-
tion of radiant energy by an electromagnetic oscillator is thus

σ =

(
πe2

mec

){
Γ/4π

(ν0 − ν)2 + (Γ/4π)2

}
. (4.7)
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0.0
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Figure 4.6: Comparison of a Lorentzian
(L, solid line) and a Gaussian (G, dotted
line), both with FWHM = 1. The area
under each curve is unity.

The function

L(ν; Γ) =
1
π

Γ/4π
(ν0 − ν)2 + (Γ/4π)2

is known as a Lorentzian. In contrast to a Gaussian, a Lorentzian is
characterized by broad “wings” (Fig. 4.6) away from the central frequency
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ω0. The actual value of the cross-section must be calculated using quan-
tum mechanics. The overall shape of the cross-section is still in the form
of equation (4.7), however, so the opacity is just

ρκν = nion,m

(
πe2

mec

)
fmn

{
Γ/4π

(ν0 − ν)2 + (Γ/4π)2

}
. (4.8)

In this equation, fmn is a number, called the oscillator strength, that results
from the calculation of the transition probability from statem to state
n, and nion,m is the density of atoms in statem. The key point is that
fmn depends only on the details of the transition: the energies, spins,
and parities of the atomic states. It does not depend on environmental
parameters such as temperature and pressure. As a result, fmn can be
measured or computed once and then tabulated.

Box 4.2The driven damped oscillator

Let’s begin with a simple system: a massm attached to a spring
with force F = −kx.

If we put the origin of our coordinate system where the mass is at
rest with the spring relaxed, then the equation of motion of the
mass is

d2x
dt2

+
k
m
x = 0. (4.9)

You have solved this equation before: the most general solution is

x(t) = x0 cos(ω0t) +
v0
ω0

sin(ω0t) (4.10)

with ω2
0 = k/m and with x0 and v0 being the initial position and

velocity of the mass. The angular frequency ω0 is related to the
period of oscillation T as ω0 = 2π/T = 2πν.

Now let’s push on our mass with an oscillating force,
F cos(ωt) with ω ̸= ω0. A real world example would be holding
a vibrating tuning fork near another fork tuned to a different
frequency. The equation of motion is now

d2x
dt2

+ ω2
0x =

F
m

cos(ωt). (4.11)
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Box 4.2 continued

You can verify by substitution that a general solution is

x(t) =
F/m

(ω2
0 − ω2)

cos(ωt) + A cos(ω0t) + B sin(ω0t).

Let’s start with our harmonic oscillator at rest (v0 = dx/dt|t=0 =

0) and at x|t=0 = 0. With these conditions, we can determine the
constants A and B; the solution is

x(t) =
F/m

(ω2
0 − ω2)

[cos(ωt)− cos(ω0t)] .

Let’s recast this by defining Δ = ω0 − ω and ωm = (ω0 + ω)/2.
Then

ω2
0 − ω2 = (ω0 − ω)(ω0 + ω) = 2Δωm,

cos(ω0t) = cos (ωmt+ Δt/2) ,

cos(ωt) = cos (ωmt− Δt/2) ;

using the cosine addition rules and combining terms, we can write
the solution as

x(t) =
[
F/m
Δωm

sin(Δt/2)
]
sin(ωmt). (4.12)

This illustrates the phenomena of beats: the oscillation consists of
a carrier signal at frequency ωm with the amplitude modulated at
the slower frequency Δ/2. Notice that the amplitude increases as
Δ → 0, i.e., ω → ω0.

Now let’s make our model even more realistic.
We add a frictional force that is proportional to velocity,
Ffriction = −mΓdx/dt. Our complete equation of motion is then

d2x
dt2

+ Γ
dx
dt

+ ω2
0x =

F
m

cos(ωt). (4.13)

The solution to this is straightforward to find, although the alge-
bra is tedious (trust me on this). The general solution for initial
conditions x|t=0 = x0 and dx/dt|t=0 = v0 is

x(t) =
F(ω2

0 − ω2)/m
(ω2

0 − ω2)2 + Γ2ω2
cos(ωt) (4.14)

+
ΓωF/m

(ω2
0 − ω2)2 + Γ2ω2

sin(ωt)

+

[
x0 −

F(ω2
0 − ω2)/m

(ω2
0 − ω2)2 + Γ2ω2

]
e−Γt/2 cos(ωΓt)

+

[
v0
ωΓ
− ΓωF/m

(ω2
0 − ω2)2 + Γ2ω2

ω
ωΓ

]
e−Γt/2 sin(ωΓt),
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Box 4.2 continued

with

ωΓ = ω0

(
1− Γ2

4ω2
0

)1/2

.

Let’s simplify this a bit. First, the last two terms decay as e−Γt/2:
these are transients set by the initial conditions. After a time
t ≫ 2/Γ only the first two terms, which oscillate at the driving
frequency ω, will remain.

We can simplify these first two terms even further: if we write

cos(ωt) =
eiωt + e−iωt

2
, sin(ωt) =

eiωt − e−iωt

2i
,

we can combine them and obtain

x(t) =
F
2m

[
1(

ω2
0 − ω2

)
+ iΓω

]
eiωt

+
F
2m

[
1(

ω2
0 − ω2

)
− iΓω

]
e−iωt

= ℜ

{
F
m

[
1(

ω2
0 − ω2

)
+ iΓω

]
eiωt

}
(4.15)

We use the symbol “ℜ” to denote taking the real part of a complex
quantity. The oscillation is thus described as the real part of a
complex quantity Aeiωt, with

A =
F
m

[
1(

ω2
0 − ω2

)
+ iΓω

]

being the (complex) amplitude.
For ω ≈ ω0, we approximate (ω2

0 − ω2) ≈ 2ω0(ω0 − ω) and
take the square of the amplitude to find,

|A|2 =

(
F

2mω0

)2 1
(ω0 − ω)2 + (Γ/2)2

=
π
2Γ

(
F

mω0

)2{ 1
π

Γ/2
(ω0 − ω)2 + (Γ/2)2

}
(4.16)

We rewrote the amplitude in the second line so that the term in
{·} is normalized. The amplitude is a Lorentzian function of the
driving frequency ω.

In a stellar atmosphere, the width Γ is set by collisions. For
example, when an electron passes close by our atom, the electric field
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shifts the energy levels of the atom10. The greater the collision rate, the 10 This is an application of the Stark
effect that you learn about in quantum
mechanics.

larger the width. If we have two stars of the same photospheric temper-
ature (so that both stars have the same lines), then a way to increase the
collision rate is to increase the pressure. Recall, however, that in the stel-
lar atmosphere P = (g/κ)τ; as a result, stars with a higher surface gravity
will have broader lines. The inset in Figure 4.7 illustrates the broadening
of the Balmer Hγ line (2 → 5) in the spectrum of a main-sequence A1
star compared with that of a supergiant A1 star.
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Figure 4.7: Spectra of two A1 stars, HD
16608 (a main sequence star) and SAO
12149 (a supergiant star). Spectra are
from Jacoby et al. [1984].
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Burn

To recap, we have established a description for the basic features of a
self-gravitating fluid:

1. For a set mass and radius, hydrostatic equilibrium (balance of pres-
sure and gravity) is established on the time needed for a sound wave
to cross the star. Once this equilibrium is established, the central
pressure, density, and temperature are established.

2. The gradient in temperature from center to surface drives a lumi-
nosity, which is controlled by the opacity of material in the stellar
interior.

3. The ambient pressure and temperature near the stellar photosphere
(where τ ∼ 1) are set by the surface gravity and opacity.

In this chapter we now discuss how the luminosity is generated by
nuclear reactions in the core of a star, and the conditions needed to
generate that luminosity.

5.1 The nucleus

Experimentally, nuclei are on the order of femtometers1 in size. Like an 1 1 fm = 10−15 m. This unit is sometimes
called a Fermi.atom, the nucleus also has excited states; typical energies for these are

on the order of MeV2. It therefore makes sense to use fm and MeV as our 2 1MeV = 106 eV; an electron volt
(eV) is the energy acquired by an electron
being accelerated through a potential
difference of 1 volt.

units of length and energy. In these units, the combination

ℏc = 197MeV fm

to three significant figures. In quantum field theory, the strength of the
electromagnetic interaction is characterized by the dimensionless fine
structure constant

αF =
e2

4πε0ℏc
=

1
137

,
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again to three significant figures. From these two quantities, we find the
electron (or proton) charge in these units,

e2

4πε0
= αFℏc = 1.44MeV fm.

Put another way, the Coulomb potential energy between two protons
separated by 1 fm is 1.44MeV.

The strong nuclear force differs from electromagnetism and grav-
ity in several ways. First, the strong nuclear force is short-range: the
interaction vanishes for distances≳ 2 fm. It is weakly attractive for dis-
tances 1 fm ≲ r ≲ 2 fm and becomes strongly repulsive at distances
≪ 1 fm. The potential between the neutron and proton in a deuterium
(2H) nucleus (called a deuteron) therefore looks something like that
sketched in Fig. 5.1. The deuteron’s ground state (black dotted line) is at
Ed = −2.2MeV, so the nucleus is weakly bound (|Ed| ≪ |V|, where V is
the depth of the potential well).

1 2
 (fm)

, 
 (M

eV
)

Figure 5.1: Schematic of the nuclear
potential for a deuteron (2H). The binding
energy of the deuteron is shown as a black
dotted line.
In our units of MeV and fm, some rele-
vant masses are

mn = 939.6MeV/c2

mp = 938.3MeV/c2

mu = 931.5MeV/c2

me = 0.5110MeV/c2

E X E R C I S E 5 . 1— We can estimate the depth of the well in Fig. 5.1. Since
this is a two-body problem, transfer to center-of-mass coordinates and solve for a
single particle with a reduced massmpmn/(mp +mn) ≈ mn/2. Use the
uncertainty principle, with Δx being the width of the well, to get an estimate of
p ∼ Δp and from this estimate the kinetic energy of the particle. Finally, use the
small value of the binding energy (sum of potential and kinetic energies) to
estimate the depth of the potential well.

Also unlike electromagnetism and gravity, the strong nuclear force
does not obey superposition: we cannot write the energy of the nucleus
as a sum over the potential between all pairs of nucleons. Further, the
strong nuclear force is not a central force, meaning that it depends on
more than just the distance between any two nucleons. The atomic nu-
cleus is thus much more complicated to describe than the electronic
structure of the atom.

Despite these complications, we can construct a phenomeno-
logical formula for the nuclear mass that is reasonably
accurate. Let us write the mass of a nucleus with A nucleons—Z pro-
tons and N = A− Z neutrons—as

M(Z,N) = Zmp + Nmn − B(Z,N)/c2,

where B(Z,N) is the binding energy—the amount of energy that
must be supplied to the nucleus in order to break it into its constituent
protons and neutrons. Because the nuclear force is weakly attractiveAn alternative formulation uses the mass

excess, defined via

M(Z,N) = Amu + Δ(Z,N)/c2

with Δ(12C) ≡ 0. HereM(Z,N) is the
atomic mass, including electrons.

for separations 1 fm ≲ r ≲ 2 fm and repulsive at shorter distances
(Fig. 5.1), there is a characteristic spacing between nucleons that is a bit
larger than 1 fm. In a large nucleus, we therefore expect the nucleons
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to have a roughly constant density, so that the volume of the nucleus is
proportional to A; experimentally, the radius of the nucleus is roughly3 3 The value of the radius depends on how

it is measured; scattering with various
light particles (protons, neutrons, alpha,
electrons) agree, however, that rA ∝ A1/3.

rA = (1.1 to 1.8) fm× A1/3.

