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Preface

These notes are from a graduate-level course on radiative processes in
astrophysics at Michigan State University. Because the course is taught
in fall semesters of alternating years, the only preparation assumed is
that the students have completed an undergraduate degree in physics or
astronomy.

The notes are meant as a supplement to the main text, Rybicki and
Lightman?, and the secondary text, Shu. The coverage therefore ex-
pands upon topics covered in those texts, rather than aiming to be a
standalone monograph. The first two chapters are meant to fill in a gap
between this course and undergraduate coursework on quantum mechan-
ics and electromagnetism, since astronomy students at Michigan State
do not typically take graduate-level quantum or a second semester of
electromagnetism prior to taking this course.

Some of the topics and the style of presentation were inspired by
three courses taught at UC-Berkeley in the mid-90’s: Fluid Mechanics,
taught by Professor J. Graham; Radiation Astrophysics, taught by the late
Professor D. Backer; and Physics of the Interstellar Medium, taught by
Professor C. McKee. I also am grateful for extensive notes on these topics
from Professor J. Arons. Finally, I am indebted to the students who are
taking the MSU course for their questions, feedback, and encouragement.

The text layout uses the tufte-book® BIEX class: the main feature is a
large right margin in which the students can take notes; this margin also
holds small figures and sidenotes. Exercises are embedded throughout
the text. These range from “reading exercises” to longer, more challeng-
ing problems.

THESE NOTES ARE UNDER ACTIVE DEVELOPMENT; to refer to a speciﬁc
version, please use the eight-character stamp labeled “git version” on the

copyright page.
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1

From Coulomb to Ampeére to Faraday

1.1 Maxwell’s Equations for Electromagnetism

Radiation is an electromagnetic phenomenon. It is useful, therefore, to
give a brief review of the governing equations of electromagnetism. As

we do so, we will also indicate how the units for the actors in electromagnetism—

charges and fields—are defined. Unlike much of physics and engineering,
astronomy does not use the Systéme International (SI) units, but rather
the Gaussian system of units. Hopefully this brief introduction, based
on the discussion in Jackson [1975], will ease the transition from under-
graduate coursework!.

The equations of electromagnetism are based on a few experimental
relations. The first experimental relation is Coulomb’s law,

Fc = kc%eh 1.1)

which establishes that the force F¢ on charge g, due to charge ¢; is in-
versely proportional to the square of the distance d between them. Here
kc is a constant of proportionality. The unit vector e, points along the
line connecting g; and ¢.

In general, describing a system of charges in terms of the forces be-
tween pairs of particles is cumbersome. It is more useful to define the
electric field of a charge g,

E= kC %e,,
as the force on a test charge at a given position in the limit of an in-
finitesimally small test charge. It is found experimentally that the fields
obey superposition: the electric field at a given point is the linear sum of
the electric field produced by individual charges. To be completely gen-
eral, we could have defined the electric field as being proportional to the
force, so that E = kgkcq/d? e,. In all commonly used systems of units,
however, the electric field is defined so that kg = 1; we shall not bother
with this distinction any further.

If we have a system of many small, numerous charges, such that Ag
is the charge in an infinitesimal volume AV located at position x, then

1 For further information on different
systems of units, see § A.1.
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we can define a charge density p(x) = Ag/AV. Integrating the electric
field over a surface enclosing a volume dV and converting to a differential
relation gives the first Maxwell equation,

V - E = 4nkep. 1.2)

The second experimental relation is Ampére’s law for the force per unit
length between two infinitely long, parallel wires a distance d apart and
carrying currents I; and Ip:

dF A LI e
d da "

Here k, is another proportionality constant and the factor 2 is foresight.

= —2kp 1.3)

The force points along a vector e, from wire 1 to wire 2 and is perpendicu-
lar to the wires. The force is attractive if the currents in the wires flow in
the same direction.

Most systems of units define current as charge per time? I = dg/dt, ? In modified Gaussian units,
I = ¢~1dgq/dt, so that current and

so charge has dimension [current X time]. In analogy with the charge /
charge manifestly form a 4-vector.

density, we define a current density J(x, t) as the current per unit area.
Conservation of charge means that the change in charge density at a
point must be accounted for by a net divergence of the current density:

dp B
E+V-J—O. (1.4)

With this definition of current, we compute the dimensionless ratio
Fc/Fa and find that k¢ /ks must have dimension [length /time]?. Exper-
imentally this ratio is found to be kc /ka = c%; we can therefore choose
either k¢ or ks and then the other constant is fixed.

The magnetic field is defined as the force per unit length per unit of
current,

B= kg%% = —2kAkB§.

The ratio of the electric and magnetic fields therefore has dimension

E length| 1
B time | kg

We need the constant of proportionality kg to allow for B having different

dimensions from E.
The lack of magnetic monopoles—our third experimental relation—
implies that
V-B=0, 1.5)

which is the second Maxwell equation. The third Maxwell equation is
Faraday’s law that the electromotive force—the integral of the electric
field around a circuit—is proportional to the rate of change of the mag-
netic flux threading that circuit. In vector form,

OB
V XE= koa (1.6)



From this equation, the dimension of kg is

b~ [ [8] ~ ]

From the general relation between B and a system of currents we
obtain an equation for magnetostatics,

V X B= 47TkAkBJ. (17)

When dealing with time-dependent phenomena, such as charging a
capacitor, the four equations (1.2), (1.5), (1.6), and (1.7) do not give
consistent results. Maxwell realized that the fix was to enforce charge
conservation by replacing J in equation (1.7) with

1 OE
J—=J —.
7 Ik o
This completes Maxwell’s equations:
B OB B kaks OE
VXE__kFE VXB—47TkAkBJ+?E

If the charge density p and current density J are zero, then the two equa-
tions for V X Eand V X B can be combined to give a wave equation for

BandE,
B kakgkp 0?2 B
2 _ KAKBKE
v { E }_ ke 8t2{ E } (1.8)

The wave propagation speed is

ke ¢
kakgke  \/kgkp

Since electromagnetic waves do indeed propagate with velocity c, we
must have kg = kg ! The vectors E, B, and direction of propagation k
form a right-handed triad (Fig. 1.1).

Finally, from the two homogeneous equations V-B =0and V X E +
krOB/Ot = 0, we can define potentials (P, A) such that B = V X A and
E = —V® — kg0A/Ot. These potentials will be used in Ch. 2 when we
quantize the electromagnetic field.

WE HAVE TWO INDEPENDENT CONSTANTS TO SPECIFY OUR SYSTEM
OF ELECTROMAGNETIC UNITS: kg and either k¢ or ka. For the SI system
of units, the original definition of current was based on the mass of silver
deposited per unit time by electrolysis in a standard silver voltameter.
Because this is an independent definition of current, the constant ka

must be defined so that Ampére’s law is consistent. The unit of current,

COULOMB TO FARADAY 3
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Figure 1.1: Propagation of an electromag-
netic wave in free space.
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known as the Ampére (A), is now defined as the amount of current that
when flowing through two infinitely long wires 1 m apart produces a
force per unit length of exactly 2 x 10~7 N'm~!. With this definition,
kan = 100" NA-2and kc = c%ka. For convenience, SI introduces the
vacuum permeability

po = 4rky = 41 x 107 NA—2
and the vacuum permittivity
g0 = 1/(4rke) = (4mkac®) ™t = (Ppo) 1.

Finally, in ST kg = 1; this implies that the electric and magnetic fields
have different dimensions.
With these choices for kg and ka, Maxwell’s equations are written as

v.E=L V.B=0
€0
OB OE
== B= =
V X E 5 V X wod + 1ogo ot

The force on a charged particle traveling with velocity v is
F=q(E+vxB).

This system of units is convenient for dealing with laboratory and engi-
neering applications. The unit of charge is given by 1A - s and is called a
Coulomb (C). The charge of a single electron is 1.602 x 1079 C.

For problems involving the interaction of individual particles and
photons, it is more convenient to adopt the Gaussian system of units. In
this system, the speed of light c appears explicitly. We set kr = ¢~ 2, so
that in Maxwell’s equations, time derivatives are multiplied by c~* and
E and B have the same dimensions. Second, we choose kc = 1, so that
ka = ¢=2. With these choices, Maxwell’s equations are written

V-E=4mp V-B=0
VXE:—E@ Vx3:4ij+1@
c Ot c c Ot

and the force on a charged particle traveling with velocity v is
F-q(E+” xB).
c

For historical reasons, the units of mass, length, and time in this system
are the gram, the centimeter, and the second. Because k¢ = 1, the unit of
charge is therefore (erg - cm)*/? and is termed a statcouloub.

1.2 Propagation in matter: elementary treatment

When an electromagnetic wave passes through some medium, the oscil-
lating electric field perturbs the charges in the medium; those oscillating



charges in turn emit electromagnetic radiation. Some of this radiation
may be sent back along the path of the original, incident wave, forming
a reflected wave; some of this radiation adds to the forward-propagating
wave and modifies it, thereby forming a refracted wave.

We shall develop a more thorough picture of the interaction of radi-
ation and matter in this course; for now, however, we will just review
the simplest case. Suppose the effect of the electric field is to induce an
average dipole moment (p) on each atom, so the net polarization per unit
volume is P = n(p), where n is the density of atoms. In a macroscopically
small volume (but still large enough to contain many microscopic diploes)
centered at x’, the potential due to the dipoles is

B(x) :/de:/P(x’)-V’ <1) av.

x —x'|? [x — x|
Integrating by parts gives

o) = — [ VP 4y
x — x|

This expression is just the standard formula for the potential, if we iden-

tify the induced charge density as p = —V - P. We can obtain an even

simpler formula, if we assume the polarization is proportional to the elec-

tric field, P = yE, with x a scalar constant. Then Coulomb’s law becomes?

V-E=—-47V -Por
(1+4rx)V-E=¢eV-E=0.

There is an analogous relation for the induced magnetic moment per unit
volume; if the response is again linear and isotropic, Maxwell’s equations

become
V-E=0 V-B=0
vxE—_ 128 v xB-
c Ot c Ot

The solution to this system of equations is again a traveling wave, but
with propagation speed c/,/jz€. Hence the index of refraction (the ratio
of the speed of light in vacuum to the speed in a medium) isn = /€.
For most non-ferromagnetic materials, [y — 1| < landn ~ /e =
JIFamy.

In physical terms, the electric field generated by the induced dipoles,
when added to the “external” electric field, shifts the phase of the wave
such that the effective propagation speed is modified.

1.3 Geometrical optics: propagation along rays

We have an intuitive feel for the propagation of light along straight
paths, or rays. Our experience is based on optical wavelengths (~ 500 nm)

COULOMB TO FARADAY 5

For the remainder of these notes, we work
with Gaussian units.

% We are assuming here that there are no
“free” charges present.
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being much smaller than ourselves. The propagation along rays is clearly
this is not an accurate description of light when our system is, e.g., an
atom or molecule. Let’s therefore examine how to treat the propagation
of light when the scales over which external conditions change are much
longer than the wavelength of the light itself.

In the absence of interactions with matter, we know that the light
propagates as a free wave: if fis some quantity that characterizes our
electromagnetic disturbance, then we can write

f(x,t) = Eexpli(k-x — wt)].

Now, in the presence of matter the propagation is not so simple; more
generally,
f(x,t) = a(x,t) exp [it)(x,t)] . 1.9

Here ¢ is the phase.
We are in the limit that the wavelength A is much smaller than some
macroscopic length scale. Then we can expand 1 about x = 0, t = 0,

Y(x,t) =P +x - Vip + td. (1.10)

Note that since 1) changes by 27 over a distance A, we need ¢y > 2.
Inserting equation (1.10) into equation (1.9), we obtain

f~ [ae""] exp [ix - Vi + it0y)] .