Notice that because the nucleon-nucleon potential is short-ranged, nu-
cleons in a large nucleus only interact with their nearest neighbors. In-
deed the nucleon-nucleon interaction is similar in form to the potential
between molecules in a fluid, such as a water drop. This motivates de-
veloping a simple formula that gives a decent approximation for the
binding energy. For the first term, we estimate the binding energy
of a large nucleus as just the (constant) binding energy of a single nu-
cleon multiplied by the number of nucleons. Experimentally, it is found
that for large nuclei this is the case: the binding energy per nucleon is
roughly constant. We say that the nuclear interaction saturates, so
that B(Z,N) ∝ A = (Z+ N).

E X E R C I S E 5 . 2— To see how the nuclear force differs from the long-range
Coulomb and gravitational forces, suppose instead that the nuclear force acted
like a super-gravity: that is, the potential is∝ 1/r. Use the results from our
constant-density model of a star (eq. [2.22]) to derive how the binding energy
would scale with A in this case.

It is energetically favorable to have equal numbers of neutrons and
protons. We therefore define an asymmetry parameter η ≡ (N− Z)/(N+

Z) = 1 − 2Z/A, so that−1 ≤ η ≤ 1. The nuclear contribution to the
binding energy is maximized for η = 0 (equal numbers of protons and
neutrons). Because the nuclear force does not distinguish between neu-
trons and protons, the binding energy is quadratic in η, so that B doesn’t
depend on the sign of η. Thus our first approximation for the binding
energy is B ≈ (aV − aAη2)A. Here aV and aA are as-yet-undetermined
coefficients.

In a fluid drop there is a correction for the surface tension. Heuristi-
cally, we imagine that nuclei in the surface have fewer neighbors and are
therefore not as bound. We therefore subtract from our formula a term
proportional to the surface area,∝ r2A ∝ A2/3. The next iteration of our
liquid-drop approximation is thus B ≈ (aV − aAη2)A− aSA2/3.

Finally, the protons in the nucleus are charged and therefore repel one
another. This Coulomb repulsion also reduces the binding energy. We
therefore subtract a term∝ Z2/rA ∝ Z2/A1/3 from our mass formula to
obtain

B =
(
aV − aAη2)A− aSA2/3 − aC

Z2

A1/3 . (5.1)

This is a version of the semi-empirical mass formula, also known as
the Bethe-Weizsäcker mass formula. The coefficients aV, aA, aS, aC
are found by fitting the formula to measured nuclear masses (Table 5.1).

Table 5.1: Coefficients for the fit to
nuclear masses, (5.1), in units of MeV.

aV aA aS aC
15.5 22.7 16.6 0.71
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This fit should have another term to account for the pairing of neutrons
and protons, so that the binding energy is increased for even Z and N. We
omit that term here for simplicity.

E X E R C I S E 5 . 3— For a given nuclear mass number A, derive an expression
for the charge number Z⋆(A) that maximizes the binding energy (eq. [5.1] with
coefficients from Table 5.1).

1. Plot the ratio Z⋆/A for 4 ≤ A ≤ 128. Give a physical explanation for the
behavior of Z⋆/A.

2. Plot the binding energy per nucleon B/A as a function of Z⋆ and A, for
4 ≤ A ≤ 128.

3. Find the atomic number Z and atomic mass A of the nucleus with the
maximum B/A.

5.2 Nuclear reactions

From mass-energy conservation, the heat evolved during a nuclear reac-
tion equals the change in mass of the reacting system. For example, in
the reaction

3He+ 3He→ 4He+ p+ p,

the binding energy of 3He is 7.718MeV and that of 4He is 28.296MeV;
the heat evolved by this reaction is therefore

2
[
2mp +mn − B(3He)

]
−
[
2mp + 2mn − B(4He)

]
− 2mp

= B(4He)− 2B(3He)

= 28.296MeV− 15.437MeV

= 12.859MeV.

E X E R C I S E 5 . 4— Fusion of hydrogen into helium entails converting 4
hydrogen atoms (including the 4 electrons) into 1 helium atom (2 protons, 2
neutrons, 2 electrons) with B = 28.296MeV. What is the heat evolved per
hydrogen atom? Assume that the sun has been shining with its current luminosity
over its life. What mass of hydrogen atoms would need to undergo fusion to
supply this energy? How large is this mass relative to the total mass of the sun?

You might think that because the nuclear interaction is
short-range, the cross-section is something like πr2n, where
rn ≈ (1 to 2) fm. Things are a bit more subtle, however, and in this
section we shall explore how the reaction rate works. First, the “size” of a
particle is in general proportional to the “size” of the wavefunction. From
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the uncertainty principle,

π Δx2 ≈ π
(

ℏ
Δp

)2

= π
ℏ2

2mE
.

where we’ve taken Δp ∼ p. Notice that if we multiply and divide by c2,
then we can estimate the area of the wavepacket as

(ℏc)2

mpc2
1
E
∼ 4× 104 fm2 ×

(
keV
E

)
= 400 b

(
keV
E

)
.

Here we’ve introduced a convenient unit for cross-sections, the barn4 4 as in hitting the broad side of

(b), with 1 b = 10−28 m2 = 100 fm2.
The key point is that the size of the wave packet is∝ 1/E, which is in

general true. This geometrical size of the wave packet is then multiplied
by the probability of the nucleons forming a bound state, so we write the
nuclear portion of the cross-section as

σnuclear(E) =
S(E)
E

.

The function S(E) contains the details of the nuclear interaction; in gen-
eral S(E)must be measured experimentally.

The final part of the cross-section concerns the Coulomb potential.
Because protons repel one another, at large separations the nuclei in-
teract only via the Coulomb potential. Consider the case of two nu-
clei with masses5 A1mu and A2mu. Transform to the center-of-mass 5 When doing kinematics, we shall make

the approximationm ≈ Amu.frame; the problem then reduces to that of one particle, mass Amu =

A1A2/(A1 + A2)× mu, moving in a potential, which at large separations is
purely Coulomb,

Z1Z2e2

4πε0r
=

Z1Z2αFℏc
r

= 1.44MeV× Z1Z2

(
1 fm
r

)
.

Fig. 5.2 has a schematic of the potential. While at short distances the
nuclear interaction forms a deep potential well, outside the nucleus the
Coulomb potential dominates. , 

, 

Figure 5.2: Tunneling through the
Coulomb potential barrier. Not to scale.

E X E R C I S E 5 . 5— For the sun, typical center-of-mass energies are E ∼ 1 keV
(horizontal black line in Fig. 5.2). Suppose we have two protons heading towards
one another with this kinetic energy. What is their distance of closest approach?

As shown in Exercise 5.5, the turning radius rE at typical stellar ener-
gies is much larger than the nuclear radius. Classically the particle can’t
penetrate the region rn < r < rE where E < V (dotted black line, Fig. 5.2);
under classical physics, there would be no nuclear reactions at typical
stellar temperatures because two particles would never find themselves
close enough to be bound by the nuclear force.
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The world is quantum, however, and the uncertainty in a particle’s
position means there is a small probability for the nucleons to be close
enough for the nuclear force to come into play. In the classically forbid-
den region rn < r < rE, the particle wavefunction (thin gray line, Fig. 5.2)
decreases exponentially, and the probability to reach r ∼ 1 fm is

P ≈ exp
[
−2π2 rE

λ

]
where λ = h/p, p being the momentum of the particle. It is convenient to
rewrite the argument of the exponential in terms of the particle’s energy,

2π2rE
λ

= 2π2
(
Z1Z2e2

E

)(p
h

)
=

[
π
Z1Z2e2

√
2m

ℏ

](
1
E

)1/2

,

so that the probability of “tunneling” through the Coulomb barrier is

P ≈ exp

[
−
(
EG

E

)1/2
]
, (5.2)

with

EG ≡ “Gamow Energy” =
[
2π2Z2

1Z
2
2e

4m
ℏ2

]
= Z2

1Z
2
2A× 979 keV.

Our reaction cross-section is therefore the nuclear cross-section multi-
plied by the probability of tunneling,

σ(E) =
S(E)
E

exp

[
−
(
EG

E

)1/2
]
. (5.3)

For many reactions S(E) is nearly constant over the range of typical
energies in a stellar plasma; this is helpful, as the reaction cross-section
can be measured in the lab at higher energies and then extrapolated to
the much lower stellar energies.

To get the reaction rate from the cross-section, recall that
the mean-free path of a particle is ℓ = (nσ)−1, where n is the density of
targets. For definiteness, let us consider a particle of type 1. The mean-
free path of this particle against reactions with particles of type 2 is
therefore ℓ = (n2σ)−1. If the particles are traveling with relative speed
v = |vvv1−vvv2|, then the mean time between collisions is ℓ/v. Thus in a large
ensemble of particles, the mean rate of reactions is

r12 =
n1v
ℓ

= n2n1⟨σv⟩.

Here ⟨σv⟩ is the mean value of σv for all pairs of particles in the plasma.
For reactions between particles of the same type, we replace n1n2 with
n2/2; the factor of 1/2 is to avoid double-counting.
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A detailed calculation of the thermally averaged cross-section ⟨σv⟩ is
presented in Box 5.1; here we’ll just give a brief physical explanation for
its value. There are two competing terms. First, the cross-section has an
exponential term exp[−(EG/E)1/2] that increases rapidly with energy:
more energetic particles have a much higher probability of tunneling
through the Coulomb barrier. On the other hand, in thermal equilibrium
the number of particles with energy E decreases as exp(−E/kBT). As a
result, reactions predominately occur in a narrow window of energies
about a sort of geometric mean between EG and kBT:

Epk =
E1/3
G (kBT)2/3

41/3 .

The reaction rate is suppressed for E ≪ Epk because the probability of
penetrating the Coulomb barrier is so small; the reaction rate is sup-
pressed for E≫ Epk because there simply aren’t enough particles with the
relevant center-of-mass energy.

Box 5.1The thermally averaged cross-section

Since the cross-section depends on energy, the rate at which
any given particle of type 1, traveling with velocity vvv1, will react
with particles of type 2 having velocities vvv2 in a range d3v2 is

n2σ|vvv1 − vvv2|
(

m2

2πkBT

)3/2

exp
(
−m2v22

2kBT

)
d3v2.

The extra terms are because the particles have a Maxwell-
Boltzmann distribution of velocities. To get the total rate per
unit volume, we then have to multiply by the number of particles
of type 1 having velocities vvv1 in a range d3v1 and integrate over
d3v1 d3v2:

r12 = n1n2

[
m1m2

(2πkBT)2

]3/2
×
∫

σ(E)v exp
(
−m1v21

2kBT
− m2v22

2kBT

)
d3v1 d3v2. (5.4)

Now E and v are the relative energies and velocity in the center-of-
mass frame. We can change variable using the relations

vvv1 = VVV− m2

m1 +m2
vvv

vvv2 = VVV+
m1

m1 +m2
vvv.

where V is the center-of-mass velocity. It is straightforward to
show that dv1,x dv2,x = dVxdvx, and likewise for the y, z directions.
Furthermore,m1v21 +m2v22 = (m1 +m2)V2 +mv2, and multiplying
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Box 5.1 continued

and dividing the integral in equation (5.4) bym1 + m2 allows us to
write

r12 = n1n2

(
m1 +m2

2kBT

)3/2( m
2kBT

)3/2

×
∫

d3V
∫

d3v σ(E)v exp
[
− mv2

2kBT

]
exp

[
− (m1 +m2)V2

2kBT

]
.