Thus, if a is also slowly varying, our variable flooks like a wave with
wavenumber and frequency

= Wi (1.11)
w = —u, (1.12)

respectively. For this approximation to be valid, we need k - k = w?/c?, or

(Vo)? - C%‘f)z =0

This is the eikonal equation, which determines the path of the ray. To

(1.13)

define a ray, we construct at a given time surfaces of constant phase
(Fig. 1.2). A given ray is tangent to the perpendicular of each surface.

DO EQUATIONS (1.11) AND (1.12) LOOK FAMILIAR? As a hint, multiply

their right-hand sides by %/i; then you might be reminded of quantum

mechanics with v the wavefunction, p = (h/i)V the momentum and . _
. . . . L Figure 1.2: A ray (arrow) is tangent to the

H = —(h/i)0:) the Hamiltonian. The formulation of mechanics in terms L of each surface of constant phase %

of a Hamiltonian implies that we can bring in the machinery of advanced (labeled here 4, 11, ¥2).

classical mechanics to derive a better description of the path followed by

a ray of light.



In classical mechanics, the analogous equations to (1.11) and (1.12)

are
_ o
aS
H = o

Here p and q are the generalized momenta and coordinates, and

2
S:/ Ldt
1

is the action, with L = p - § — H being the Lagrangian. The path a particle
takes between points 1 and 2 (Fig. 1.3) is the one that minimizes S.

Suppose we write the action as a function of the coordinates: S =
S(q,t) where g = g(t;); then when we vary S we obtain

oS oS oS
S = —dt+ —dq = —Hot+ —dq.
500t 9 t+ g
Since we are fixing g, the second term vanishes and S = —#t.

For all paths, let the time when the particle leaves point 1 be t; and
the time when the particle arrives at point 2 be tp. Further, let #be
constant?. Then,

2 2 2
S:/ Ldt:/ (p-q—}l)dt:/ p-dg—H(t, —t;). (114
1 1 1

But, t = t; — t;1, so when we vary S,

2
65:5/ p - dq — #Hot.
1

Since 6S = —H6t, we must have

2
5/ p-dg=0
1

for the path taken by a particle. Translating equation (1.15) to our optics

(1.15)

language (p — V1), the path a ray takes between points 1 and 2 is

determined by
2
6/ Vi .dx=0. (1.16)
1

Equation (1.16) is a generalization of Fermat’s principle, which you
learned about in introductory optics.

EXERCISE1.1—

1. Suppose we reflect light as shown in the top panel of Fig. 1.4. Show that in the
geometrical optics limits, i = 7: the angles of incidence and reflection are
equal.

2. Consider a ray of light incident on a pool of water as shown in the bottom
panel of Fig. 1.4. Show that equation (1.16) implies Snell’s law.

COULOMB TO FARADAY 7

Figure 1.3: Possbile paths between two
points at times t; and tp.

4 This requires that there be no explicit
dependence on time.

Figure 1.4: Top: reflection of light from a
surface. Bottom: refraction of light as it
passes from a medium with index n; into
a medium with index n».
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EXERCISE 1.2— Many atmospheric optical effects are caused by small
droplets of water. Suppose we have a ray of light that enters a droplet of water,
reflects from the back surface, and re-emerges as depicted in Figure 1.5. The ray
enters with angle of incidence i and exits with angle of incidence i’; the angle
between the entering and exiting rays is ¢. We shall assume the droplet of water
is sufficiently large that we may work in the geometrical optics limit.

1. Show thati’ =i, and derive a formula for ¢ in terms of i and r.

2. Use Snell’s law to relate r in terms of the angle of incidence i and index of
refraction n. For water, n &~ 4/3; use this to plot (7). Argue that the
backscattered light is most intense at the maximum value of ¢.

3. Now redo part (2) for red light (n = 1.330 at A = 700 nm) and violet light
(n = 1.342 at A = 400 nm). What is the difference preqa — ©violet?

4. Verify that your calculations are correct against observations.

Figure 1.5: Scattering of light by water
droplet with one internal reflection.
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From Maxwell to Planck to Einstein

2.1 Solution to Maxwell’s equations in vacuum

The electromagnetic field (E, B) is described by Maxwell’s equations,
which in Gaussian units are

V-E = d4mp 2.1)
10B
E = -2 2.2
VX c Ot 2.2)
V-B = 0 2.3)
vxB — LOE 4m; (2.4)
c Ot c

From equations (2.3) and (2.2), we can introduce the potentials ($,A)
such that

B V XA,
10A

E

In the absence of source charges and currents (p = 0,J = 0), we sub-
stitute for the fields E, B in Equation (2.4) to obtain an equation for the
potentials,

109

—VZ}A+V[+V~A} =0. (2.5)

162
c Ot

2o

The potentials are not uniquely specified: the fields E, B are unchanged if
we make the gauge transformationA - A+ V¢, d — & — c10xp,
in which 1) is some scalar field. This gives us enough freedom to choose
1) so that the second term in Equation (2.5) vanishes and leaves us with
a wave equation for A. By substituting for (E, B) into Equation (2.1)

and applying the same gauge condition, we obtain a wave equation for

® as well. More generally, we can recognize that (®,A) is a four-vector
and then we can bring in the machinery of relativity; for now, though,
we’ll keep time and space separate and use our gauge freedom to force
d=V-A=0.
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2.2 Decomposition into modes: photons

Since A satisfies a wave equation, we can expand the solution into normal
modes,
A(r, t; k, q) _ ak’qqeik'rfiwt + a;qq*efikﬂriwt' (26)

In this expression, q is a direction vector (|g| = 1); because g is complex
it also contains phase information®. By substituting Equation (2.6) into 1 By writing g = |q|e’?, the terms in

. . o, . . . ik-r—iwt-+if
Equation (2.5) with the condition V-A = 0, we determine that we require Eq. (2.6) become a|qle™ .

w = ck, 2.7
g-k = 0 (2.8)

to have a solution to the wave equation. The wave therefore propagates
with phase velocity ¢, and the polarization—the direction of g—is or-
thogonal to the direction of propagation k.

The energy density of the electromagnetic field is given by u = (|E|? +
|B|?)/(87) and the rate of energy transport is given by the Poynting
vector, S = (c/4n)E x B. Using our solution, Eq. (2.6), and averaging over
many cycles gives for a mode (k, q) the energy density,

Ukq = 2 |ak,q| ’ (29)
and the flux,
ol k= gy &
Sk’q = ﬁ|0[k7q| = uk,qC . (210)

Here k is the unit direction vector. The total energy density and flux are
found by summing over modes (k, q).

AS A COMPUTATIONAL AID, WE'LL TAKE OUR DOMAIN TO BE A BOX
of volume V with periodic boundary conditions. We therefore write
kg = Akq/VV, so that we get the correct potential upon integrating
over the box’s volume. Our general solution may then be written as a

sum over modes,

A o Aigt
A rt) = q elk-r—zwt + q e—1k~r+zwt , (211)
0 kZ_q [ VvV VV

with total energy

2
w
E=uV=>_ |Akq|2ﬁ. (2.12)
k.q

At this point, there are several routes to a description of the field in
terms of spin-one particles known as photons. A classic method? is to 2W. Heitler. The Quantum Theory of
construct the Hamiltonian for the electromagnetic field and perform a Radiation. Dover, 1984

canonical transformation to the Hamiltonian of a harmonic oscillator.



MAXWELL TO EINSTEIN

One then imports the quantum mechanical description of the harmonic
oscillator.

Here we’ll simply assert that numerous phenomena—e.g., the pho-
toelectric effect, Compton scattering, electron-positron production—
suggest that the electromagnetic energy is quantized into discrete units
called photons, and that the energy of an individual photon is propor-
tional to its frequency. The electromagnetic field is thus specified by
giving the occupation numbers Ny, for the various modes. A photon la-
beled by (k, q) has momentum p = hk and energy E = hlk|c = hw. The
total energy of the field is then

E=) Nyhw.
k.q

Comparing this expression with Equation (2.12), we find that

w

_ 2 )
Niq = |Axq] ke

(2.13)

the occupation number is proportional to the amplitude of the mode.

To relate the spin to the polarization states, first notice that although
q has three components, the constraint (Equation [2.8]) k - ¢ = 0 means
only two are independent. Suppose we take our z-axis along the direction
of propagation k and choose as our basis positive and negative helicity
states

1
9, = —=(&+iey),

q_ = (&x — igy),

Sl= %

where @ are unit directional vectors. If we then rotate our coordinate
system by an angle 6 about é,, the polarization basis vectors in the new
coordinate system (denoted by a’) are

! i0
. = eq,
q = eq_.
This transformation under rotation is precisely the behavior of the eigen-
functions of a spin-one particle with its spin axis along &,. We there-
fore identify the quantized excitations of the electromagnetic field—

photons—as being spin-one particles.

2.3 Emission and absorption of photons; Einstein coefficients

In non-relativistic classical mechanics, the Hamiltonian for a particle in
an electromagnetic field is

1

H—=— —
2m

[p - EA(r, t)} ’ + e®(r,t).

11
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Here e is the charge of the particle. You can find a discussion about

the appearance of A with the momentum and gauge invariance in any
good mechanics text; suffice it to say that the expression in [ | is gauge-
invariant.

The classical Hamiltonian translates over to the quantum mechanical

operator, )
ﬁzi(?V—iA) +ed.
Expanding this equation,
H—f’z+{—e(ﬁ.A+A.p)+ ¢ A2+e<1>} (2.14)
2m 2mc 2mc? ’

where p = —ihV.

EXERCISE 2.1— Consider a photon of wavelength )\ incident on an atom.
Show that in order-of-magnitude,

(e/mo)lp-A _Evas
(e2/mc?)A? EXx T

where E is the perturbing electric field (E ~ A/\), Ey = e/a3 is a typical electric
field strength in an atom (ap is the Bohr radius), and ar = €?/(Aic) is the fine
structure constant. Hence the term oc A% in equation (2.14) is typically negligible
compared to the term o p - A.

Suppose we have a large number of particles (index ¢) with position
and momentum operators #; and p,: then we can write the Hamiltonian
as a sum over {. The first term in the [ | becomes

A

e (1IN Pegy_; s Pe
C/[Q%:méé(r Fo) +o(r rg)m

.A(r,t)dvE/_fj-Adv
4 c

(2.15)
where the term in [ ] is the operator of particle current J. As shown
in Exercise 2.1, the term o A? can be neglected; and if we work in the
transverse, or Coulomb, gauge then ¢ = 0.

We then expand A using equation (2.11) and treat it as a time-dependent
harmonic perturbation (§ A.4); from equation (A.8) we see that the terms
(Akg/V'V)qe* ™=t with hw = E, — E,, will induce an upward transition
from a state |m) to a state |n) with a rate for each mode (k, q)

21 €2

2
I, = v Akl [(n] Jic - q |m)[* 6(En — Em — hw)
47%e?
= Nig |(n| Iy - q|m)[* 6(E, — B — hw).  (2.16)

In this equation, J; = [ dVJelk" is the Fourier transform of the particle
current J. The rate is proportional to the density of photons N, kq/Vin
mode (k, q).
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Next, we'd like to include our description of the radiation field as a
collection of modes {... Ny, ...}: our initial state is then |m; ... N, .. .);
our final state,

n...Ngg—1.. > To make this description consistent
with Equation (2.16) we define an operator Akq that decreases Nj, by one,

5 2mhe?
(...Nig—1..|Agg|-- Ng...) = — N (2.17)
to within a phase factor that we set to unity®. Taking the complex conju- 3 Which with hindsight we know is okay:

gate of Equation (2.17) gives the operator that increases N, by one, photons are bosons

. 2rhe
(oo Nigeo | Ay |- Nig = 1) = | TNy, (2.18)

Notice that with A}: . the eigenvalue contains the number of photons in

the final state, not the number in the initial state.
With the operators Akq and A}: 7 the rate for the system to make a
transition |m; o Nig - > — |n; o Nig—1.. > is

2
kq - 21 e 2
NNl = a0 (En = Bm — hek) [{n] Ji - qm)|” - (2.19)

i

. 2
X ’<~“qu71-~~|Akq|'~'qu~'~>

4r2e?
= 5 Nigl(n Ji - qIm)[” 6(E, — Eyy — hick),

which is the same as Equation (2.16). This is a description of the absorp-
tion of a photon (k, q). The rate for our system to emit a photon (k, q),
n;...qu...> — ’m;...qu+1...>,is

i.e., to make a transition

% 21 €2 N 2
n',lem,Nk,, b = ?W(S(En — Ep — hek) [(m|J_g - q* |n)]| (2.20)

~ 2
X[( N 1 AL | Nig )|
4n2e?