The integral over d3V can be factored out and is normalized to
unity. Hence we have for the reaction rate between a pair of
particles 1 and 2,

r12 = n1n2

{(
m

2πkBT

)3/2 ∫ ∞

0
σ(E)v exp

(
− mv2

2kBT

)
4πv2 dv

}
.

≡ n1n2⟨σv⟩. (5.5)

The term in {} is the averaging over the joint distribution of the
cross-section times the velocity, and is usually denoted as ⟨σv⟩.
Note that if particles 1 and 2 were identical, then we would need
to divide r12 by 2.

Changing variables to E = mv2/2 in equation (5.5) and insert-
ing the formula for the cross-section, equation (5.3), gives

⟨σv⟩ =
(

8
πm

)1/2( 1
kBT

)3/2 ∫ ∞

0
S(E) exp

[
−
(
EG

E

)1/2

− E
kBT

]
dE.

(5.6)
Now, we’ve assumed that S(E) varies slowly; but look at the ar-
gument of the exponential. This is a competition between a
rapidly rising term exp[−(EG/E)1/2] and a rapidly falling term
exp(−E/kBT). As a result, the exponential will have a strong peak,
and we can expand the integrand in a Taylor series about the
maximum. Let

f(E) = −
(
EG

E

)1/2

− E
kBT

.

Then we can write∫ ∞

0
S(E) exp

[
−
(
EG

E

)1/2

− E
kBT

]
dE

≈
∫ ∞

0
S(Epk) exp

[
f(Epk) +

1
2

d2f
dE2

∣∣∣∣
E=Epk

(
E− Epk

)2] dE.

Here Epk is found by solving (df/dE)|E=Epk = 0. By expanding
the argument of the exponential, we have approximated the
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Box 5.1 continued

integrand by a Gaussian,

exp
[
−
(E− Epk)

2

2ς2

]
where

1
ς2 = − d2f

dE2

∣∣∣∣
E=Epk

.

This trick of approximating a steeply peaked function as a Gaus-
sian is known as the method of steepest descent.

Solving for Epk, we get

Epk =
E1/3
G (kBT)2/3

22/3 ,

and

exp
[
f(Epk)

]
= exp

[
−3
(

EG

4kBT

)1/3
]
.

Further,

1
2

d2f
dE2

∣∣∣∣
E=Epk

= − 3
2(2EG)1/3(kBT)5/3

= − 3
4EpkkBT

.

Defining a variable Δ = 4(EpkkBT/3)1/2, our integral becomes

⟨σv⟩ =
(

8
πm

)1/2( 1
kBT

)3/2

S(Epk)

× exp

[
−3
(

EG

4kBT

)1/3
]∫ ∞

0
exp

[
−
(E− Epk)

2

(Δ/2)2

]
dE.(5.7)

Another simplification can be made because both the Gaussian
and the original integrand go to zero as E → 0. As a result, we can
extend the lower bound of our integral (eq. [5.7]) to−∞, which
allows us to evaluate the integral analytically and obtain

⟨σv⟩ ≈
(

8
m

)1/2( 1
kBT

)3/2

S(Epk) exp

[
−3
(

EG

4kBT

)1/3
]

Δ
2

=
213/6
√
3m

E1/6
G S(Epk)

(kBT)2/3
exp

[
−3
(

EG

4kBT

)1/3
]
. (5.8)

Using this approximation the rate can be evaluated, with ⟨σv⟩ being
given by eq. (5.8). The rate has the temperature dependence

r ∝ T−2/3 exp

[
−3
(

EG

4kBT

)1/3
]
;
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since EG ∝ Z2
1Z

2
2A, at any given temperature lighter nuclei typically have

much faster reaction rates. Also note that at stellar energies, reaction
rates are incredibly sensitive to temperature. To quantify this, approxi-
mate the rate at a given temperature as a power-law, r(T) ∝ Tn. Then the
exponent is

n(T) =
∂ ln r
∂ lnT

= −2
3
+

(
EG

4kBT

)1/3

, (5.9)

as you can verify for yourself (Exercise 5.6). Table 5.2 lists EG, Epk, and n
for some common reactions. In the table, the peak reaction energy Epk

and exponent n(T) are evaluated at T = 107 K (kBT = 0.86 keV). Note the
large value of n(T) at stellar temperatures—this is a consequence of the
largeness of EG/kBT.

Table 5.2: Parameters for non-resonant
reactions

p+ p p+ 3He 3He+ 3He p+ 7Li p+ 12C
EG (MeV) 0.489 2.94 23.5 7.70 32.5
Epk|T=107 K (keV) 4.5 8.2 16.3 11.3 18.2
n(T = 107 K) 4.6 8.8 18.3 12.4 20.5

E X E R C I S E 5 . 6— Suppose we wish to approximate a function f(x) at a point
x0 with a power-law, p(x;A, n) = Axn. Impose the condition p(x0;A, n) = f(x0)
and dp/dx|x=x0 = df/dx|x=x0 to find the parameters A and n, and show that

n =
d ln f
d ln x

.

Apply this to the reaction rate, eq. (5.8), and thus derive eq. (5.9).

5.3 Stellar nuclear reactions

Hydrogen burning via pp reactions: the weak nuclear interaction

In the previous section, we established that lighter nuclei, because of
their lower Coulomb repulsion, will tend to fuse at lower temperatures.
Thus we expect that the first reaction that can occur is p + p and therein
lies a problem: there is no bound state of 2He. The only possible way for
two protons to fuse is for one of the protons to transmute into a neutron,
giving the reaction

p+ p→ 2H+ e+ + νe. (5.10)

This reaction is possible because there are two nuclear forces: the strong
and the weak. The strong is what binds nuclei together; the weak medi-More precisely, what the strong force

mainly does is bind quarks into neutrons
or protons.

ates the conversion of a neutron into a proton (and vice versa). Two lep-
tons are also involved (either emitted or absorbed) in this type of weak
reaction: an electron (or its anti-particle, the positron) and an electron
neutrino (or anti-neutrino). Three conservation laws determine which
particles are involved:



burn 65

1. the number of nucleons is conserved;

2. the charge is conserved; and

3. the number of leptons is conserved.

With regard to item 3, electrons (e−) and electron neutrinos (νe) have
lepton number+1 while positrons (e+) and anti-electron neutrinos (ν̄e)
have lepton number−1. Neutrinos, as the name implied, do not carry
charge.

Applying these rules to the reaction (5.10), the number of nucle-
ons on both sides of this reaction is the same, so rule 1 is satisfied. The
positron on the right hand side balances charge to satisfy rule 2. Finally,
the emission of an electron neutrino ensures that the lepton number on
the right-hand side is zero to satisfy rule 3.

The weak cross section goes roughly as σweak ∼ 10−20 b (E/keV), so
that

σweak

σnuc
∼ 10−23

(
E

keV

)
.

As a result the characteristic temperature for reaction (5.10) to occur is
≈ 1.5× 107 K, much higher than the temperature at which p+ 2H occurs;
at this temperature, the lifetime of a proton to forming deuterium via
capture of another proton is about 6Gyr. Once a deuterium nucleus is Because the weak cross section is so

small, the first reaction that occurs in
a contracting pre-main sequence star is
2H + p → 3He; in fact, this reaction can
occur in objects as small as≈ 12MJupiter.
The small primordial abundance of
deuterium, however, prevents this
reaction from doing anything more
than slowing contraction slightly.

formed, it is immediately destroyed via 2H + p → 3He. The nucleus
4Li is unbound with a lifetime of 10−22 s; the nucleus 6Be is likewise
unbound (τ ∼ 5 × 10−21 s). As a result, the next reaction that can occur
is 3He+ 3He→ 2p+ 4He. Despite having a much greater Gamow energy
than p+ p, this reaction still is much faster than p+ p owing to the small
weak cross-section.

In addition to capturing another 3He, it is also possible for 3He to
react with 4He and trigger the reactions In eq. (5.11) and (5.12), τ refers to the

half-life for the nucleus on the left.
3He+ 4He → 7Be+ γ

7Be+ e− → 7Li+ νe (τ = 53 d)
7Li+ p → 24He+ γ; (5.11)

furthermore, at slightly higher temperatures 7Be can capture a proton
instead of an electron to yield

7Be+ p → 8B+ γ
8B → 8Be+ e+ + νe (τ = 770ms)

8Be → 24He (τ = 10−16 s). (5.12)

The end result of these chains is the conversion of hydrogen to helium,
although the amount of energy carried away by neutrinos differs from
one chain to the next.
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Hydrogen burning via the CNO cycle

As we saw in the previous section, the smallness of the p+p cross-section
means that proton captures onto heavier nuclei can occur at similar, or
even faster rates, than p + p despite the larger Coulomb barrier. At
T6 = 10, proton captures onto 12C have a comparable cross-section to
p + p; at T6 = 20, proton captures onto 16O have a comparable cross-
section. Thus at temperatures slightly greater than that in the solar
center, the following catalytic cycle becomes possible:

12C+ p → 13N
13N → 13C+ e+ + νe

13C+ p → 14N
14N+ p → 15O

15O → 15N+ e+ + νe
15N+ p → 12C+ 4He

The net result of this cycle is the ingestion of 4 protons and release of 1
4He nucleus. The reaction 14N + p → 15O is by far the slowest step in
the cycle; as a result, all of the CNO elements are quickly converted into
14N in the stellar core, and this reaction controls the rate of heating. At
T = 2 × 107 K, ∂ ln ϵCNO/∂ lnT = 18; in contrast the p + p reaction has a
temperature exponent of only 4.5.

5.4 The luminosity equation

Suppose we have a shell of mass Δm = 4πr2ρΔr lying between surfaces
r and r + Δr (Fig. 5.3). Nuclear reactions in the shell heat it at a rate
Δm × ϵ, where ϵ is the heating rate per unit mass. In addition, heat
enters the shell from the bottom at a rate L(r) and leaves from the top at
a rate−L(r + Δr). If the shell is neither gaining or losing heat, then all
these terms must balance:

4πr2ρϵ Δr+ L(r)− L(r+ Δr) = 0.Δm
 =

 4π

r2ρ
 Δr r

r + Δr

L(r)

L(r+
Δr)

Figure 5.3: Heat balance in a shell Δm.

Taking the limit Δr → 0 produces our fourth equation of stellar
structure,

dL
dr

= 4πr2ρϵ.

At the center, L(r)r→0 → 0, while at the surface L(r)r→R → 4πR2σSBT4
eff.
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Star

We now have almost all of the physics necessary to describe the structure
of a star. We only need two additional items: we must consider whether
the fluid is at rest or whether there is circulation, and we must discuss
how the equation of state deviates from that of a classical ideal gas at
high densities. These changes in the equation of state are important for
low-mass stars and set the minimum stellar mass.

6.1 Convection

We’ve established that in the interior of the star a temperature gradient,

dT
dr

= − 3ρκR
4acT3

L(r)
4πr2

,

arises to transport heat outward (cf. eq. [3.14]). This gradient becomes
steeper as we increases either the flux L/4πr2 or the mean opacity κR.
There is a limit, however, to the magnitude of |dT/dr|: if the gradient is
too steep, the warm fluid becomes buoyant relative to the cooler fluid
above it and begins to rise. You are familiar with this phenomenon:
picture a hot summer day. As the ground absorbs sunlight, it warms
the air just above the ground. The warm air rises and forms updrafts.
You have perhaps seen hawks circling as they are carried aloft by these
updrafts. This circulation of fluid induced by a temperature gradient is
known as convection.

You can do a home demonstration of convection. Brew tea, and pour
the hot tea into a saucepan that is on an unlit burner. Use a straw to
inject a layer of cold milk under the warm tea in the saucepan. The tem-
perature difference between the tea and milk will inhibit their mixing.
Light the burner, and watch for the development of convection—you will
know it when you see it (Fig. 6.1).