= 7, WNig+ 1) |l I k- q° In)|” 8(Ep — Ep — hek)

Notice that while the absorption rate is proportional to Nj,, the emission
rate is proportional to Ni, + 1; these two terms account for induced and

spontaneous emission, respectively.
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EXERCISE 2.2— Show that

2mhc?
w

<qu|Althkq |qu> = Nig-
so that AZ quq = qu is an operator giving the number of modes (k, q). Also show
that Ny, is Hermitian, that is,
N
Nf, = Nig.
Finally, show that the commutator of Akq and A}: .8

[Akq,Alq] _ 27rU/:1c2‘

The rates for emission and absorption are linked. We can lump the
atomic matrix elements into a coefficient and write Equations (2.19) and
(2.20) as

ki
mq,qu—m,qu—l bmnqu (221)
k
Fn?quﬁm,qu-&-l = bnmeq+anm- (2.22)

From the form of Equations (2.19) and (2.20) we expect that b, = by
and also apm = by That this is so can be shown by a statistical argument
made by Einstein.

First, since photons have integer spin, they obey Bose-Einstein statis-
tics: the mean occupation number for a given mode v is

N, = (e —1)7, (2.23)

where 3 = (kgT) ! is the inverse temperature and kg = 1.3806 x
10716 erg K~ is the Boltzmann constant. Another way to argue this is to
consider the radiation field as a collection of harmonic oscillators each
with frequency v. The “levels” for each oscillator are given by E, = nhv,
and therefore in equilibrium the relative probability of two levels is set by
the Boltzmann factor,

P(N2) _ —p—N)hw

P(Ny) '
The mean energy for photons having frequency v is therefore

B - 3o (nhv)e=Phv
v Enzoe—ﬁnhy

d o0
- ——1In e—nﬂhl/
dﬂ (nO )

Evaluating the sum as a geometric series, taking the derivative, and

equating E,, = N, hv gives the desired result.

Now suppose we have a cavity with the radiation in thermal equilib-
rium; in this cavity are some atoms with two levels, m and n, with an en-
ergy difference between the levels E,, — E,, = hw. The rate of upward tran-
sitions is Nmbmnqu where N,, is the number of atoms in state m; the rate
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of downward transitions is N, (bnmeq + @) = Nype B (bnmeq + anm)
where the Boltzmann factor accounts for the relative likelihood of finding
the atom in state n versus m. For simplicity, we are assuming the states
are not degenerate. Since in thermal equilibrium the rate of upward tran-
sitions must equal the rate of downward transitions,

Nmbmnqu = Nme_ﬂhw (bnmeq + anm)v

we find after rearranging terms that

anm/bmn

P — b T’ (2.24)

Niq =
For b, = bymn = an,m we recover the Bose-Einstein distribution. Notice
that without induced emission we would just get a Maxwell-Boltzmann
distribution.

15
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A Phenomenological Description of Radiation

3.1 The specific intensity

Having shown that we can describe the electromagnetic field by enumer-
ating photon states, the next task is to go to the limit of large occupation
numbers—i.e., many photons per state—and formulate a description of
the radiation in terms of intensity and energy flux.
To start, we replace the sum over modes with an integral. We need
to ensure that we count states correctly when we do this. Let’s take our
volume to be a box with sides of length L. (We’'ll see in a bit that the
explicit reference to volume will cancel from our formulae.) Such a box
can accommodate wavevectors k| > 7wAJ/L, with Al= 1,2, .... Hence
the number of modes increases by dk = 27/L as we increase! A\'by 1 The factor of two accounts for the
AN = 1. Extending this argument to all three dimensions, we can make positive and negative values of k.
the replacement

dk dk dk
3 (W) (Y z
axanan -2 () (32) (5)
and the sum over all modes becomes
12%2 13/d3kz 1 3/k2dkd§2 (3.1)
174 p . 21 - p 27 ’ )

with the volume canceling out. In the last expression we’ve also con-

verted to spherical coordinates with d§2 = sin 6 df d¢ being a differential
of solid angle.
With this change, we can express the energy density, Equation (2.9), as

1)° 2 w? 2
u= Zq: (%) /k dk o |Agg[* dO. (3.2)

In terms of the occupation number, Equation (2.13), the radiative energy

hu?3
u= Z/C—SNW, dv dQ. 3.3)
q

density is
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In this expression we’ve also changed variables to frequency v viak =
2nv/c.

It is useful to look at the radiative flux in a small range of frequencies
dv traveling into a narrow cone of solid angle d2. We shall call this quan-
tity the specific intensity I,,: from Equations (2.9), (2.10), and (3.3), the
specific intensity is related to the occupation numbers via

3
Lavdo= |3 "N, | daa (3.4)
4
q

For most applications in astronomy, the length over which light travels
is much larger than a wavelength; in this case, we are in the geometrical
optics limit and we can describe light as traveling along rays. The specific
intensity is a useful quantity in this limit because it is conserved along

a ray in the absence of interactions with matter. This conservation is a d Q/ k
consequence from Liouville’s theorem that a volume in phase space is dA

conserved along trajectories. One can also show that it follows from the
inverse-square-law property of light. / oot
For unpolarized light 3 q — 2; unless stated otherwise, we’ll make ¢

this assumption from now on. Figure 3.1: The intensity I, is the energy
in a frequency band dv propagating into a
cone about direction k incident on area dA
in a time dt.

EXERCISE 3.1 — Suppose that you observe a star with your naked eye
under ideal seeing conditions, and suppose that this star is at the limit of what
the human eye can detect. Estimate the rate at which photons from this star
reach your retina.

3.2 Moments of the specific intensity

Just as we define the specific intensity as the energy flux in a frequency
interval dv, we can define the specific energy density

h 3
u, = / >N, Ao, (3.5)
q

This is just an integral over angle of the specific intensity

u, = }/dQIl,.
c

Now suppose we want the specific flux crossing an area with normal

n. We first multiply the specific intensity by a unitvector k along the
direction of the ray, and then take the component along # and integrate
over all directions,

F, :/dmy(“-ﬁ) = /dQ cosf1,. (3.6)
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The units of F,, are energy/area/time/frequency.

EXERCISE 3.2 — The Crab nebula is commonly used as a calibration source
in X-ray astronomy. Over the band of photon energies (2-10) keV, the spectral
distribution is well-approximated by a power-law, F, oc v ™2, and the fluence in
this energy range is f F,dv=24x10"% erg cm 2571,

Suppose we wish to observe with Chandra a source with a similar spectral
distribution as the Crab, but with an overall fluence that is 0.001 that of the Crab.
Take the collecting area of Chandra in the (2-10) keV band to be 340 cm®. How
long of an integration time does one need to collect enough photons to ensure
10% errors on the total count rate?

EXERCISE 3.3 — A typical bright quasar has a flux of

F, =10Jy =10 x 102 ergcm 2 s~ Hz . Suppose that source were observed
continuously over 40 yr at the Arecibo radio telescope. Take the spectral
distribution to be flat over the antenna bandpass (0.312-0.342) GHz. How would
the total energy received over these forty years compare to some everyday
expenditure: for example, how would the energy received compare with that
required to lift some common weight over some distance?

Notice the pattern. To get u,, we multiplied I,, by a weighting factor
1=(n- ic)o and integrated over angle. To get F,, we multiplied I, by
a weighting factor (f - i()l = cos! § and integrated over angle. This
procedure—multiply by a power of # - kand integrate over angle—is
formally known as taking a moment of the specific intensity. The specific
energy density is proportional to the zeroth moment of the intensity; the
specific flux is proportional to the first moment of the intensity.

The next moment is related to the stress tensor, which is the momen-
tum flux along direction # being transported across an area with normal

A~

m:
prm — %/dQIV (k) (k-7). (3.7)

This is a tensor because it contains two directional vectors, 1 and f.
The factor of ¢! comes from momentum being related to frequency as
p = hv/c. The stress tensor P, is clearly symmetric: P)" = P]™.

It is often more convenient to work with these moments—u,,, F,,
P,—of the radiative intensity. The moments, being weighted averages
over angle, contain less information about the radiative intensity; the
lower-order moments do, however, have a readily interpretable physical
meaning. Although formally one can construct higher-order moments, in
practice only the first three have any connection with a physical quantity.

19
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3.3 Thermodynamics of the radiation field

If the radiation field is in thermal equilibrium, then the occupation num-
bers satisfy Equation (2.23). Inserting this into Equation (3.4) gives the
specific intensity in equilibrium, known as the Planck function,

» 2h13 hv -
gl =B, = —— — ) -1 . .
. 2 [exp ( kBT> ] (3.8)
Dividing by ¢ and integrating over all frequencies gives the energy den-
sity:
2h13 1 8th [ V3
wo= / 3 gl A= CT/O et — 1 &
8wk} _

Here a = 7.566 x 1071 ergcm 3 K* is the radiation constant.

EXERCISE 3.4 — Derive the blackbody spectral distribution with respect to
wavelength, By. Show that the peaks for B, and B do not coincide, but that the
peaks of vB, and AB, do.

At low frequencies (v < kgT/h) we can expand Eq. (3.8),

2 2
B, ~ = ksT.
C

In radio astronomy, one often defines a brightness temperature, © =
1,2/ (2v2kg) = Ix\*/(2ckg).

EXERCISE 3.5— Estimate the brightness temperature for the WKAR
broadcast antenna in Okemos. What does the value you obtain tell you about the
radiative process?

The net flux, Equation (3.6), vanishes for radiation in thermal equi-
librium. This follows from the isotropy of the radiative intensity. If
we imagine that the radiation is escaping from a small opening in a
hohlraum, the integrating only over outward directions gives

2m 1 3
2h 0
F= / dd)/ d(cos 9) /dl/ ;j cos = o5 T?. (3.10)
0 0 ¢ exp (Z;—l}) -1
Here osg = ac/4 = 5.670 x 107> erg cm 2 s 1K *is the Stefan- Did you note how we changed variables

from 6 to u = cos 0? With this change,
the integration over 47 steradians is

Boltzmann constant.

2m ™ 21 1
EXERCISE 3.6 — Show that the total energy flux in a given frequency /0 d¢/0 sin ¢ df = /0 do /_1 du.
interval is proportional to the corresponding area under a curve in a plot of vF,,
against log v, and likewise for AF against log .
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For the stress tensor, the off-diagonal components, m # f, vanish as
well. The diagonal components are all equal; since the rate of momentum
transport across a unit area is just the force on that area, which is the

pressure, we have

1 1 27 1
P = 7/dy/dQB,,c0529:7/B,,du/ d(b/ u?du
¢ ¢ 0 -1
4m 1
= - [ B,dv=ZaT". 3.11
3¢ Y3t (31D
That the pressure is one-third of the energy density is in general true for

a relativistic gas.

Figure 3.2: The intensity from a sphere

observed a distance D away. Here the

EXERCISE 3.7 — Suppose you observe a sphere of radius R from a distance
D as shown in Fig. 3.2. The emitted intensity I, is uniform over the surface, but it
is a function of the angle 0 between the ray and the normal to the surface. Show
that the observed flux F,, from the entire visible surface of the sphere is

21 /2
F, = / / I(0) cos @ sin 6 df do;
o Jo

that is, the integration over the solid angle subtended by the sphere is equivalent
to integrating over outward directions from a single point on the surface. Show
thatif I, () = B, is a thermal spectrum (and in particular, is independent of 6),

then
R 2
/PV dv = GSBT:%& (5> .