Convection can also occur in stars, in regions of high flux and/or high
opacity. During convection, the fluid velocities in question are typically
quite subsonic, so hydrostatic equilibrium abides. But the fluid motions
do make an enormous difference to heat transport! Warm fluid is carried
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Figure 6.1: Onset of convection in a
tea-milk mixture.

upward and cool fluid sinks. The net result is that heat is transported
upward much faster than it would have been if only diffusion had been
operating. This upward transport of heat modifies the temperature gra-
dient. In this chapter, we shall derive the condition for the onset of
convection, and the value of the temperature gradient in the presence of
subsonic, efficient convection.

The onset of convection

To understand when convection starts, it helps to recall why a parcel of
warm air rises. Recall Archimedes’ law:

The buoyant force on an object, either wholly or partially immersed in a fluid
under a constant gravitational acceleration, equals the weight of the fluid it
displaces.

What does this mean? A boat of massm displaces (pushes aside) a vol-
ume v of water (density ρw when floating. The weight of this displaced
water, ρwvg, must equal the weight of the boatmg, so that v = m/ρw.

E X E R C I S E 6 . 1— Suppose we have a toy boat carrying a weight and floating
in a tank as shown in the top panel of Fig. 6.2. The depth of the water in the tank
is d. The weight is then removed from the boat and allowed to sink to the bottom
of the tank (bottom panel, Fig. 6.2). Does the depth of water in the tank increase,
decrease, or stay the same? Explain your reasoning.

Figure 6.2: A boat with a weight in a tank.

We can use Archimedes’ law—which is just an application of hydro-
static equilibrium—to determine whether a fluid in planar geometry and
hydrostatic equilibrium,

dP
dr

= −ρg, (6.1)

and with a temperature gradient is unstable to convection. Imagine
moving a blob of fluid upwards from r to r + h. We raise the blob slowly
enough that it is in hydrostatic equilibrium with its new surroundings,11 We’ll use the subscript b to denote

properties of the blob; quantities without
a subscript refer to the background fluid.

Pb(r + h) = P(r + h). We do move the blob quickly enough, however,
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that it doesn’t exchange heat with its surroundings and therefore doesn’t
remain in thermal equilibrium with its new environment. Recall that pressure equilibrium in

the blob is established over the time
a sound wave takes to cross the blob.
Thus, moving the blob slowly enough to
maintain pressure equilibrium means
that the motion is quite subsonic. Moving
the blob quickly enough to prevent heat
transport means (cf. exercise 3.9) that the
blob is much larger than a mean free path
so the time for photons to random walk
across the blob is longer than time taken
to raise the blob.

As a result of this lack of heat exchange, the upward motion of the
blob is adiabatic. To understand what this means, recall the first law of
thermodynamics, which relates the change in internal energy dU and in
volume dV to the heat transferred dQ = T dS:

dQ = T dS = dU+ P dV, (6.2)

where P is the pressure, T the temperature, and S the entropy. During an
adiabatic process, dQ = T dS = 0. The entropy of the blob is therefore
constant, Sb(r + h) = Sb(r) = S(r), and is therefore not equal, in general,
to the entropy of the surrounding gas at r + h: Sb(r + h) ̸= S(r + h).
The pressure in the blob, however, is the same as in the surrounding gas:
Pb(r+ h) = P(r+ h).

As in our discussion of the equation of state (cf. eq. [2.2]), it isn’t
really convenient to write things in terms of volume. To put eq. (6.2) into
a more convenient form, divide both sides by the mass of the blobmb:

d
(
Q
m

)
= T d

(
S
m

)
= d

(
U
m

)
+ P d

(
V
m

)
T ds = du+ P d

(
1
ρ

)
T ds = du− P

ρ2 dρ (6.3)

Here we denote the entropy per mass and the energy per mass by s and u
respectively; and we identify the volume per mass with 1/ρ, where ρ is
the mass density. Equation (6.3) is the first law of thermodynamics as
written for fluid dynamics.

After the blob has moved from r to r + h, it has expanded so that its
density is

ρb(r+ h) = ρ[Pb(r+ h), sb(r+ h)] = ρ[P(r+ h), s(r)].

Here we’ve written the density as a function of pressure and entropy:
ρ(P, s). Now we can apply Archimedes’ law: if the density of the blob is
greater than that of the surrounding fluid, then the buoyant force will be
less than the weight of the blob; as a consequence, the blob will sink back
to its original location. The fluid is thus stable. In contrast, if the density
of the blob is less than that of the surrounding fluid, then the buoyant
force is greater than the weight of the blob; a result, the fluid is unstable,
as a small perturbation leads to the acceleration of the blob upwards.
Figure 6.3 has a schematic of this criterion.

P(r)

P(r+h)

S(r+h) S(r+h)S(r) S(r)> <

stable convective

dS
/d

r =
 0

dS
/d

r =
 0

Figure 6.3: Illustration of criteria for
convective instability. On the left, raising
a blob a distance h adiabatically and in
pressure balance with its surrounding
results in a higher density Vb < V, or
ρb > ρ. This is stable: the blob will sink
back. On the right, the blob is less dense
and hence buoyant: it will continue to
rise.

Thus, for the fluid to be stable, we require that the density of the
displaced blob be greater than that of the surrounding fluid:

ρb(r+ h) > ρ(r+ h)

ρ[P(r+ h), s(r)] > ρ[P(r+ h), s(r+ h)]. (6.4)
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If condition (6.4) is satisfied, then the blob will be restored to its original
location after a perturbation, and the system is stable. If condition (6.4)
is not satisfied, then the blob will continue to rise following a perturba-
tion; the system is thus unstable.

Since h is an infinitesimal displacement, we can expand the right-hand
side of eq. (6.4):

ρ[P(r+ h), s(r+ h)] ≈ ρ[P(r+ h), s(r)] +
(
∂ρ
∂s

)
P

ds
dr

h.

Here the notation (∂ρ/∂s)P means taking the derivative of ρ with respect
to s while holding P fixed. The condition for stability is therefore, after
canceling common factors, (

∂ρ
∂s

)
P

ds
dr

< 0. (6.5)

We’ve dropped h from the left-hand side since it is positive. We can put
eq. (6.5) into a more useful form by changing variables from entropy ρ to
temperature T via(

∂ρ
∂T

)
P
=

(
∂ρ
∂s

)
P

(
∂s
∂T

)
P
=

(
∂ρ
∂s

)
P

CP

T
,

where we used the specific heat at constant pressure, CP ≡ T(ds/dT)P.
Inserting this expression into eq. (6.5) gives

T
CP

(
∂ρ
∂T

)
P

ds
dr

< 0,

Now, (∂ρ/∂T)P is negative (gas expands on being heated), while CP is
positive; hence eq. (6.5) will be satisfied wherever

ds
dr

> 0. (6.6)

In a convectively stable star, the entropy must increase with radius.

If this condition is not satisfied, if ds/dr < 0, then convection occurs:
high-entropy material is buoyant and moves outward, while lower-
entropy material sinks and moves inward. Eventually the rising fluid
will mix with the surrounding material; when it does, its entropy will
be added to the surrounding material, thereby raising its entropy. As
a result of this mixing, the entropy gradient will be driven toward the
marginally stable configuration ds/dr = 0.

The adiabatic thermal gradient

Condition (6.6) for convective stability is not directly useful, since our
equations of stellar structure do not directly involve the entropy. We’d
instead like to have the criterion for the onset of convection be expressed



star 71

in terms of pressure and temperature, since those quantities appear in
our stellar structure equations. To obtain such an equation, let’s return
to the first law expressed in terms of mass-specific quantities (eq. [6.3]):

dq = T ds = du− P
ρ2 dρ.

We can express the energy u = u(ρ,T) as a function of temperature T and
density ρ. Then taking the differential gives

du =

(
∂u
∂T

)
ρ
dT+

(
∂u
∂ρ

)
T
dρ,

and thus the first law can be written as

dq = Tds =
(
∂u
∂T

)
ρ
dT+

[(
∂u
∂ρ

)
T
− P

ρ2

]
dρ.

Hence the heat needed to raise the temperature of one kilogram of fluid
while holding density fixed is

Cρ ≡ T
(
∂s
∂T

)
ρ
=

(
∂u
∂T

)
ρ
. (6.7)

For an ideal gas, u = u(T) and Cρ is approximately constant; hence we
may integrate equation (6.7) to obtain u = CρT+ const.

In Eq. (6.3), the last term is−(P/ρ) (dρ/ρ) = −(P/ρ) d ln ρ. This
motivates the following trick: take the logarithm of the equation of state,
ln(P) = ln(ρ) + ln(T) + ln(kB/μmu), and then take the differential to
obtain

dP
P

=
dρ
ρ

+
dT
T
.

Now eliminate dρ/ρ in the equation

T ds = CρdT−
P
ρ
dρ
ρ

to obtain an expression for the heat transferred as a function of tempera-
ture and pressure,

T ds =
[
Cρ +

P
ρT

]
dT− 1

ρ
dP =

[
Cρ +

kB
μmu

]
dT− 1

ρ
dP. (6.8)

The heat needed to raise the temperature of a mass of fluid while holding
pressure fixed is therefore

CP ≡ T
(
∂s
∂T

)
P
= Cρ +

kB
μmu

. (6.9)

For a plasma of ions and electrons, Cρ = (3/2)kB/(μmu) and hence
CP = (5/2)kB/(μmu). The ratio of specific heats is

γ =
CP

Cρ
=

5/2
3/2

=
5
3
. (6.10)

This value of γ is for an ideal gas and does not hold universally.
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During adiabatic motion, there is no heat exchange: hence,
the entropy is constant and we can write eq. (6.8) as

Tds = dq = 0 = CPdT−
1
ρ
dP. (6.11)

We replace 1/ρ using the ideal gas equation of state to obtain

CPdT =
kB

μmu

T
P
dP

dT
T

=
CP − Cρ

CP

dP
P

=
γ − 1

γ
dP
P
. (6.12)

Integrating both sides of the equation gives

T = T0

(
P
P0

)(γ−1)/γ

, (6.13)

where T0 and P0 are the temperature and pressure at the beginning of the
adiabatic process. Equation (6.13) tells us how the temperature changes
with pressure along an adiabat for an ideal gas2. Using the ideal gas2 We used a similar relation in determin-

ing the sound speed (Box 2.1). equation of state we can convert eq. (6.13) into a relation between tem-
perature and density or between density and pressure along an adiabat.

E X E R C I S E 6 . 2— Use equations (6.13) and (2.5) to derive a relation
between temperature and density, and a relation between density and pressure,
along an adiabat.
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E X E R C I S E 6 . 3— The figure shows some hypothetical runs of temperature
with respect to pressure in a gas in hydrostatic equilibrium. Indicate which of
these situations is convectively unstable, and explain why. Draw on that plot the
pressure-temperature relation that would ensue once convection sets in.
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6.2 Convection in stars

When convection is absent, the temperature gradient in the star is
(eq. [3.14])

dT
dr

= − 3ρκ
4acT3

L(r)
4πr2

.

Here κ is the opacity and L(r) is the luminosity at radius r: L/4πr2 is the
flux. If this thermal gradient, |dT/dr|, becomes too large, however, the
fluid becomes unstable: warm fluid begins to rise while cold fluid sinks.
Over a wide range of stellar conditions this mixing drives the entropy
gradient in the convectively unstable region to ds/dr = 0. The sun has a
convective region just below its photosphere, Fig. 6.4.

Figure 6.4: Solar convection cells,
imaged with the Hinode Solar Opti-
cal Telescope. Image credit: Hinode
JAXA/NASA/PPARC.