21

intensity depends on the angle  between
the ray and the normal to the observer.






4
The Equation of Transfer

We saw in Chapter 2 that the interaction of photons with matter for a
given microscopic process connecting levels n and m (with E,, — E,, =
hv) consists of three terms: absorption, with rate b,,Ny,; stimulated
emission, with rate b,,Nj,; and spontaneous emission, with rate a,,.
Here the a and b coefficients represent matrix elements connecting the
levels n and m in the matter. We then showed in Chapter 3 how we could
describe our radiation field by the intensity I,,. Now we incorporate the
interaction with matter to derive an equation governing the evolution of
I, as it passes through a medium.

4.1 Absorption

We begin with absorption. The rate of absorption for a single atom is pro-
portional to N,, and a sample of atoms will absorb in a range of frequen-
cies Av about v: the atoms will have some motion, so there is a Doppler
shift; there is an uncertainty principle for the finite lifetime of an excited
state; the atom may collide with other atoms; and so on. To account for
this spread in frequencies, we introduce a dimensionless function ¢(v)
which is peaked about the frequency v = |E,, — E,;|/h of the transition.
The rate of absorption for one atom is then [ N, bu,¢(v) dv dS2.

If we have a small volume A4/ containing n,, AV absorbers?, then the
rate at which photons are absorbed by atoms in state m is

1 27hymc? 2h13
nmA‘VM/( e )< 2 Ny) o(v)dQ dv

=Bm I,

= nmA’V/ Bm"ll,qb(y) dv dQ. 4.1)
4

Here we’ve factored out 47 so that if everything is isotropic the integra-
tion over angle yields unity. With this convention, the units of B, are
cm? erg 1.

Now let’s take AY = AsA4, where s is along the direction k of a ray
and A4 is normal to k. The incident energy flux into our volume in a

1 ny, is the number of atoms in state m per
unit volume
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frequency interval dv and in an angular range dQ2 about k is then
I, dvdQ Az,

the rate of energy absorption from this ray in the volume is

N {huan (b(u)] L, dvdQ A4 As.
arn

If we therefore have a ray I, incident on a volume A 4As, then its inten-
sity upon exiting the volume will have decreased:

I(s+ As) = I,(s) — no,I,(s)As. 4.2)

In this expression we’ve cancelled out the common factors of A4dQ2dv
and introduced
“rate of specific energy absorption”  hvB, np,

o). @43)

Ov T - - =
“incident specific flux” 47

The quantity o, has dimensions of area and is termed the cross-section.

If we take the limit of Eq. (4.2) for which As < I,,/|dI, /ds|, i.e., Asis
small on a macroscopic scale while As > A, so that our description makes
sense, we then have a differential equation for the intensity,

dl,

I = —no,l,. (4.4)

absorp.
It is common to introduce the opacity defined via pk, = no,, with p being
the mass density; the opacity has dimension [x,] ~ cm?/g. The com-

bination no,, = pk, is sometimes denoted as the extinction coefficient? 2 George B. Rybicki and Alan P. Lightman.
o Radiative Processes in Astrophysics. Wiley,
v 1979

If 0, does not depend on I, the solution to Eq. (4.4) is straightfor-
ward: I, (s) = I,(0)e” ", where

n(s) = / " priyds @5)
0

is the optical depth. Note that pr,, = no, has dimensions of inverse
length: we call ¢, = (no,)~! the mean free path. The optical depth is
therefore simply the path length measured in units of a photon mean
free path.

EXERCISE 4.1— You are observing a star with a ground-based telescope.
Suppose that the extinction coefficient a,, = pk, depends only on the vertical
height above ground. Show that in terms of magnitudes, the flux reaching the
telescope when the star is at an angle 0 from the zenith is

m(6) = mo + ko sec9,

in which ko = (2.5loge)T = 1.0867, T = [ avdz and my is the magnitude that
would be observed in the absence of an atmosphere. In this expression we neglect
the curvature of the Earth. The quantity sec 6 is thus an approximation for the
airmass.
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4.2 Emission, both spontaneous and stimulated

For emission, we saw in Section 2.3 that the rate per atom for a down-
wards transition from level n to m was a,,; + bnmN,,. As with absorption,
we allow for the transition occurring over a spread in frequencies by
introducing ¢(v), and recast the rate in terms of specific intensity:

emission rate = n,A,,¢(v) dv @ + 1Bl 6(v) dl/d—Q. (4.6)
4 47

Here the first term is for spontaneous emission, and the second is for
stimulated. This is the rate of photon emission; to get the energy emitted
we’ll need to multiply the emission rate by hv.

If we again consider a ray incident on a cylinder of volume A4 As,
then the gain in intensity over the volume is

I(s + As) — I(s) = npAs [‘ZZ hv ¢(y)] +nnAs [i’:‘hu ¢<v)] L,
so that
% spon. emission - nnin;: ) = % @
and
% = [i’;’l hv ¢(1/)} L. 4.8)

In Equation (4.7), we define an emissivity ¢, with dimension [erg s~1 g_1 Hz_l];
the factor of (47)~! makes the right-hand side into a per-steradian

quantity. The quantity pe, /(4n) is often denoted as 3 j, with units of 3 George B. Rybicki and Alan P. Lightman.
[erg s lem—3 Hzfl] Radiative Processes in Astrophysics. Wiley,
: 1979

We can combine the stimulated emission term, Eq. (4.8), with the
absorption term, Equations (4.2) and (4.4):

dr,

ds

=1, [(an - "”Bnm> h”qs(u)”’"] . (4.9)
n n

corr. abs. m 4m

Corr.

corr. Notice

The term in [-] is the corrected absorption cross-section o
also that we have incorporated the abundance of particles in state m,
nm/n, into the definition of o, and ¢,,. We denote by n the total number
of atoms (in any state): n = ) . n;. Likewise, the mass density is p =

> i Min;, where M; is the mass of species i.
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EXERCISE 4.2 — Inour original derivation of the Einstein a and b
coefficients, Sec. 2.3, we showed that for non-degenerate atomic levels n and m,
the coefficients were all equal, aum = bnm = bmn-

1. Generalize this: show that if the levels n and m are degenerate with
occupation numbers g, and gn, then the relations between the coefficients are

bum _ gn @ _ gn

bmn 8n ’ bmn 8n '

2. Next, from the definitions of the coefficients B, Bmn, and A, show that

Bim _ gn A _ 2hu3g7m
Buwn g Bm 2 g

Scattering

The final process to consider is scattering. For coherent scattering, also
called elastic scattering, the photon is redirected into a different direction,
but no energy is transferred to the matter. Scattering changes the inten-
sity in two ways: energy is scattered out of the the beam, but energy is
also scattered into the beam from other directions. The change in inten-
sity due to scattering therefore has not only a negative term, similar to
absorption, but also a positive term:

AT / ok k)L (K)d.  @10)

scat.

Here the redistribution function ® is both normalized, [ <I>(1Ac, icl) dQ =
1, and reversible, q)(i(, i(l) = <I>(i(/, ic) For isotropic scattering, ® =
(4r)~1,s0 [I,®dQ = J,, whereJ, = (4n)! [, d2is the mean
intensity. Isotropic scattering simply redistributes the energy over all
angles. We’ll take this to be the case in the rest of the chapter, so that the
dl, /ds|s,, = —pri (L — Jo).

abs

EXERCISE 4.3 — Consider a plasma with absorption opacity x3° and

scattering opacity &}, -, both of which are constant. A photon is emitted and takes
ahop of average length £ = p~(k®* 4 k5)%; at the end of the hop, the photon
is either scattered into a random direction for another hop, or else it is absorbed.

Show that the average number of hops the photon takes until being absorbed is

K/a;bs + K:Isjca

<N h0P> =

b
K




4.3 Putting everything together: the source function and albedo

We now combine the terms for absorption (corrected for stimulated
emission), emission, and (isotropic) scattering into the full differential
equation for the specific intensity,

dr,
@ = ()

Ev

+ pr,. (4.11)
47

We can further simplify this equation by defining the optical depth d7,, =
p(K3 + k5?)ds and rewriting Eq. (4.11) as

a, _ . e <1 e >+ e

dr, 47Tﬁf,bs H?’bs + Ksea K?’bs + Ksea v
_ Ev
= ot g (A A, (4.12)
=S,

The relative importance of scattering is measured by the single-scattering
albedo, 4, = K5/ (k2 + K5?). In Eq. (4.12) we've also introduced the
source function S,,.

In the presence of scattering, the source function

Ev

S, = ——@1-4a,)+4,J, 413
4maybs( )+ (4.13)
€ 1
= ———1-4a,)+4,— [1,d0
4 pabs ( )+ 4 /

depends on the integral of I, over angle via J,, so that equation (4.12) is
an integro-differential equation and in general does not have a closed-form
solution. If scattering is absent (4, = 0), so thatS, = £, /(4nk%) is a

known function of 7,, then we can formally solve equation (4.12):

I(r) =L(0)exp(—7,) + /OTU S, (1) exp(t — 7,) dt. (4.14)

EXERCISE 4.4 — Suppose we have a box containing two-level atoms. The
levels are in thermal equilibrium at temperature T.

1. What is the source function S,?

2. Now suppose a ray passes through our box. The intensity is Planckian at
temperature T, i.e., I, = B,(Ty),but T, # T. Whatisdl, /dsif T, > T? If
T, < T? If T, = T? Give a “intuitive” physical explanation for this.

TRANSFER EQUATION

27



28 RADIATION IN ASTROPHYSICS

EXERCISE 4.5— Suppose we have an ionized cloud of uniform
temperature T = 10* K, electron number density n, = 2000 cm ™, and radius
R = 0.6 pc. You observe this cloud in the radio over a frequency range
(10—104) MHz. The primary interaction between radiation and matter in the
cloud is free-free, or bremsstrahlung, absorption with coefficient

p/i,ff ~ 6.56 x 10 *n2T>*v 2 em ™.

Here n, is in units of cm 3, Tis in units of K, and v is in units of Hz. Assume that
collisions in the cloud are sufficient to maintain the electrons and ions in local
thermodynamic equilibrium (LTE).

1. Find the frequency v at which 7, = 1 for a line of sight through the center of
the cloud.

2. What is the source function S,? Make an approximation for the source
function appropriate for the range of observed frequencies.

3. Expand the equation of transfer in the limit 7, < 1, and get an approximate
expression for I, as a function of v. Do the same for the case 7, > 1. Make a
schematic plot of I,, as a function of v over the range of frequencies observed.
Indicate on the plot the frequency ranges in which the emission is optically
thin and optically thick and indicate how I, scales with v in each of these
regimes.

4.4  Diffusion Approximation and the Rosseland Mean Opacity

At large optical depth, such as deep in a stellar interior, the radiation field
is in thermal equilibrium, so that I, = S, = B,. To understand this,
consider the formal solution, Equation (4.14): atlarge 7,,, I, — S,. If
the matter is in local thermodynamic equilibrium, so that all levels follow
a Boltzmann distribution, then ¢, /(47x%*) = B,,. In addition, if we

are at very large optical depth, then conditions over the scale of a mean
free path should not vary much, and the radiation field should be nearly
isotropic; we therefore expect that J, = I, and dI,,/dr, — 0. Under these

conditions, the equation of transfer becomes

dr,

dr,

0 ~(1-4,)B, 1)

Thus B, = I,, = J,, and the source function becomes
S, =B,(1—4,)+ 4,B, =B,.

If the radiation field is perfectly isotropic there is no flux, however, so we
must have some small anisotropy. Let’s imagine the photon performing
arandom walk. At very large optical depth, the temperature and density
will only vary slightly over the length of a hop ¢. Let’s imagine a small
cube of material, with the size of this cube being /. Because we are so
very nearly isotropic and in thermal equilibrium, the flux through any
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one face of this cube must be (¢/6)u, where u is the radiation energy
density. Now suppose we have two adjacent cubes, with the common face
of the cubes being at x = 0. The flux across the face has contributions
from photons emitted at x — £ and x + ¢, so the net flux is

F = %u(x—ﬁ) - %u(x—f—@

Q

— gcf e (4.15)
This is a diffusion equation with coefficient ¢/(3pk). Our derivation is
very crude, as it neglects the variation in cross section with the proper-
ties of the ambient medium and with the photon frequency. Nonethe-
less, this is basically the correct scenario; heat diffuses with a coefficient
given by some suitably defined average over all sources of opacity.

TO COMPUTE THE FLUX IN A MORE RIGOROUS FASHION, let’s write I,
as B, plus a correction,

I, = B,(T) + IV (k). (4.16)

The superscript () reminds us this is a first-order correction. Now, let
(= cos § be the direction cosine between our ray k and the gradient of
I,: that s, 4

i k-V.

Substituting this and the expansion for I,,, Eq. (4.16), into the steady-
state equation of transfer, Eq. (4.12) and keeping the lowest order terms

on both sides of the equation gives

1

PEy

k-VB, =S, — (B, +IV);

v

upon setting the term S, — B, = 0 on the right-hand side we obtain

1B v 4.17)

1 -
k-VB, = —

J () —
v Pky pky, OT

This is anisotropic: the energy transport is largest in the direction “down”
the temperature gradient. Let’s get the net flux crossing an area with
normal A: multiply equation (4.17) by kto get the flux; and then take the
component along a direction #; then replace the two dot products by the
angle cosine y, and integrate over d{2 = 2wdy to obtain

11 /6B 4711 OB
_ YT = —— - | | VT. (4.
E, /_1pny(8TV)27T'ud'u Sp{/@ aT]V (4.18)

The quantity in [] deserves a closer look. First, suppose &, is independent
of frequency. Then equation (4.18) means that the energy transport is
greatest at the frequency where 0B, /0T is maximum, and not at the peak
of the Planck spectrum.
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Let us define the Rosseland mean opacity as

_ [ [ dvk,*(8B,/0T)
“R—{ T dv (0B, /oT) ]

-1

We can use this to integrate equation (4.18) to obtain the total radiative

F— _giv [/ dl/BV:| - _}LVaT“. (4.19)
3 pkRr

This is just our formula for radiation diffusion (eq. [4.15]) that we ob-
tained from physical arguments, but now we have an expression for the
effective opacity g.

4.5 Moments of the transfer equation, and the Eddington approx-
imation

Until now, we’ve been writing the LHS of the transfer equation as dI, /ds,
where s is some distance along the path of the ray. We want to make this
more general, since we’ll want to compute I, for many different paths. As
an example, consider a thin, plane-parallel atmosphere (planet or star),
so that all physical quantities depend on height z above some reference
point. We can still define an optical depth 7, with respect to z:

T, = / p (nf,bs + nf,ca) dz’; (4.20)

for a ray traveling along direction kwithk -2 = panddz = uds, the
equation of transfer becomes
d,
udﬂ, B
Note the change of sign, which comes from our orientation of coordi-
nates, Eq. (4.20).
Now, you may have noticed that with isotropic scattering the source

I, —S,. (4.21)

function doesn’t depend on angle. It might then occur to you to average
Eq. (4.21) over angle: defining the first moment of I,, as

H1/IdQ—1/1 1d
v =g 12237 ) 1NV s

we obtain
dH,

dr,

The right-hand side is now a simple function of J,, but this comes at the

=J,—-S,. (4.22)

cost of an extra quantity H,, that is related to J, in some complicated
fashion. We can get another equation in terms of H, by multiplying
Eq. (4.21) by i and integrating over all angles:

dK,
dr,

H,. (4.23)
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Here

K:i/ I dQ—l/1 ’1,d
V= an oy ) 1#!/%

and the term with the source function vanishes because it is odd in p.

So far, this mathematical jiggery-pokery doesn’t really help, however;
we’ve generated an additional equation at the cost of yet another vari-
able K,,, so that we still have more variables than equations. We could
continue this procedure of multiplying Eq. (4.21) by successive powers
of 1 and averaging over angle; in so doing we would generate a series
of equations containing increasingly higher moments of the radiation
field. We would always have more variables, however, than equations; in
order for this approach to help, we need a condition? for truncating this * Known as a closure relation.
expansion.

A classic closure scheme, due to Eddington, is to assert that K, = J,, /3
to be true everywhere. Recall that in thermodynamical equilibrium J,,

H,, and K, are related® to the specific energy density, flux, and pressure: 5¢f. §3.3
4
u, = ljua
c
F, = 4rH,,
47
P, = —K,. (4.24)
c

For thermal radiation the pressure is 1/3 of the energy density, so that
K, = J,/3. In general the intensity I, # B, is not thermal; the Eddington
approximation is to assert that K, = J,,/3 holds even where the radia-
tion field isn’t in equilibrium. With this condition, Equations (4.22) and
(4.23) form a closed and solvable set. This closure relation is commonly
used in low-accuracy models of stellar atmospheres. As explored in ex-
ercise 4.6, the Eddington approximation is equivalent to treating the

anisotropy of the radiation field as being linear in p.

EXERCISE 4.6 — Suppose we expand our radiation field into multipoles:
that is,

e}

LG = S 1P (w),
n=0
where P, is the Legendre polynomial of order n and If,n) is a coefficient. Show that
the Eddington approximation is equivalent to dropping all terms of order n = 2
and higher in this expansion.
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EXERCISE 4.7 — Another classic approximation in stellar atmospheres is to
write the intensity as a sum of two streams, one upward and one downward.

L(p) =I5 (u - %) LI <u 4 %) . (4.25)

Here 4 refers to the Dirac delta function. Show that in this approximation, the
moments of the transfer equation are

- Yo
J, = 2(IV+IV)
1,
H = — (-1
vz & 1)
- Yo ar
K, = 2(L+1L). (4.26)

Also show that the definition (Eq. 4.25) ensures that the Eddington
approximation is automatically satisfied.

4.6 A grey atmosphere

As a worked example of the Eddington approximation, we’ll consider the

idealized case of a grey atmosphere in local thermodynamic equilibrium.

abs
v

sca

and k%

By “grey,” we mean that x are independent of frequency. By
local thermodynamic equilibrium, we mean that the energy levels in
the matter are in a thermal distribution, so that e, / 47r/1"’;bs = B, and
the source functionis S, = B, (1 — A4) + A4J,. Note that this does not
necessarily imply that the radiation is in thermal equilibrium with the
matter.

If our atmosphere is in steady-state, then there is no net energy ex-
change between matter and radiation when we integrate emission and

absorption over all frequencies and angles:

/ (i—; — /-@aubs.]u> dv =0,

which implies that [ B, dv = [ J, dv. Note that this does not necessarily
imply that J, = B, . We can use this to simplify our equation for H,,

Eq. (4.22):
dH,
/ ar, dv =0,

so H = [ H, dv is constant throughout the atmosphere.

If H is constant, then we can integrate Eq. (4.23) over all frequencies
and then findK = [K, dv = H(7 + 79). Now we can use our closure
condition, K = J/3, to eliminate J in our original transfer equation
(4.21). Notice that since [ B, dv = [J, dv = J, the source function
integrated over all frequencies is

/Sydyz/By(l—f-’l)—|—/‘21JVd1/:J=3H(T—|—To).
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Substituting this into Eq. (4.21) and integrating over all frequency gives

,ug =1—3H(7t + 19). (4.27)
dr

We can integrate Eq. (4.27) over 7. We are interested in the radiation
emerging from great depth in the atmosphere, so our integration is from

T — oo to 7. As before, we write I = eT//“J(T), withJ ~ e /" as T — o0;
substituting this into Eq. (4.27) and canceling common factors gives

dy _ 3H

Fi m e_T/“(T—i—To).

Upon integrating from a given depth 7 inwards, we obtain
I(t) =3H (T + p+10) . (4.28)

To determine 7y we require that at 7 = 0 the integral over all outward-
bound rays gives the net flux:

1 1
27r/ uldp = 67rH/ w(pw+79)du = F = 4rnH, (4.29)
0 0

which fixes 1o = 2/3.

Since the flux F = 47H is constant, we can set F = USB'Ifff. Here
osp = ac/4 is the Stefan-Boltzmann constant. Since the angle-averaged
intensity, when integrated over all frequencies, isJ = Band B =
acT*/(4n) = 05T /7 (see Eq. [4.24] and [3.9]), our equation for the
moment K becomes

O'SBT4 J O’SBT4ff 2
= — = K = - el —
3r 3 ar \"T3)

thus giving the temperature as a function of optical depth:

T (1) = ZI;‘*H (7’ + ;) : (4.30)

Thus T = Tog at 72/3. What is the probability that a photon emitted at
T = 2/3 will escape without being absorbed or scattered?

EXERCISE 4.8 — For a grey atmosphere, find the specific intensity as a
function of angle arccos(u) between the normal to the surface and the direction
to the observer.

1. What is the ratio of the intensity between the center of the sun and the edge?
You should find it reduced; that is, the limb of the sun appears darker than the
center.

2. What happens for a star that is sufficiently far away that it is no longer
resolved? What is the net flux emitted towards a distant observer in this case?
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EXERCISE 4.9 — In this problem we’ll consider a planet with a grey
atmosphere that is being irradiated by its host star. Let the star have radius R.
and effective temperature T, and let the star be a distance D from the planet.

1. Show that the incident intensity on the planet is (oss /7)WT%, where
W = (R./D)>.

2. Solve the transfer equation (Eq. 4.21) for a grey atmosphere. Begin by taking
moments of the equation. As before, argue that the flux H is constant, and
show that

J(7) = 3H7 + Jo.
Since H is constant, write H = (47) 053 Ty Then use the two-stream
relations (Eqn. 4.26) to express Jo in terms of H and I~ . Finally, set
J = (osp/m)T*(7) and I™ to the incident intensity to get an expression for
T(7) in terms of T, and Tin¢.

3. Qualitatively describe the temperature structure of the atmosphere for
WT, > Tine. How does it compare to the case of negligible irradiation?




5
Simple Radiating Systems

Now that we’ve completed our description of the radiation field and
described the equation of transfer, the next task is to investigate various
radiative processes. In this chapter, we describe some simple classical
systems; namely low-energy scattering from free electrons and Rayleigh
scattering. We shall also look at how signals are modified by propagation
through a plasma. We begin by revisiting Maxwell’s equations in the
presence of sources.

5.1 The fields of a moving source

In Chapter 2, we saw how Maxwell’s equations could be combined into
an expression for the potentials (®, A); if we now retain the source
terms (p, j), we reduce the four Maxwell equations into two equations

for (,A):

102 _, 100
-2 V0 o-VI[-Z4V.Al = 4
Lz o2 v } v [c ot v ] P
102 _, 100 w
10 w2|a 2 v.Al = I 5.1
LZW v} +V[C8t+v ] ) (5.1)
Using the gauge freedom in choosing the potentials, we can set
108
c Ot
thereby giving us the more compact equation
1o v —4r| P (5.2)
2t A jle | '

The operator in () on the left is often denoted as [1%; it is the space-time
version of the Laplacian operator and is called the d’Alambertian.
To solve Eq. (5.2), we first find the Green function G(x, t;x’,t') with
the property
%G = 4nd(x — X )6(t — t');
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the general solution is then

)
A

_ A p(X/,t/) 3./ 14/
_/G(X’t’x’t)[j(x’,t’)/c]dth' (5.3)

Note that for x # ¥’ and t # ¢/, [1°G = 0.
Let us expand [1? in spherical coordinates for x # x/, t # t/, and take G
to only depend on 7 = |x — x’|: then

108G 187

me=-2>_ -9
c? Ot? rarz(

rG) = 0.
Away from r = 0, we can multiply this equation by r and recover the wave
equation; thus the solution is

G=LIFr(e—rf0) + (e +r/0)].

Since we are considering sources, we only keep the f; term, which repre-
sents outgoing waves.