We can recast Equation (6.12) as

P
T

(
∂T
∂P

)
s
=

(
∂ lnT
∂ lnP

)
s
=

γ − 1
γ

. (6.14)

Hence, in a convective region,

dT
dr

=
T
P

(
∂ lnT
∂ lnP

)
s

dP
dr

=
γ − 1

γ
T
P

dP
dr

. (6.15)

The last form is specific to the case of an ideal gas.
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E X E R C I S E 6 . 4— The figure below indicates the central density and
temperature (triangle) for 3 hypothetical stars: (left) a star that is fully convective;
(center) a star with a radiative (i.e., stable against convection) core (densities
greater than 10 kgm−3) and a convective envelope; (right) a star with a convective
core and a radiative envelope. For each star, sketch a plausible run of temperature
with density within the star. In the center and right panels, the boundary
between radiative and convective regions is marked with a vertical solid line.
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We can now collect the equations describing the structure
of a star in steady-state. Previously, we established the relations
for the enclosed mass,

dm
dr

= 4πr2ρ, (6.16)

and the pressure,

dP
dr

= −ρ
Gm
r2

. (6.17)

To these we add the equations for the temperature,

dT
dr

= − L
4πr2

3ρκ
4acT3 where radiative; and (6.18)

dT
dr

=
T
P

(
∂ lnT
∂ lnP

)
S

dP
dr

where convective. (6.19)

We finally add the equation for the luminosity,

dL
dr

= 4πr2ρϵ. (6.20)

Equations (6.16)–(6.20), or equivalently (6.21)–(6.25), are supplemented
by an equation of state P = P(ρ,T, {X}), opacity κ = κ(ρ,T, {X}), and
heating rate ϵ = ϵ(ρ,T, {X}). Here {X} refers to the abundances of the
various isotopes. Note that we’ve omitted equations for the change in
composition (dX/dt) due to nuclear burning. We’ve also omitted terms
containing dr/dt, which describe expansion or contraction, from these
equations.
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Box 6.1The equations of stellar structure in Lagrangian
form

In general, the equations (6.16), (6.17), (6.18)-(6.19), and
(6.20) must be solved numerically. In practice, the radius r is not
the most convenient variable to use as a coordinate. In one di-
mension, the mass in each shell remains distinct, so the enclosed
mass

m(r) =
∫ r

0
4πr2ρ dr

makes a useful coordinate. Using the enclosed mass as a coor-
dinate is called a Lagrangian description of the star. Upon
changing variables from r tom, the structure equations become

dr
dm

=
1

4πr2ρ
(6.21)

dP
dm

=
dP
dr

dr
dm

= − Gm
4πr4

(6.22)

dT
dm

= − 3κL
64π2r4acT3 where radiative (6.23)

dT
dm

= −T
P

(
∂ lnT
∂ lnP

)
S

Gm
4πr4

where convective (6.24)

dL
dm

= ϵ. (6.25)

6.3 Contraction to the main sequence

Stars are formed when clouds of gas and dust fall out of pressure balance
and become unstable to gravitational collapse. Often, the cloud frag-
ments into a myriad of small collapsing regions, such as in the Soul Neb-
ula pictured in Fig. 6.5. In the center of these dense knots, a core comes
into hydrostatic equilibrium and grows in mass as matter continues to
infall. Much of this process is obscured from view by the surrounding
clouds of gas and dust.

Figure 6.5: Image of the Soul Nebula (IC
1848) in the constellation Cassiopeia.
Credit: José Jiménez Priego (Astromet).

As the nebula thins out, the star continues to contract slowly on a
Kelvin-Helmholtz timescale, eq. (2.25), as the core is still too cool for nu-
clear reactions to power the luminosity from the surface (remember, the
luminosity is set by the mass of the star and its opacity). As the central
temperature rises, the nuclear reaction rate increases rapidly until the
heat released by reactions balances that emitted from the surface. At that
point the star is on the zero-age main sequence (ZAMS). Of course,
not all collapsing stellar-like objects reach the ZAMS—objects that are
too low in mass will not ignite hydrogen fusion, while objects that are
too high in mass tend to be unstable and eject mass. We’ll explore these
limits in the next few sections.
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E X E R C I S E 6 . 5— This exercise revisits problem 2.8. In that exercise you
modeled how the density and temperature changed as a pre-main-sequence star
contracted. Table 6.1 gives central densities and temperatures of stars at the
onset of hydrogen fusion (known as the zero-age main sequence). These
temperatures and densities are plotted below and labeled by stellar mass. Assume
an ideal-gas equation of state and use the virial relations for the temperature and
central density to plot the tracks in this plane each star followed during its
contraction.
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You will use this plot for exercises 6.7 and 6.10 as well.

Table 6.1: Selected central densities and
temperatures of zero-age main-sequence
stars, computed with the MESA stellar
evolution code [Paxton et al., 2011].

M/M⊙ log(ρc/kgm−3) log(Tc/K)
0.09 5.70 6.60
0.15 5.35 6.75
0.30 5.00 6.87
2.0 4.80 7.30

10.0 4.00 7.50
25.0 3.60 7.55

100.0 3.25 7.63

Degeneracy

As a star contracts, the particles within it are packed ever closer together.
As we saw from our discussion of ionization, quantum mechanics enters
the description of particle behavior when the separation between parti-
cles is of the order of the uncertainty in their positions. Said differently,
our classical description breaks down when the particle density exceeds
roughly

1 particle
(Δx)3

=

(
Δp
h

)3

∼
(
mkBT
h2

)3/2

. (6.26)

Another way to put this is that quantum effects become important
when there is roughly 1 particle in a normalized phase space volume
d3x d3p/h3.

Suppose we have two identical particles in a quantum state. Since the
particles are identical, if we exchange them the wavefunction can only
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change by a phase factor3 eiδ. If we exchange the particles again, we are 3 See Box 6.2

back to our original state; as a result, e2iδ = 1, and therefore δ = 0
or π. Hence upon the exchange of particles, the wavefunction either is
unchanged (δ = 0) or it changes sign (eiπ = −1).

There are two types of wavefunctions in this world: those that change sign under
exchange; and those that don’t.

Particles that don’t change sign under exchange are called bosons
and have integer spin. Photons (spin = 1) are bosons. Particles that
change sign under exchange are called fermions and have half-integer
spin. Electrons, neutrinos, protons, and neutrons (spin = 1/2) are all
fermions.

A consequence of the fermion wavefunction changing sign when
any two particles are exchanged is that the wavefunction vanishes if
any two particles are in the same state—that is, they have the same
position, momentum, and spin. For spin-half particles like electrons, this
means we can put at most two such electrons in the same position and
momentum state; we do this by having their spins antiparallel.

Box 6.2 Identical particles

To understand how the interchange of identical particles works
in more detail, let’s start by recalling some features of quantum
mechanics. This discussion is based on Feynman et al. [1989]. We
denote a particle’s state as |a⟩, where a is just a label. For exam-
ple, a could be ”electron with such-and-such momentum”. The
probability of finding the electron in some other state |φ⟩ is given
by | ⟨φ| a⟩ |2, where ⟨φ| a⟩ is a complex number known as the
probability amplitude formed via an inner product of |φ⟩ and |a⟩.

Now suppose we have two particles, a and b, and we scatter
them so that one particle ends up in detector 1 and the other ends
up in detector 2. There are two ways this can go, as shown here.

a a
b b

1

2

1

2

Classically, we would argue that the probability of getting either
particle in detector 1 is just

P(a or b in 1) = P(a in 1) + P(b in 1). (6.27)
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Box 6.2 continued

If particles a and b are different—e.g., one is a 12C nucleus and the
other is an 16O nucleus—then this holds in quantum mechanics
as well. Quantum mechanically, we write

P(a or b in 1) = | ⟨1| a⟩ ⟨2| b⟩ |2 + | ⟨2| a⟩ ⟨1| b⟩ |2. (6.28)

If the particles are identical, however—for example, if a and b are
two electrons with identical spin—then this picture is wrong.

Because of the uncertainty principle, we cannot follow the tra-
jectories of a and b with infinite precision to see which is which;
instead, the situation is more analogous to the depiction shown
here.

a a
b b

1

2

1

2

There are now two indistinguishable ways of arriving at the final
state—in this case, an electron in detector 1 and an electron in
detector 2. According to quantum mechanics, we must therefore
sum the amplitudes for getting to the final state, before taking the
square. That is, the probability for this one particle to end up in
detector 1 and the other to end up in detector 2 is

P(a or b in 1) = | ⟨1| a⟩ ⟨2| b⟩+ ⟨2| a⟩ ⟨1| b⟩ |2

= | ⟨1| a⟩ ⟨2| b⟩ |2 + | ⟨2| a⟩ ⟨1| b⟩ |2

+
[
⟨1| a⟩∗ ⟨2| b⟩∗ ⟨2| a⟩ ⟨1| b⟩

+ ⟨2| a⟩∗ ⟨1| b⟩∗ ⟨1| a⟩ ⟨2| b⟩
]

= P(a in 1) + P(b in 1)

+
[
⟨1| a⟩∗ ⟨2| b⟩∗ ⟨2| a⟩ ⟨1| b⟩

+ ⟨2| a⟩∗ ⟨1| b⟩∗ ⟨1| a⟩ ⟨2| b⟩
]
. (6.29)

The probability of scattering an electron into detector 1 is the
classical value plus the additional interference term in [·].

To see the effect of this interference term on the
thermal properties of the system, let’s imagine putting
two particles into the same small volume. To do this, we imagine
the detectors 1 and 2 sliding together until they overlap, as shown
here.
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Box 6.2 continued

a

b

1
2

Since detectors 1 and 2 are approaching one another, we must
have

| ⟨1| a⟩ ⟨2| b⟩ |2 = | ⟨2| a⟩ ⟨1| b⟩ |2. (6.30)

This does not imply, however, that ⟨1| a⟩ ⟨2| b⟩ = ⟨2| a⟩ ⟨1| b⟩: the
amplitudes could differ by a phase factor, so that interchanging
the particles would yield

⟨2| a⟩ ⟨1| b⟩ = eiδ ⟨1| a⟩ ⟨2| b⟩ .

If we interchange the particles, and then interchange them again,
we get

⟨1| a⟩ ⟨2| b⟩ = e2iδ ⟨1| a⟩ ⟨2| b⟩ ;

since swapping the particles twice just gets up back to the original
situation, we must have that e2iδ = 1 and therefore eiδ = ±1.

If there is no change of sign, i.e., ⟨2| a⟩ ⟨1| b⟩ = ⟨1| a⟩ ⟨2| b⟩,
then from equation (6.29) we have

P(a or b in 1) = 2| ⟨1| a⟩ ⟨2| b⟩ |2 + 2| ⟨2| a⟩ ⟨1| b⟩ |2. (6.31)

This is twice the classical value: the probability of the particles
entering the same state is enhanced.

In contrast, if the sign changes under exchange, i.e., if
⟨2| a⟩ ⟨1| b⟩ = −⟨1| a⟩ ⟨2| b⟩, then equation (6.29) implies that

P(a or b in 1) = | ⟨1| a⟩ ⟨2| b⟩ |2 + | ⟨2| a⟩ ⟨1| b⟩ |2

−| ⟨1| a⟩ ⟨2| b⟩ |2 − | ⟨2| a⟩ ⟨1| b⟩ |2

= 0. (6.32)

We cannot have 2 identical particles with the same momentum, posi-
tion, and spin if their wavefunction changes sign when the particles are
exchanged.

Particles with integer spin (i.e., their angular momentum is an
integer multiple of ℏ) have wavefunctions that do not change sign
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Box 6.2 continued

under exchange; these particles are said to obey Bose-Einstein
statistics and are called bosons. Particles with half-integer
spin have wavefunctions that do change sign under exchange;
these particles are said to obey Fermi-Dirac statistics and
are called fermions. Photons are bosons; electrons, protons,
neutrons, and neutrinos are fermions.

To account for Fermi-Dirac statistics within the equation
of state, we imagine a small volume containing N electrons. Motivated
by eq. (6.26), we divide the phase space into cells,

d3x d3p
h3

,

and into each cell we place 2 electrons with opposing spins. We always
add the electrons to the lowest open energy level, and repeat the process
until we have added all N electrons. This procedure is represented by the
equation

N =
2
h3

∫
V
d3x

∫ EF

0
d3p (6.33)

In this equation EF, the Fermi energy, is the energy of the last electron
added and is the largest filled energy level.

If our volume is isotropic, then we can change variables: first, to
spherical momentum coordinates, d3p = 4πp2 dp; second, from dp to
dϵ. Since p =

√
2mϵ, where ϵ is the energy of a single electron,

dp =

√
m
2ϵ

dϵ;

upon changing variables and integrating over ϵ from 0 to EF we obtain

N =
8π
h3

V
∫ EF

0

√
2m3/2ϵ1/2 dϵ =

8π
3h3

V(2m)3/2E3/2
F .

Solving for the Fermi energy gives

EF =
h2

2m

(
3
8π

N
V

)2/3

. (6.34)

What is the total energy of our system? We again integrate over phase
space, with each electron multiplied by its energy ϵ:

E =
8π
h3

V
∫ EF

0

√
2m3/2ϵ3/2 dϵ =

8π
5h3

V(2m)3/2E5/2
F . (6.35)

Using eq. (6.34) to substitute for EF in eq. (6.35), we can find the energy
per unit volume,

E
V

=
3
5

(
3
8π

)2/3 h2

2m
n5/3 =

3
5
nEF,
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where n = N/V is the density of electrons.
For a non-relativistic gas the pressure is P = (2/3)(E/V). Hence the

pressure of our electron gas is

P =
2
3
E
V

=
2
5
nEF =

2
5

(
3
8π

)2/3 h2

2m
n5/3. (6.36)

Notice that the pressure is independent of the temperature.
Electrons, being more than 1000 times lighter than nuclei, become

degenerate first. Suppose our composition consists of species with charge
Zi and mass number Ai. Then the number of electrons per unit volume4 is 4 assuming complete ionization

ne =
∑
i

niZi =
ρ
mu

∑
i

Xi
Zi
Ai
.

By analogy with the mean molecular weight, we define an electron mean
weight

μe ≡

(∑
i

Xi
Zi
Ai

)−1

(6.37)

so that ne = ρ/(muμe).

E X E R C I S E 6 . 6— Use equation (6.37) in eq. (6.36) to express the pressure
as a function of mass density ρ. The use the virial scalings for P(M,R) and
ρ(M,R) to obtain a relation R(M) for a degenerate object.

As you found in exercise 6.6, when the star becomes degenerate, there
is a unique radius for a given mass and composition. This is in contrast to
the non-degenerate case, for which a star of a given mass can have a wide
range of possible radii depending on the internal temperature.

Consider a contracting pre-main-sequence star. Initially, the star has
a low density and the equation of state is that of an ideal non-degenerate
gas. According to the virial theorem, as the radius decreases, both the
central temperature and density increase. The radius decreases because
the star is radiating away energy, and a star with an ideal, non-degenerate
equation of state has a total energy that depends on its radius.

At some density, the equation of state will become degenerate. At
this point, contraction comes to a halt. The star continues to radiate en-
ergy, but instead of contracting, the star simply cools while remaining at
constant radius. If the contracting pre-main-sequence star is to become
a main-sequence star, then, it must reach temperatures sufficient for
hydrogen fusion to occur before becoming degenerate.
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E X E R C I S E 6 . 7— The equation of state becomes degenerate roughly where
kBT = EF, with EF begin given by eq. (6.34). From this and eq. (6.37), assuming a
H-He composition with XH = 0.7 and XHe = 0.3, derive a relation between log(T)
and log(ρ). Plot this relation on the phase diagram in exercise 6.5, and on the
plot indicate which side of the relation is degenerate. Given that contraction halts
when the equation of state becomes degenerate, what does this plot imply for the
minimum mass required to initiate hydrogen fusion?

As shown in exercise 6.7, there is a minimum mass needed to
initiate hydrogen fusion. Contracting star-like objects of lower
mass are known as brown dwarfs. Although dim, they are observable
with spectral types “L”, “T” or “Y”5.5 J. D. Kirkpatrick, I. N. Reid, J. Liebert,

et al. Dwarfs Cooler than “M”: The
Definition of Spectral Type “L” Using
Discoveries from the 2 Micron All-Sky
Survey (2MASS). ApJ, 519:802–833,
July 1999; and Michael C. Cushing,
J. Davy Kirkpatrick, Christopher R.
Gelino, et al. The Discovery of Y Dwarfs
using Data from the Wide-field Infrared
Survey Explorer (WISE). ApJ, 743:50,
December 2011. doi: 10.1088/0004-
637X/743/1/50

E X E R C I S E 6 . 8— You might notice that the degenerate mass-radius
relation you found in exercise 6.6 can’t hold for very light objects (or very heavy
ones, for that matter). Earth, for example has a much larger mass than Mars, and
also has a larger radius, contrary to what the degenerate relation predicts. What
happens is that at low pressures, the Coulomb force comes into play—the atomic
and molecular bonds that add variety to life. These bonds set the size and spacing
of atoms, and therefore fix the density of matter. Let’s model this. The typical
size of an atom is the Bohr radius,

aB =
4πϵ0ℏ2

mee2
= 5.29× 10−11 m.

1. Let take our mass density as being one average nuclear mass per volume a3B.
We’ll again use our solar composition, XH = 0.7,XHe = 0.3. What is the value
of this density? Is it plausible?

2. If matter is at this density, what is R(M)?

3. Roughly for what mass object, if any, does this R(M) relation intersect the
relation for degenerate matter? This sets the mass at which degeneracy
becomes important for a cold object. Compare this mass with objects in the
solar system.

Radiation pressure

Radiation in thermal equilibrium exerts a pressure (eq. 1.10): Prad =

aT4/3. Because of this strong dependence on temperature, radiation
pressure becomes an increasingly large fraction of the total pressure for
massive stars. Stars that are radiation-pressure dominated tend to be
unstable: they have strong winds and violent fits of mass ejection (see
the image of Eta Carinae, Fig. 6.6). As a result, they lose copious amounts
of mass while on the main sequence. This effectively sets a rough upper
limit on the mass of a star.Figure 6.6: Image of the massive star Eta

Carinae. Credit: J. Morse (Arizona State
U.), K. Davidson (U. Minnesota) et al.,
WFPC2, HST, NASA.
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E X E R C I S E 6 . 9— Use the virial relations for density and temperature to
estimate how the ratio Prad/Pgas depends on the mass of the star.

E X E R C I S E 6 . 1 0— The equation of state becomes dominated by radiation
roughly where P(ideal gas) ≈ P(radiation). Derive from this criterion a relation
between log(T) and log(ρ), and plot this relation on the figure for exercise 6.5.
Indicate which side of this relation is radiation-pressure dominated. What do
your findings in this exercise imply for the mass range of main-sequence stars?

6.4 Life on the main-sequence

With the initiation of hydrogen fusion, the star settles into thermal and
mechanical equilibrium, with its structure described by the solution of
equations6 (6.16)–(6.20), along with the equation of state and prescrip- 6 Or, in Lagrangian form, (6.21)–(6.25).

tions for the opacity κ and heating rate ϵ.
The reason for star’s stability on the main sequence is a consequence

of the relation, derived in exercise 2.9, between the star’s total energy
and temperature. If the reaction rate were to increase and deposit more
energy into the star, then since the total energy is∝ −GM2/R, the star
would expand. This expansion would cause the central temperature to
decrease, thereby reducing the reaction rate.

The star is not in complete equilibrium, however, as hydrogen in the
core is gradually being converted to helium. The timescale over which the
composition changes is much longer than the dynamical timescale (sets
hydrostatic equilibrium), the radiative diffusion timescale (sets thermal
gradient), and the Kelvin-Helmholtz timescale (sets core temperature via
growth or contraction of stellar radii). The gradual build-up of a helium-
rich core does not, therefore, affect the stability of the star, but it does
lead to a slow brightening of the star over its main sequence lifetime.
For our sun, the gradual enrichment of the core in helium causes a slow
increase in luminosity of≈ 10% for each billion years. Although this slow increase in luminosity

is not a drastic change, it has significant
implications for life on Earth. The ex-
pected warming is sufficient to make
Earth uninhabitable within about a billion
years from now.

E X E R C I S E 6 . 1 1— You computed in exercise 5.4 the energy released from
the conversion of 4 hydrogen atoms into helium. Express this number in terms of
the energy released per mass of hydrogen burned; this number should be in units
of J/kg. Now assume that the Sun’s luminosity comes from the fusion of
hydrogen into helium in the innermost 10% of the Sun’s mass. For a composition
that is 70% hydrogen by mass, how long would it take to deplete the hydrogen in
the solar core? This sets the main-sequence lifetime of the sun.

The cool outer layers of low-mass stars have large opacities: for exam-
ple many elements are not ionized, so there are many potential lines for
absorption. As a result, stars withM ≲ M⊙ have convective regions in
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their outer parts. The fraction of the star that is convective is larger for
low-mass, cool stars; and stars withM ≲ 0.3M⊙ are fully convective, so
that the whole interior lies along an adiabat. For more massive, hotter,
stars, the opacities are lower, and as a result, the outer convective region
vanishes for stars withM ≳ M⊙.

E X E R C I S E 6 . 1 2— We can estimate how the luminosity depends on stellar
mass for stars that have a mostly radiative structure. Start with equation (6.18)
for the temperature gradient and approximate dT/dr ≈ Tc/R, ρ ≈ ρ̄,
L/4πr2 ≈ L/4πR2, and T ≈ Tc. Take the opacity κ to be constant, use the virial
estimate for the central temperature Tc and express the mean density ρ̄ in terms
of stellar massM and radius R. After some algebra, you should find that the
luminosity L depends onM to some power. Compare this scaling against the data
in Table 2.2. Obtain an expression for the stellar lifetime as a function of mass,
and calibrate it to the Sun’s main-sequence lifetime, τ⊙ ∼ 10Gyr.

Stars more massive than the Sun have sufficiently high
core temperatures for hydrogen to be consumed via the
CNO cycle. The strong temperature dependence of the CNO burning
has two effects on the structure of the star. First, it makes the central
temperature nearly constant over a wide range of stellar masses for
M > 1M⊙—a small rise in temperature is sufficient to raise the heat
production ϵ to match the rise in luminosity. A nearly constant central
temperature implies, via the virial theorem, that R ∝ M on the upper
main sequence. The second consequence is that nearly all of the star’s
luminosity is generated in a small region about the stellar center. The
flux, L/4πr2, in this small region is enormous, and this makes the core
of the star convective. The convection can mix hydrogen fuel into the
core, which makes the lifetime somewhat longer than the estimate from
exercise 6.12. A summary of the structure of main sequence stars is con-
tained in Table 6.2.