To pin down the form of f, , we note that as we approach r — 0, the
term r/c becomes negligible compared to t. In that case, we expect the
time derivatives to be small compared to the spatial derivatives, so that
as we approach the origin our equation for G becomes

fr(t)
0°G|, ,, = —V° (*r( =4nd(r)s(t' —t).
But this is just Poisson’s equation for a point particle at the origin with a
funny “charge” §(t' — t). We know the solution:
File)  o(¢ — o)

r r

Now t here is really t — r/c with r being really small; making this replace-
ment gives us the retarded Green function,

o[t — (e~ [x —«|/c)]

) —
Gi(x, t;x',t') = Py

(5.4)

Note that G is non-zero only if t’ lies on the past light-cone for point

(%, ).
Substituting G into Eq. (5.3) and taking the integral over t’ gives,

B 1 p(x' t—r/c) ,
= l e~ /o) e ] 6

Intuitively, this says that the contribution from a source a distance r away

o
A

occurs when a photon has had time to traverse the distance from that

source.

Outgoing waves are represented by f4,
incoming by f_.
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Now, suppose we have a single point particle of charge g moving on a
path &(7) with velocity u(7) = d&/dr. The charge density and current
density are then

o = T e e ol
5.6

Substituting this equation for the sources into Eq. (5.5) and taking the

integral with respect to d3x’ gives

‘/x—law [ ay ] ’ { (t |xfmﬂ ar

Time to change variables: let r(7) = x — &(7), and let 7/ = 7 — (¢t — |r|/¢).

P
A

Then dr’ = d7(1+7/c), and using 2ri = 2r - ¥ = —2r - u, we can finish the
integral over 7’/ to obtain

_ |l a

®(x,t) L(T)(l —7- u/C)} r=t—r(r)/c 7
_qu(n)/e

A(x,t) [r(r)(l —7- u/C)} r—tr(r)fc Y

Here # = r/|r| is a unit directional vector along r; it points from the
location of the source at time 7 to the location where the fields are to be
evaluated.

The potentials [Equations (5.7) and (5.8)] have a part that depends on
the particles position and velocity at retarded time t — r/c, which one
might have expected on analogy with electrostatics, and a factor in the
denominator that depends on u/c, which is a bit less intuitive. Note the
effect of 7 - u: if the particle is moving relativistically, then the potentials
are quite large for directions in front of the particles’ line of motion.

The fields can be found by straightforward, albeit tedious, differentia-
tion. Defining 3 = u/cand k = 1—#- 3, the fields from a moving particle
of charge g can be expressed as

_ [a@ -5 . . [ :
Ext) = T2 -8)+ 57 x {(F-8) x B} B
B(x,t) = [FXEXt)],_ ) (5.10)

Bear in mind that r, #, and (3 are all functions of 7.

There are two terms in the expression for E, and they scale differently
with r. The first term goes as q/7?, just like the electrostatic version.
Note the direction, however: instead of pointing along 7, that is, to the
position at the retarded time, it points along # — 3, which is away from
the position the particle would have at time t if 5 were constant. It is as if
the electric field “anticipates” the motion of the particle.
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! so it is the dominant term sufficiently

The second term falls off as r~
far from the source and is therefore the radiation field. This term is pro-
portional to the acceleration 3 of the particle. Notice that when this term
dominates, E and B are both perpendicular to #, and B is perpendicular to
E. In the non-relativistic limit, |3| < 1, let # be the angle between 3 and
7. Then

—1El ~ L 13l sin b
|B| = |E| ~ EM sin 0;

E lies in the plane defined by # and 3 and is perpendicular to 7. The radia-
tion fields are maximum in a direction perpendicular to the acceleration.

EXERCISE 5.1 — Suppose we have a charge that is accelerated in the
positive-z direction. Sketch and describe the direction of the radiation electric
field over a sphere at a distance r from the charge. Do the same for the radiation
magnetic field.

The flux can be found by computing the Poynting vector:

S= “ExB=_"|E’#= i || sin® 0 7
 Arx  Arx  Axc3r? sm v

To get the total power emitted, we encase our charge in a sphere of radius
r, centered on the particle, with the axis along &. In this case the flux is
normal to the sphere, so the total power is

r2 q2 .2 ! 2 2612 )

a result known as Larmor’s formula.

5.2 Thomson scattering

As an application of Larmor’s formula, let’s consider a free electron sit-
ting in space, which is irradiated by low-frequency radiation. The electron
will accelerate because of the electric field; as a result of this acceleration,
the electron will then radiate.

EXERCISE 5.2 — Why can we neglect the magnetic field when computing
the acceleration of the charge?

The equation of motion of the electron is
mett = q.Ee“*E, (5.12)

where £ is the polarization direction of the electric field (we’ll assume
plane polarization) and g, is the electron charge. From Eq. (5.11), the
average power emitted by this charge over a cycle is

4

1 g 2
Py = = 2 _E~;
(P) = 3 s
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if we compare this with the incident flux, averaged over a cycle, (Si,c.) =
c|E?| /87, we find the total cross-section for Thomson scattering:

2
(P) 8m ’7[3 —24 2
= = — = 0.665 x 10 . 513
OTh Bm) ~ 3 \me X cm (5.13)

The quantity in parentheses is known as the classical electron radius.

5.3  The classical oscillator

Suppose we have a classical charged harmonic oscillator, x(t) = xpe™“*, of
charge g.. The instantaneous power emitted by the oscillator is

2q2

P(t) = 3 5laf’, (5.14)
which when averaged over a cycle is
7
(P(t)) = 3;3 x3w, (5.15)

2

since t = —w?xge™t. Since the oscillator is radiating, it is losing energy

and is damped. Let us write the damping as F,,q - u and integrate over a

cycle,
t 2 2 t 2t
9 . 4 2q, .
— dt —=<u-u=—- --—+ - dtii-u.
f EP 3" t+3c3/t u-u
1 1

The first term vanishes and we can therefore identify

24°. 2q%w?
Frad:qeu:—m< i )u

3¢ 3c3m
as the radiation damping term with the term in parentheses being the
damping constant .
Now let our oscillator’s “natural” frequency be wy, and let us drive
the oscillator with an electric field Ee™*; the equation of motion for the
oscillator is then

mi = —mwix + q.BEe™t — myx. (5.16)
Substituting a trial function x o " gives
. E iwt
m (w§ — w?) +iwy

Taking the second derivative w.r.t. time of x, substituting into eq. (5.11),
and averaging over a cycle gives the power radiated by the oscillator,
4, 42
q.w"E 1
(P(t)) = 32 (12 22 2,2
3c3m? (w§ — w?)? + y2w

Dividing (P(t)) by the incident average flux, cE?/(8), gives the cross-

87 qt w?
= == . 5.18
7 ( 3 m2c4) (wg — w?)?2 + 422 (5.18)

The term in front is just the Thomson cross-section.

section,
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Rayleigh scattering

For w < wy, the cross-section for scattering becomes

8r gt w\*
O'Ray >~ <3m264> (u}o) . (519)

This is important in planetary atmospheres: the strong frequency depen-

dence accounts for the blue sky. Physically, the scattering is caused by the
polarization of molecules induced by the electric field.

Of course, this model is really crude: can we really calculate the polar-
ization of air molecules this way? What should we use for the charge—is
it g.? and what for the mass m? It turns, out, amazingly enough, that we
don’t need to know them to determine the cross-section and the polariza-
tion. In the limit that we go to very low frequency, then from Eq. (5.17)
we have the induced polarization per unit volume,

2
n
P =ngx~ —qeg E,
mwg

where n is the number of molecules per unit volume. The electric dis-

placement is therefore
D =E+ 4nP =¢E

with permitivity
4nng?
mw?

e=1+ (5.20)

The effective velocity of light in such a medium is ¢/+/, so that the index
of refractionis N = /e. We can therefore express w? in terms of the
index of refraction of air; doing so and substituting back into Eq. (5.19)
gives (to lowest order)

4
ORay =~ # (i”) IN — 1% (5.21)
As advertised, this form does not involve the charges or masses of our
oscillators, but we do need a measurement of the index of refraction. For
a standard atmosphere with densityn = 2.7 x 10! cm~2 and index

of refraction N — 1 ~ 2.93 x 10~%, we find that the mean free path,

{= (naRay)’l, is 187 km for red light (A\ = 650 nm) and 30 km for violet

light (A = 410nm). Consult Jacksonl for a detailed calculation and 1 John D. Jackson. Classical Electrodynam-
ics. Wiley, 2d edition, 1975

2 Richard P. Feynman, Robert B. Leighton,
and Matthew Sands. The Feynman Lectures
The resonant oscillator on Physics. Addison-Wesley, 1989

Feynman et al.? for an intuitive one.

Now, for w = wp, we can expand (w3 —w?)? s 4w’ (wo —w)?; furthermore,
we identify 2g2w3 /(3c3m) = v and equation (5.18) becomes

_ (4 v
o= (%) G o 622
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The line profile is Lorentzian, with a width . In terms of wavelength, the

width of the line is
dA 2mc
AN = |== =>9=12x10""nm.
dwl,_,, — w§
This width is independent of the transition frequency?, and it is ex- 3 It is just the classical electron radius.

tremely narrow compared to the width from other interactions and from
doppler broadening.

EXERCISE 5.3 — Consider the transition from the n = 3 level to then = 2
level in hydrogen.

1. What is the wavelength of this transition?

2. From the linewidth A\ given above, estimate the mean lifetime of then = 3
level against spontaneous de-excitation to the n = 2 level.

5.4  Propagation of waves through a plasma

Dispersion in a cold plasma

Suppose that we have a plane wave propagating through a medium con-
taining free electrons with uniform density n,. The electric field will cause
the electrons to oscillate, cf. Eq. (5.12). We'll take the plasma to be cold,
so that thermal velocities are small, and we’ll assume that the amount

of power scattered (Thomson scattering) is also negligible. Finally, we’ll
ignore collisions in the plasma, variations in the plane of the wave, and
oscillations of the ions: as a result the plasma remains neutral every-
where.

The back-and-forth sloshing of the electrons means that there is an
alternating current in the plasma, j = —en.u. Since we assume that there
is no bunching of electrons, V - E = 0; then taking the time derivative
of equation (2.4), using equation (2.2) to eliminate 9B, and expanding4 4¢f. §A.2
V X (V x E) = V(V - E) — V2E = V?E gives

1 41 4d7n,e?
2 2 _ . e
(v _ CZ@) B=Yoj= "0 (5.23)
In this equation we have used d,u = —eE/m,, with m, being the electron
ik-x—iwt

mass. Using a trial solution E = Eze gives a dispersion relation,

Ak = w? — wg, (5.24)

where
47n,e?
wi = —

<N

me

is the plasma frequency.
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For w < wy, the wavevector k becomes imaginary, and the wave

evanesces over a lengthscale ~ (7m,c?/n,e*)'/?

. This is analogous to the
skin depth in a conductor: the charges move to short out the electric

field. For w > w, the group velocity v = dw/0k depends on frequency:

vg=c [1 — (%)2} 7 <c. (5.25)

w

Higher frequencies travel faster.

EXERCISE 5.4 — Pulsars are magnetized neutron stars that emit a broad
spectrum of radiation into a narrow beam. As the neutron star rotates, the beam
is swept into and out of the observer’s field of view, thereby creating pulses.
Suppose you observe the pulses from a particular neutron star over a range of
radio frequencies. Show that the time of arrival ts of the pulses changes with
frequency as

th . 82
dv — wmucd

@z/nedé

is the integrated column of free electrons along the line of sight to the pulsar.

where the dispersion measure

Show that the delay time between two observed frequencies is
At = 8.3ms Q)A—:
v

for Din units of pccm ™2 and v, Av in units of GHz.

Dispersion in a cold, magnetized plasma

Now we’ll expand the discussion in the previous section to the more gen-
eral case of a cold, magnetized plasma. We shall again ignore collisions
and the motion of ions. We'll relax, however, our assumption that the
electron density is uniform (although it will turn out that that is still a
valid assumption).