Table 6.2: Characteristics of main-
sequence stars

M ≲ M⊙ M ≳ M⊙
41H → 4He pp CNO
core is radiative convective
envelope is convective radiative



7
End of the Line

The depletion of hydrogen in the core heralds the end of the star’s placid
main-sequence life. We shall give an overview of the changes that ensue
before discussing in more detail the events marking the end of the star’s
life. Fusion of helium requires a temperature≳ 108 K, substantially
higher than that required for the fusion of hydrogen. As a consequence,
when the hydrogen is used up, helium burning cannot immediately begin
and the core contracts. The main difference from the pre-main-sequence
contraction is that hydrogen is fusing into helium in a shell surrounding
the core. This shell burning causes drastic changes to the star’s structure,
surface temperature, and luminosity.

Once the core becomes sufficiently hot, helium fuses into carbon, and
the core again reaches a state of thermal and mechanical equilibrium.
When the helium is depleted the core must again contract. As with pre-
main sequence stars, the critical question is whether the core becomes
degenerate before a particular reaction can ignite. For stars with main-
sequence masses≲ (8–10)M⊙, the core becomes degenerate before the
onset of 12C fusion, which requires temperatures≈ 8 × 108 K. Indeed,
for stars around a solar mass, the fusion of 4He occurs under moderately
degenerate conditions.1 As a result, the cores of low-mass stars end 1 Stars with masses≲ 0.5M⊙ will become

degenerate before reaching temperatures
sufficient for helium to fuse; the main-
sequence lifetime of such stars is much
greater than the age of the universe, so
making a helium white dwarf requires
some kind of mass loss, such as in a
binary.

up composed of carbon and oxygen (or perhaps oxygen and neon) and
supported by degenerate electrons; such objects are known as white
dwarfs.

For stars with masses≳ (8–10)M⊙, reactions in the core will suc-
cessively make heavier and heavier isotopes until reaching 56Fe. At this
point the matter reaches its maximum binding energy2. A degenerate 2 cf. exercise 5.3

core forms and grows in mass due to reactions in shells surrounding
the core. There is a maximum mass, known as the Chandrasekhar
mass, that can be supported by electron degeneracy pressure. When the
core exceeds this mass, it violently implodes. The implosion halts when
matter reaches nuclear density and the repulsive strong nuclear force
provides pressure support. In this implosion, most of the electrons and
protons combine, e− + p → n + νe. The core is then composed mostly
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of neutrons3 and is known as a neutron star. The resulting torrent of3 At densities substantially above that
of an atomic nucleus other constituents,
such as hyperons, may appear.

neutrinos injects energy into the outer layers of the star; in many cases
this is sufficient to eject the outer layers of the star and produce a su-
pernova. If the envelope is not ejected, matter will accumulate onto
the neutron star. The maximum mass that can be supported by the nu-
clear force is uncertain, but is somewhere between (2–3)M⊙; when this
maximum mass is exceeded, the neutron star collapses into a black hole.

Having given a brief summary of post-main sequence evolution, we
shall now explore the various evolutionary tracks in slightly more detail.

7.1 Low-mass stars

Ascent of the red-giant branch

With the depletion of hydrogen in the core, the core contracts. During
this contraction, hydrogen fusion continues in a shell surrounding the
core. The shell hydrogen fusion produces helium, which adds to the core
mass. As the core contracts its temperature rises. The rising temperature
and pressure at the base of the hydrogen-burning shell causes the reac-
tions in the shell to go at an ever-increasing rate. The resulting increase
in luminosity inflates the envelope, now fully convective, to large radii
and hence to a low surface temperature. The star becomes a red giant.
The high luminosity, combined with the low surface gravity of the dis-
tended envelope, drives a strong wind4 so that the star loses a substantial4 Calculations of the rate of mass loss are

still crude, but there are some observa-
tional constraints.

amount of mass during the giant phase.

Helium burning: the horizontal branch

There are no stable isotopes with mass number A = 5 or A = 8, which
makes the fusion of 4He somewhat tricky. Although unstable, the isotope
8Be is relatively long-lived (10−16 s) compared to a nuclear timescale5. As5 Roughly the time for a pion to cross a

nucleus,∼ 10−22 s. a result, when the core temperature reaches≈ 108 K, the reaction

4He+ 4He←→ 8Be

builds up a minute abundance of 8Be. This abundance is sufficient for the
reaction

8Be+ 4He←→ 12C
∗

to make a small abundance of 12C in an excited state (denoted by the
∗). While most of the 12C∗ decays back into 8Be + 4He, a small fraction
transitions to the ground state, 12C∗ → 12C+ γ. As a result, there is a net
conversion 3 4He→ 12C—the triple-alpha reaction.The triple-alpha reaction is in-

credibly temperature-sensitive:
∂ ln ε3α/∂ ln T ≈ 40 at T = 108 K.
This sensitivity, combined with the mildly
degenerate conditions of the core, makes
the ignition of 4He somewhat unstable for
solar-mass stars.

Once core 4He has ignited, the star settles onto a “helium main se-
quence;” observationally this is the horizontal branch, so called
because these stars lie in a clump on a Hertzsprung-Russell diagram. The
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luminosity on the horizontal branch is about (30–100) L⊙. The higher
luminosity and the much lower energy release from the triple-alpha re-
action make the horizontal branch lifetime much shorter than that of
the main-sequence (e.g., the horizontal branch lifetime is∼ 108 yr for a
solar-mass star).

E X E R C I S E 7 . 1— Following exercises 5.4 and 6.11, find the heat released
per kilogram from fusing 3 4He nuclei (B = 28.296MeV) into 12C
(B = 92.162MeV). Take the core mass to be 0.45M⊙ (the minimum core mass
needed for the ignition of helium). For a luminosity of 30 L⊙, find the lifetime for
core helium burning.

As the mass of 12C builds up in the core, the reaction 12C+ 4He → 16O
begins to compete with the triple alpha reaction. As a result, the core
becomes composed of a 12C/16O mixture.

The asymptotic giant branch and emergence of a white dwarf

With the depletion of 4He, the core—now composed of 12C and 16O—
again contracts, while the growing luminosity from the H- and He-
burning shells again inflate the envelope to large radii. Observationally,
this phase is the asymptotic giant branch: on an HR diagram, the
stars move on a track that approaches the giant branch. The hydrogen-
rich envelope is consumed at its base by the H- and He-burning shells
and is expelled at the surface by an increasingly strong wind. After the
envelope is gone, the hot core—observed as a white dwarf—slowly cools.
For a solar-mass star, the expected final mass of the core, and hence of
the white dwarf, is≈ 0.6M⊙.

7.2 Massive stars

For stars with main-sequence masses≳ (8–10)M⊙, the fusion of 12C
commences while the core is non-degenerate and at a temperature≈ 8 ×
108 K. At this temperature, electron-positron pairs form and annihilate
(e− + e+ ←→ γγ); occasionally instead of producing photons, the reaction

e− + e+ ←→ νe + ν̄e

occurs instead and generates a neutrino-antineutrino pair. The mean free
path for the neutrinos is larger than the radius of the star; as a result,
the neutrinos stream out and take energy from the core. As the core
temperature increases, these neutrinos carry away most of the heat from
the core.

Within the core, 12C is consumed by the reactions

12C+ 12C→

{
23Na+ p

20Ne+ 4He
.
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The p and 4He capture onto other nuclei that are present. At slightly
higher temperatures, 20Ne+ γ → 16O+ 4He releases 4He nuclei that sub-
sequently capture onto other 16O, 20Ne, and 24Mg. The next significant
burning stage is

16O+ 16O→

{
31P+ p

28Si+ 4He
;

as with 12C + 12C, the p and 4He combine with ambient nuclei with the
end result being a distribution of isotopes about 28Si.

E X E R C I S E 7 . 2— At the onset of 16O burning in a 25M⊙ star, the central
density (Table 7.1) is 3.6× 106 g cm−3 (3.6× 109 kgm−3). What is the dynamical
time of the core?

The strong Coulomb barrier inhibits the fusion of nuclei beyond 16O;
instead, photodissociation reactions such as 28Si + γ → 24Mg + 4He
liberate n, p, and 4He. These light nuclei then capture onto heavier nuclei,
and the composition gradually becomes composed of isotopes about
56Fe. This is nuclear statistical equilibrium: the composition
is in the lowest energy state (most bound) for the ambient density and
temperature. As a result, there is no further release of nuclear energy
possible. The (mostly 56Fe) core contracts and becomes degenerate; its
mass gradually increases from the burning of surrounding material.

The amount of energy available from the fusion of heavy nuclei is low;
as a consequence, the time required for the core to deplete the available
fuel grows shorter and shorter, with the final stages occurring in a day
(column labeled τ in Table 7.1). After the ignition of carbon, the core
evolves too quickly for the envelope to keep up. Thus the external appear-
ance of the star provides no window into the final days of burning.

Core collapse

When the core of a massive star reaches nuclear statistical equilibrium
(NSE), there are no further sources of energy available. Fusion reactions
in the shells surrounding the core add mass to it, causing it to contract.
The increasing density raises the electron Fermi energy. When the Fermi
energy approaches the rest mass of the electrons—mec2 = 0.511MeV—
the electrons move relativistically. This alters the equation of state.

The reason is that the energy no longer goes as p2/2m for relativistic
particles. The correct relation is

E =
√
p2c2 +m2c4 = mc2

√
1+

( p
mc

)2
;

when p/mc ≪ 1, we can expand this as E ≈ mc2 + p2/2m—that is, as the
sum of the rest mass and the Newtonian form of the kinetic energy. We’ll
now explore the opposite limit, with p≫ mc, so that E ≈ pc.
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hydrogen
MZAMS (M⊙) Tc (107 K) ρc (g cm

−3) L (103 L⊙) τ (Myr)
15 3.53 5.81 28 11.1
25 3.81 3.81 110 6.7

helium
MZAMS (M⊙) Tc (108 K) ρc (10

3 g cm−3) L (103 L⊙) τ (Myr)
15 1.78 1.39 41 1.97
25 1.96 0.76 182 0.84

carbon
MZAMS (M⊙) Tc (108 K) ρc (10

6 g cm−3) L (103 L⊙) τ (kyr)
15 8.34 2.39 83 2.03
25 8.41 1.29 245 0.52

oxygen
MZAMS (M⊙) Tc (109 K) ρc (10

6 g cm−3) L (103 L⊙) τ (yr)
15 1.94 6.66 87 2.58
25 2.09 3.60 246 0.40

silicon
MZAMS (M⊙) Tc (109 K) ρc (10

7 g cm−3) L (103 L⊙) τ (d)
15 3.34 4.26 87 18.3
25 3.65 3.01 246 0.7

Table 7.1: Nuclear burning timescales for
massive stars. Values taken from Woosley
et al. [2002].

Recall that for a degenerate gas, we began filling energy states, start-
ing with the lowest open levels until we have added all N electrons
(eq. [6.33]):

N =
2
h3

∫
V
d3x

∫ EF

0
d3p.

We then change variables, d3p = 4πp2 dp = 4πc−3ϵ2 dϵ, where ϵ = pc is
the energy of a single electron:

N =
8π
h3c3

V
∫ EF

0
ϵ2 dϵ =

8π
3h3c3

VE3
F.

Solving for the Fermi energy,

EF = hc
(

3
8π

N
V

)1/3

.

To get the total energy, we multiply each electron by its energy ϵ and
integrate over phase space:

E =
8π
h3c3

V
∫ EF

0
ϵ3 dϵ =

1
4

8π
h3c3

VE4
F =

3
4
NEF.

For a relativistic gas, the pressure is P = (1/3)(E/V) (cf. Box 1.2), so that

P =
1
4
nEF =

1
4

(
3
8π

)1/3

hcn4/3, (7.1)

with n = ρ/μemu.
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The Chandrasekhar mass

In exercise 6.6, we constructed a mass-radius relation for white dwarfs by
combining the virial relations,

P ∝ GM2

R4

ρ ∝ M
R3

and the equation of state for a non-relativistic, degenerate, ideal gas. We
found that R ∝ M−1/3. If we try that with our relativistic equation of
state, eq. (7.1), we get

GM2

R4 ∝ P =
1
4

(
3
8π

)1/3

hc
(

ρ
muμe

)4/3

∝ M4/3

R4 .

The radius R cancels, and what we have is a relationM ∝ (hc/G)3/2/m2
u.

This is rather odd: a gas with a relativistic equation of state in hydro-
static balance has a characteristic mass defined in terms of fundamental
constants.

Let’s investigate this further. Suppose we have a box with adjustable
sides, which we pack with N degenerate electrons. We add some nuclei
for mass, so that the total mass in the box is μemuN. The volume of the
box V ∼ R3, and since the electrons are degenerate, the volume per
electron is roughly λ3, where λ ∼ h/p is the wavelength of the electrons.
As a result, N = (R/λ)3; further, the momentum of an electron is

p ∼ h
λ
∼ h

N1/3

R
.

If our electrons were non-relativistic, the total, kinetic plus gravitational,
energy of our box would be

Etotal = N
p2

2me
− GM2

R
∼ N5/3 h2

R2me
− GN2μ2

em
2
u
1
R
.

For a given N, we can adjust R to make Etotal < 0, and indeed, if we satisfy
the virial theorem, we will recover the R ∝ M−1/3 scaling.

If, however, the electrons are relativistic then the total energy is

Etotal = Npc− GM2

R
=

1
R

[
hcN4/3 − GN2(μemu)

2
]

= G(μemu)
2N

4/3

R

[
hc

G(μemu)2
− N2/3

]
.

Look at the term in [·]. If N < [hc/G/(μemu)
2]3/2, then Etotal > 0; by

making R larger, however, we can lower the energy until the electrons are
no longer relativistic. If N > [hc/G(μemu)

2]3/2, then Etotal < 0; by making
R smaller, however, we can keep reducing Etotal indefinitely.

There is no bound state with finite R for M > (hc/G)3/2(μemu)
−2.
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Box 7.1 Instability for a relativistic equation of state

There is another way of looking at the onset of instability
which is instructive (this treatment follows that in Cox [1980]).
In exercise 2.10 you found that during a contraction or expansion,
the equation of motion for a thin layer at the star’s surface was

δ̈R =
GM
R2 [4− 3γ]

δR
R
.

HereM and R are the total stellar mass and radius, and the adia-
batic pressure-density relation is P ∝ ργ.

For a non-relativistic gas with γ = 5/3, we have δ̈R ∝ −δR: the
star oscillates with a period that is comparable to the dynamical
timescale of the star. If, however, γ < 4/3 the equation of motion
is δ̈R ∝ δR, which has an exponential solution: squeeze the star
slightly, and it will collapse!

Let’s work out a more physical explanation for what is happen-
ing. Suppose we have a star in virial equilibrium. Then the central
pressure and density are

P ∝ GM2

R4

ρ ∝ M
R3 .

Now if we contract the star by a small amount, say δR/R = −1%,
then the density increases by an amount δρ/ρ = −3δR/R = 3%.
How does the pressure respond? If the star contracts slowly,
on a Kelvin-Helmholtz timescale, then there is time for heat
to radiate away, so that the internal pressure can increase
by the amount needed to maintain equilibrium: in this case
δP/P = −4δR/R = 4%. Under an adiabatic contraction, however,
there is not enough time for the star to radiate away excess heat;
as a consequence, the pressure and density are linked, so that
δP/P = γδρ/ρ = −3γδR/R.

If the adiabatic index is γ = 4/3, then during an adiabatic com-
pression of δR/R = −1%, the density increases by 3|δR/R| = 3%
and the pressure increases by 3γ|δR/R| = 4%, which is precisely
the increase needed to maintain mechanical equilibrium. As a
result, the star remains in hydrostatic balance at its new, smaller
radius. This is why there was no mass-radius relation for γ = 4/3;
it takes no energy to contract (or expand) the star.

For γ > 4/3, when the star contracts the central pressure in-
creases by 3γ|δR/R| > 4|δR/R|. As a result, the pressure becomes
greater than the amount needed for hydrostatic balance. This
excess pressure pushes the star outward and acts as a restoring
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Box 7.1 continued

source. During an expansion, the pressure falls below the amount
needed for hydrostatic equilibrium, so gravity halts the expan-
sion and forces the star to contract. Hence, for γ > 4/3, the star
responds to a radial perturbation by oscillating with a period
comparable to the dynamical timescale (cf. exercise 2.10).

In contrast, if the star has γ < 4/3, then the increase in pres-
sure during contraction is 3γ|δR/R| < 4|δR/R|. The gas pressure
does not increase enough to maintain hydrostatic equilibrium,
and so the star’s contraction accelerates. A small perturbation
inwards leads to implosion.

Thus, there is a limit to the total mass that can be supported in hydro-
static equilibrium by degenerate electrons. An exact calculation for the
maximum mass of a cold star yields

MCh = 1.456
(

2
μe

)2

M⊙. (7.2)

When the mass reaches this limiting value, known as the Chandrasekhar
mass6, the electrons become relativistic and ∂P/∂ρ → 4/3; the star be-6 Derived by S. Chandrasekhar at age 20(!)

while traveling from India to England in
1930

comes unstable and collapses.
When the core of a massive star begins its collapse, the electron Fermi

is∼ MeV, which is sufficient to induce electron captures on iron-group
nuclei. These captures increase μe and reduceMCh. As the core begins the
final plunge, the rapidly rising temperature induces the photodissociation
of iron-group nuclei into neutrons, protons, and helium nuclei. This
process is endothermic, which further robs the core of pressure support
and accelerates the collapse. The effective γ = ∂P/∂ρ < 4/3 on account
of the photodissociation and electron captures, and the core implodes.

When the core density approaches 0.16 fm−3, the nucleons begin to
repel one another on account of the strong nuclear force. At this point
the collapse halts, sending a shockwave outwards. The core now consists
mostly of neutrons and is termed a neutron star.

E X E R C I S E 7 . 3— What is the mass density if the number density of
nucleons is 0.16 fm−3? What is the gravitational binding energy for an object
with a mass 1.4M⊙ at this density?

The outward going shockwave soon stalls as the outer layers of the star
fall inward. The energy needed to blow the envelope off is about 1% of
the gravitational binding energy of the core, so there is plenty of energy
available to disperse the envelope if this energy can be tapped. Most of
the gravitational binding energy released by the imploding core is carried
outwards by neutrinos. During the collapse, the neutrino mean free path
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becomes smaller than the core radius for two reasons: the weak interac-
tion cross-section increases as the nucleons reach temperatures≳ 1010 K,
and the mean free path ℓ = (nσ)−1 decreases with density. As a result
the neutrinos become trapped and must diffuse of the collapsing core. As
the neutrinos diffuse out, they transfer a small fraction of their energy to
the material heating it. This tends to push the shock outward. A competi-
tion arises between the ram pressure of infalling matter and the heating
from the neutrinos. If the neutrinos can transfer enough energy to the
envelope, then the envelope will be blown off in a supernova. If not, then
matter will continue to accumulate onto the neutron star. The maximum
mass of a neutron star is uncertain7, but on physical grounds is likely 7 By timing pulsars in a binary system, the

orbital parameters and hence the mass
of the neutron star can be deduced; the
largest measured mass is 2M⊙.

< 3M⊙. If the shock is not re-energized, then conceivably the entire star
could implode into a black hole.

7.3 Stellar resurrection

In the previous section, we learned that stars withM ≲ (8–10)M⊙

eventually become white dwarfs composed of carbon and oxygen and
supported by electron degeneracy pressure; and that more massive stars
have cores that collapse, either to form neutron stars supported by the
strong nuclear interaction or to collapse fully into black holes.

Both the white dwarfs and neutron stars that emerge from the ashes
of isolated stars slowly cool and dim. The cooling of white dwarfs can be
modeled accurately enough that observations of white dwarfs in clusters
can be used to infer the ages of and distances to their host clusters. No
such capability is possible with isolated neutron stars: most are too dim
to be observed, and there are vast uncertainties about the composition of
the deep interior, where the density is several times higher than that of
an atomic nucleus. Rather, efforts have been on using observations of the
handful of isolated neutron stars with measured surface temperatures to
constrain models of nuclear matter.

Many observed neutron stars are endowed with strong magnetic field
≳ 108 T. If the neutron star spins rapidly enough, then a tremendous
voltage is generated is the surface that accelerates charges above the
polar caps. In turn, these accelerated charges emit photons that fan out-
ward from the poles. As the neutron star spins, the beams of radiation
are swept around; a distant observer therefore observes light pulsing at
the rotation frequency of the star. These systems, known as pulsars,
were discovered by Jocelyn Bell and Anthony Hewish in 1967. Interestingly, the radio emission from

several pulsars, including the Crab, was
independently detected by C. Schisler at
the Ballistic Missile Early Warning Site,
Clear Air Force Station, Alaska.

E X E R C I S E 7 . 4— The Crab pulsar pulsates at a frequency of 33Hz. For a
star of 1M⊙, find the maximum radius such that material at the equator remains
bound to the star. Based on these results, argue that the Crab pulsar cannot be a
white dwarf.
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Many stars are in binary systems. If the binary happens to survive
the evolution off the main sequence, it can often happen that the orbit
is close enough for matter to be tidally stripped from the companion
and accreted onto the compact star (i.e., white dwarf, neutron star, or
black hole). As matter falls into the gravitational potential, it liberates a
considerable amount of energy. This makes the system bright.

E X E R C I S E 7 . 5— Let’s estimate the luminosity and surface temperature of
an accreting neutron star. Assume a mass of 1.4M⊙ and a radius of 10 km. How
much gravitational energy (in MeV) is released when a proton falls onto the
surface (use a Newtonian approximation for the gravitational potential). How
does this compare to the energy released (per proton) from the fusion of
hydrogen into helium? Now suppose the neutron star is accreting at 1017 g s−1,
which is a typical rate for many observed systems. What would be the luminosity
generated by this accretion? Suppose the luminosity were emitted thermally from
the surface of the neutron star. What would be the surface effective temperature?
In what band (e.g., visible, IR, UV, X-ray) would you want to observe this system?

When sufficient material8 has accumulated on the surface, thermonu-8 The accreted matter is usually mostly
hydrogen, but if the companion star is
evolved it could be enriched in helium
or even, if the companion star is itself a
white dwarf, carbon and oxygen.

clear reactions can ignite in the accreted layer. This ignition is typically
thermally unstable and leads to an explosion. On a white dwarf, this ex-
plosion is manifest as a nova9 as the white dwarf abruptly brightens and

9 from the Latin novusmeaning “new” then dims over several weeks to months. The mass of the burning layer
is typically

(
10−5 to 10−4

)
M⊙; at typical accretion rates≲ 10−9 M⊙ yr−1

the time between the explosions is thousands of years or longer. The
amount of mass necessary for ignition decreases strongly with the mass
of the white dwarf, however, so that the time between explosions can
be years to decades. In these systems the novae are observed to reoccur
and they are called—appropriately enough—recurrent novae. On
a neutron star, the explosion is observed as an X-ray burst that lasts
(10–100) s. The strong gravity means the amount of material needed
for ignition is much less: roughly 10−12 M⊙. As a consequence, the time
between bursts can be as short as hours to days.
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