First, we need to review how electrons move under a combined electric
and magnetic field:

du_ e °uxs (5.26)
dt m, MeC

Here B is the sum of the static and the wave fields. As we argued before,

however, for non-relativistic electrons the contribution from the wave’s

B field is ~ u/c smaller than than that from the wave’s E field. Further, if

the only appreciable motion is due to the wave’s E field, which is perpen-

dicular to k, then only B|; = B - k/|k| is important. This is equivalent to

stating that non-relativistic electrons will only move a small fraction of a

wavelength in one oscillation cycle, so we can neglect motion along k.
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If we are at a fixed point, we can look for oscillatory solutions at the
wave frequency w; however, if we take our z-axis to be along k, then
du,/dt depends on u, and vice versa. To get around this, recall that we
expect the electron to move in a circular fashion, in which case the x- and
y-components of the velocity are /2 out of phase. This suggests that we
choose for basis vectors the right- and left-handed helicial vectors:

up = ugl4
where® 5cf.§2.2

é —igf(é +ie,)
- X 1 )
+ \/5 y
1.
é_. = —(e,—1ie)).
\/E( X y)
If we therefore write u and E in terms of modes uiéye ™! E éje™
and substitue into Equation (5.26) we find that

iwt

e
uy = —-i——E. (5.27)
me(w F wr)
Here
eB||
wp = —
MeC

is the electron Larmor frequency. The current induced by the electric field

is thus

Nl

— ¢ E.=o0.E,
Me(w F wi)

j+ = —neeuy =1

where o is the electrical conductivity. The factor of i in ¢ implies that
the current is out of phase with the oscillatory electric field.

EXERCISE 5.5— Show that Eq. (5.27) implies that the time-averaged work
done by the electric field is zero for w # wr. That is, in the absence of collisions,
there is no dissipation.

Now that we have the electronic response, we can look for solutions to
the equation of charge continuity, 9;(p.) + V - j = 0. Here p, = Zen; — en,
is the combined charge density; in the absence of perturbations from the
electromagnetic wave the plasma is neutral, p, = 0. Assuming a e~™*
response for p,, we obtain

nee2

me(w F wr)w

Pe =1 k-E.

Inserting this into Gauss’s law, V - E = 4mp,, implies

2
41n.e . Wy

k- E = mew(w F wr,) ) w(w Fwr)
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where w, = 4mn.e®/m, is again the electron plasma frequency. This is
equivalent to writing

w2
eV-E=|1-—F _|V-E=0
w(w Fwr)

with e being the dielectric constant. Since € # 0 in general, we require
k - E = 0: that is, the wave is transverse and therefore p, = 0; there is no
bunching of excess charge and the plasma remains neutral. In that case,
k - j = 0: the currents are purely transverse as well.

With V - E = 0, we insert our trial function E = E4e**~“tinto
Eq. (5.23) and obtain a dispersion relation for right(left)-circularly polar-
ized waves:

w2

CZki = w? [1 — P = ew?. (5.28)

w(wFuwL)

For w > wr, we recover our previous dispersion relation, Eq. (5.24). At
higher frequencies, w > w,, wi, we can expand € and write the dispersion

relation as

2 2
P B ol
L=

¢ 2wc  2aw?’
=~

—Aky =Aky

EXERCISE 5.6 — Suppose we have a plane-polarized wave,

1 ~ ~ ik-x—iw
E:—(e.l_—i—e_)Ekek" ¢

V2

traversing a magnetized plasma in the z-direction. Show that after going a length
¢, the right(left)-circular polarization components will have a phase

‘ ¢
—/ Akod2$/ Aky dz
0 0

relative to what they would have had in the absence of the plasma. Show that the
electric vector after going a length ¢ has a polarization

cos e + sinye,

63 14
¥ 7/ n.B) dz.
<

where

T 2mm2c2u?
=R
In other words, the polarization vector has rotated by an angle v, and this angle
depends on frequency. Thus measurements of the plane of polarization can be
used to infer R, the rotation measure, which provides information on the
integrated line-of-sight strength of the magnetic field.
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Bremsstrahlung Radiation

6.1 Whatis a plasma?

A plamsa is defined as a gas of charged particles in which the kinetic
energy of a typical particle is much greater than the potential energy due
to its nearest neighbors.

Screening and the Debye Length

Imagine a typical charged particle in a plasma. Very close to the particle,
we expect the electrostatic potential to be that of an isolated charge & =
q/r. Far from the particle, there will be many other particles surrounding
it, and the potential is screened. For example, a positive ion will tend to
attract electrons to be somewhat, on average, closer to it than other ions:
we say that the ion polarizes the plasma. As a result of this polarization,
the potential of any particular ion should go to zero much faster than 1/r
due to the “screening” from the enhanced density of opposite charges
around it.

Let’s consider a plasma having many ion species, each with charge Z;,
and elections. About any selected ion j, particles will arrange themselves
according to Boltzmann’s law,

(6.1)

Zie<1>(r)} |

ni(r) = nip exp {— T

Here ny is the density of particle i far from the charge j, and r is the
distance between particles i and j. (A similar equation holds for the elec-
trons, with Z replaced by —1.) To solve for the potential, we can use

Poisson’s equation,

V2P = —4r ZZieni(r) + 4men,(r). (6.2)

Our assumption is that the term in the exponential of Eq. (6.1) is small,
so we may expand it to first order in ® and substitute that expansion into
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Eq. (6.2) to obtain in spherical geometry

19 Zie® ed
pw (r®) = —4me [Z nioZ; (1 -7 ) — Te0 (1 + kT>

The overall charge neutrality of the plasma implies that n.o = »_; Zinjo;

using this to simplify the above equation gives

10?2 47e?

—57 1) = [ T > nio (Z2+2) | @ = A0 (6.3)

The quantity in [] has dimensions of reciprocal length squared and we
define it as (1/\p)? with \p being called the Debye length.

Multiplying equation (6.3) by r, integrating twice, and determining the
constant of integration from the condition that asr — 0, ® — Ze/r gives
the self-consistent potential

Zje v
= = - . 4
(0] . exp( )\D) (6.4)

The Debye length Ap determines the size of the screening cloud around
the ion.

In order for the above derivation to be valid, we require that A\p > aq,
where g is the mean ion spacing; otherwise, there won’t be any charges in
our cloud to screen the potential! Equivalently, we require the number of
particles in a sphere of radius \p to be large,

4
?W/\% Smis 1 (6.5)
i

This condition must hold if we are to treat the gas as an (ideal) plasma®.

EXERCISE 6.1 — Defining the mean inter-ion spacing a via 47a*n/3 = 1,
show that Eq. (6.5) implies that kT > ¢? /a.

6.2 Collisions in a plasma

To begin, let’s imagine a light particle (electron) colliding with a much
heavier, fixed particle (an ion), as illustrated in Figure 6.1. (This pic-

ture also applies to a pseudo particle of reduced mass scattering in a

fixed potential.) Let the impact parameter be b, and the mass of the in-
cident particle is y1. For Coulomb interactions, the force on the particle

is (q1q2/7%)7. The incident momentum is po. Now by assumption, in our
plasma most of the interactions are weak (potential energy is much less
than kinetic), so let’s treat the deflection of the particle as a perturbation.

1 In high energy density physics, the
definition of a plasma is expanded to
include cases for which interactions are
important
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That is, we shall assume that py = const and that the effect of the inter-
action is to produce a perpendicular (to pg) component of the momentum
p.. The total change in p, is then

pL = / de @ sin 0, (6.6)
o r

where sinf = b/ris the angle that the radial vector makes with the
horizontal. Substituting r = b/ sin# and dt = —ubdé /po/ sin” 6, we have

T 1 q192
= — sinfdf ——=,
pL /o po b

leading to the intuitive result

PopL q192
= 6.7
2% p (6.7)
Clearly a large angle scattering occurs if p; > po, or
2
b < by = 12, 6.8)
Po

our perturbative approach is therefore only valid for b >> by.

Figure 6.1: Geometry for scattering
problem.

6.3 Emissivity

To calculate the emissivity, we start with the acceleration of an electron;

according to Eq. (6.6ff) this is
Mfi 7Ze2£7 Ze? 1
 m, Come 3 m.b? [1+v22/p23/2°

If we substitute the maximum value of |v| into Larmor’s formula, Eq. (5.11),

dpL

dt

the maximum power emitted is
2 e?
-3¢

2 7268
.10
= ———. 6.9
i 3 m2c3b* (6.9)

P(b)

EXERCISE 6.2 — PlotP(t;b). Set the origin t = 0 to be the point of closest
approach.

If we taket = O to correspond to when the electron is at clos-
est approach, then most of the acceleration occurs in a range of times

—b/v <t<b/v.
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WHAT ARE THE FREQUENCIES AT WHICH THIS POWER IS RADIATED?
If we take the Fourier transform of the instantaneous power emitted, we
find that the power is distributed over a broad range of frequencies up to
a cutoff vyax ~ v/b.

EXERCISE 6.3 — Consider the Fourier transform G(w) of a function g(t).
Show that if g(t) is some peaked function with width c—i.e., g = g(t/o)—then
the width of G(w) is 0 ~*. For definiteness, you may set

g(t) = (v2mo) " exp [-£2/(207)].

To get the total emissivity, we must next integrate over a distribu-
tion of impact parameters b and then over the distribution of electron
velocities. The emissivity is, with all numerical factors restored,

2m\ /2 5 9 me\ /2 hv\ _
pe, = 4r (3) Znm.hc” agory (k—T) exp <_kT> g (6.10)

The velocity-averaged Gaunt factor g¢ contains most of the details about

1/2

the integration. The factor of T~1/2 is because there is a factor of v—! that

appears in the integration (the collision time is ~ b/v).



7
Relativity

These notes summarize the discussion in Weinberg?. 1 Steven Weinberg. Gravitation and
Cosmology: Principles and Applications of
the General Theory of Relativity. Wiley,

7.1 Overview 1972

The basic equation of classical physics for the motion of a particle under
the gravitational influences of other particles,

dzxi _ Z Gm,-m]-(xj — Xi)

= 71
dtz |Xj — Xi|3 ’ ( )

j#i
has several interesting properties.

1. Itisinvariant if we pick a different origin for our coordinates: t' =
t + to, ¥’ = x + a. There is no privileged location in space or time.

2. Itisinvariant under rotations. For example, a rotation R about the
z-axis by an angle ¢ transforms u into u’:

cosf sinf O Uy
“ =Ru=| —sinf cosf O u,
0 0 1 U,

You can verify that this rotation leaves the dot product u-v unchanged;
as aresult, the norm |u| = /u - u of a vector—its length—is un-
changed by a rotation.

3. Itisinvariant if we change to a frame moving with constant velocity
V: thatis, x' = x + Vt.

Maxwell’s equations are invariant under the first two transformations,
but not the third: the equations have traveling wave solutions with a
constant propagation velocity c¢. There are two possible resolutions.

1. The equations of mechanics are invariant under transformation 3. In
this case, Maxwell’s equations hold only in one, privileged, coordinate
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system, and it is possible experimentally to determine one’s veloc-
ity with respect to this privileged frame. This has been conclusively
demonstrated to not be so.

2. The equations of motion are not invariant under transformation 3,
and must be reformulated to preserved the constancy of ¢. Einstein
showed that Eq. (7.1) and transformation 3 implicitly assume that
different observers can agree on whether two events are simultaneous,
and that this is in general not possible.

The failure of simultaneity means that any coordinate transformation
involves mixing the time and space coordinates: instead of specifying
events by spatial vectors and time separately, we instead specify the
coordinates of an event with a four-vector,

In the following discussion, we’ll choose our units so that ¢ = 1. What
is the “length” of x*? We certainly want the spatial part to look like a
Euclidian norm (1/x - x) so that it will invariant under coordinate rota-
tions. At the same time, however, we need to ensure that |dx/dt| = 1
holds in all frames. These requirements are met by having the length of a
four-vector be

s* = s, (7.2)

where oo = —1,1m0; = mio = 0,i = 1,2,3,and n; = d3, Vi,j = 1,2,3.
Along the trajectory of a photon,

2 _ a2 2 _
ds |photon = —dt* + |dx|* = 0.
For a particle at rest, ds?> = —dt?, and so we define the proper time as
dr? = —ds?. Any transformation that leaves d72 invariant will therefore

also leave the speed of light invariant.
A general local coordinate transformation is of the form

X = Agxﬁ +a“. (7.3)

Here A isa4 x 4 matrix and a® is a constant four-vector. We can set
a® = 0, since it just sets the origin. To keep the proper time invariant, we
require that

dr? = —nag (A87) (A7) = = (masA9A] ) X = dr.
Our condition that the proper time be invariant is therefore

NapASAS = 1,5. (7.4)

We use latin subscripts to mean only the
spatial components, and greek indices to
refer to all four components. Also, we use

the convention that a repeated index is to

be summed over: for example,

n(mxﬂ = 160" + Na1x’ + Na2x® + Nasx

3
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What transformations satisfy this condition? Spatial rotations, in which
. o 0 . .
0=A =0, Ag=1 A =R,

clearly leave d7 invariant. A more interesting case is transforming from a
frame Oin which a particle is at rest, dx = 0, to a frame O in which the
particle moves with velocity v = dx/d¢t. This implies that

dt’ = Addt + AVdx' = AJdt,

and
dx" = ALdt + A;dxj = ALdt.

Taken together, these expressions imply that

) dxli AL
/i _ 70
v = ¥ Ag. (7.5)
Then applying Eq. (7.4) for ngo gives
> 2 2
NapA§AG = Z (Ah)" = (A9)” =moo = —1. (7.6)

i=1

Call Ag = ~; then by combining Eqgs. (7.5) and (7.6), we find that vy =
1/4/1 = [v[2, and A} = 4.

The other components of A are not uniquely specified because we can
always add rotation. A general form for a boost to an arbitrary v is

Y YVx Ty YVe
Asw) = | T 1+vi(y=1)/)* vy (v =1)/ > vy =1/ v
g wy o vy =1/ 14vi (v =1/ vy =1/
W vy =D/ vy =)/ 14+ (y = 1)/
(7.7)
This is the Lorentz transformation. It boosts four-vectors from the rest
frame of a particle to one in which the particle has velocity v.

EXERCISE 7.1 — Show that the if we replace v by —v in Eq. (7.7), we obtain
the inverse Lorentz transformation; that is, show that A§ (—v)AS (v) = 2.

Example 1 Suppose we have a clock at rest in frame O. The time between
successive ticks is At = Ar. In frame O, the clock has velocity v/ =
dx’/dt’. In O, the proper time is

ATIZ _ Atl2 _ |Axl|2 _ At/2 (1 _ ‘VI|2) _ ’}/_ZAt/Z

Since A7’ = A7, in frame O, the time between the two events is
At' = vAt > At: an observer in O finds the clock running slower
than one in O.
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Example 2 We can measure the length of a rod in a frame Oin which the
rod moves with velocity v. To measure the rod’s length, we find the
coordinates of both ends simultaneously. Let’s orient our coordinates
so that at time t the ends of the rod are at ({1)* = (t,xz,y,z) and
(&r)* = (t,xR,y,z). Then the length of the rod in frame Ois a four-
vector &g — & = (0,L,0,0). Now we boost to the rest frame R of
the rod. To do this, we apply the inverse transformation, i.e., switch
v to —vin Eq. (7.7). If v is along y or z, that is, perpendicular to the
rod, the x-component of the vector remains L—the rod has the same
length in both frames. If v is along x, that is, the velocity is parallel to
the rod, then in the rest frame R the length is L = «L: the rod in the
moving frame is shorter by a factor 1/~.

EXERCISE 7.2 — The moving rod experiment is performed: Einstein rides
on a rocket traveling at high speed, while Lorentz measures the length of the
rocket as it flies by. Afterwards, they meet to discuss the experiment. Lorentz
explains how his experimental apparatus marked off the positions of the front
and rear of the rocket at a given time. Einstein replies that he was watching
Lorentz make his measurements of the positions of the front and rear of the
rocket. How would Einstein describe Lorentz’s measurement?

7.2 Kinematics

Now that we have our rules for how coordinates transform, let’s develop
the four-vector kinematical quantities. The first difficulty we encounter

is that dx/dt is not a four-vector.? Since dx® is a four-vector, we need 2 that is,
/
to divide it by a scalar—something that is the same in all frames. The % #A

=)
&l &

t
obvious candidate is d7, which gives use the four-velocity

a_ X [ v

Here u = dx/dt. In the rest frame of the particle, u® = (1, 0).

EXERCISE 7.3 — Suppose we trace out the spacetime path of an object
(known as a worldline) by recording its coordinate four-vector as it moves. Show
that the four-velocity u® is the unit tangent four-vector to the object’s worldline.

Suppose we have a particle that is accelerating. At a given instant of
time, we can boost to a momentarily comoving rest frame (MCRF). Over
an interval A7, the particles four-velocity will change by Au® = (0, Au),
which is itself a four-vector. If we then multiply by the mass m of the

object, measured in the rest frame of the particle,® and divide by dr, then 3 This long-winded definition of rest mass
is needed so that m is a scalar (same in all
frames).
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in the MCREF this four-vector
dp® = du®
dr — m dr

0 0
( m du/dt ) - ( F > ’ (7.10)

where F is the applied (Newtonian) force.
If we boost equation (7.9) from the MCREF to one in which the particle
has velocity u, we obtain the equation

dp® ~u-F
Tdt T\ Fruw-F(v -1/ )

Notice the component dp®/dt = u - F: this is just the rate that work is

(7.9)

has components

done on the object; it equals the rate of change of the object’s energy. It
makes sense to identify p® = mu® = ym as the energy of the particle. The

momentum four-vector is then

r=(m)-()

Atlow velocities, E = ym = m + mu?/2. The length of the four-
momentum is

22) = —m?.

Napp®p’ = —E* +p* =7 (—m® +m
The rest mass m is thus indeed an invariant, and in the rest frame of the
particle, E = m. Photons travel at velocity ¢, and have momentum p = E;
hence for a photon, 77,5p%p” = 0.

In order for the four-momentum to be useful, all observers must

agree on conservation of energy and momentum. Suppose we observe
a process among a group of particlesi = 1,..., N. The net change in
four-momentum, as viewed in a different frame, is

N N
> AP =Ag>  Apl.
i=1 i=1

If momentum and energy are conserved in one inertial frame (i.e.,

> Ap? = (0,0)), they are conserved in all inertial frames.

EXERCISE 7.4— We argued that for low-frequency radiation, electron
scattering would be coherent: the scattered radiation would be at essentially the
same frequency as the incident. Show this explicitly: consider a photon of
wavelength X incident on an electron at rest. The photon is scattered to an angle
0 with the original momentum, and the wavelength after the scattering is \'.
Compute A’ — X as a function of electron mass m, and scattering angle . Hint:
the algebra is easier if you set /i = ¢ = 1; equate the initial and final
four-momenta, p ; + p.; = p% ; + p.'; and then solve for p}' and compute the

absolute value of both sides of the equations using |p;’ f|2 = —m?.
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7.3 Aberration and Doppler Shift

Suppose we have a frame § in which a particle moves with velocity

u' = dx’/dt’. What is its velocity u in a frame R, in which an observer
sees the origin of $ moving with velocity v? To answer, we note that the
displacement (dt’, dx’) is a four-vector, so according to the transforma-
tion (7.7) in frame R the differential coordinate four-vector is

dt | v(dt' + dx’' - v)
dx | | qvdt' +dx' + (dx' - v) mzlv

Hence in frame R,

u—% ~wdt +dx + (dX - v)(y — 1)/ |v]Pv
de ~y(dt' + dx’ - v)
/ _ . 2
w+u + (y=1)(u -v)/|v| v (7.11)
y1+u -v)

A useful way of writing this is to have u = (u),u_ ), in whichuj = u-v/[v|
and u; = u — u)v/|v|. Making this substitution gives

/

+ qu

u)
u = — 7.13
+ (L + vud) (7.13)

Now suppose in § our source is emitting photons isotropically: v’ = 1.
Let ¢’ be the angle between a photon and v in frame . The a receiver in
frame R will observe the angle to be

v+ cos 6’
0 = —— 7.14
cos 1+ vcost ( )
o
tang = il _ sl (7.15)
u ~Y(v + cos6)

Notice what happens if the source is relativisticwithv ~ 1,y > 1:a
photon emitted at right angles to v, ' = /2 in the source frame will be
observed in frame R to be at an angle ~ 1. That is, the radiation emit-
ted by a source traveling at relativistic velocity is beamed into a narrow
cone of opening half-angle v~ < 1 about the direction of motion.

In addition to aberration, the frequency of the photons received in
frame R is altered by two effects. The first is the change in elapsed time
between the emission of successive wave crests: At = YAt = v/v/.

In addition, there is the delay caused by the different difference in path

length between one wave crest and the next. In frame R, this additional
path length is —Atu cos 6, where we orient our frame so that a positive

velocity is towards the observer. As a result the received frequency is

1 v
— (AT = _ . 7.16
V= (At At(l1—ucosf) (1 —ucosh) (7.16)

In this section [ use a prime () to denote
the source frame .
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This is the relativistic Doppler shift. If reduces to the classical expression
in the limit u < 1. Note that in form it isn’t symmetrical, as the right-
hand side has expressions in both frame § () and frame R (cos ). This is
easily remedied by the aberration formulae, Eq. (7.14) and (7.15); see the
exercises.

EXERCISE 7.5— Recast the formula for the received frequency v,
Eq. (7.16), in terms of v’ and §’. Find an expression for the inverse doppler shift,
namely, find an expression for v/ in terms of v and 6.
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Synchrotron Radiation

Magnetic fields are ubiquitous in the universe. At low energies, the he-
lical motion of a particle in a magnetic field produces emission at the
cyclotron frequency wg = gB/mc. When the particle is relativistic, how-
ever, the beaming of the radiation produces emission over a broad range
of frequencies. The acceleration of particles to relativistic energies occurs
in many environments, including supernova remnants, and the emission

from such particles in a magnetic field is call synchrotron emission.

8.1 Overview

Let’s start with an electron with velocity in the plane perpendicular to
the direction of the (uniform) magnetic field. In the absence of an electric
field, the (relativistic) equation of motion is (cf. § 5.4)

dmv

—— =eBXB

T g —eBXB,

where 3 = v/c. Because the acceleration is at right-angles to the velocity,
B and therefore y are constant. The electron gyrates in uniform circular

motion with frequency

eB
Wwp = )
~ymc

which reduces to the electron cyclotron frequency for vy = 1. Using
Eq. (5.9), we compute the radiation electric field generated by the gyrat-
ing electron as shown in Figure 8.1. The magnetic field points along 2;
the center of gyration will be at the origin; and the observer lies in the k
direction at great distance.

As the particle energy ymc? increases, the relativistic aberration
shapes the electric field into a sharp pulse observed when the electron
is traveling along our line of sight—along %, in this case. On either side of
the pulse, the electric field vanishes when # — 3 || 3. Measuring the angle
from the line of sight, we see that since 3 is at right angles to 3, the angle
at which the field vanishes is arccos(5) — 1/~ at large .
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Such a sharp pulse in the electric field implies that the received power

will be distributed over a broad range of frequencies. Rather than com-
pute the spectrum directly from the Fourier transform of the electric

field, we’ll give a more heuristic description, following Rybicki and Light-

man [1979]. We approximate the angle over which the pulse lasts as
AfO = 2/~.In general, the electron has a component of momentum

p|| along B in addition to the component p | in the plane perpendicular

to the field. Define the pitch angle « as the angle between p and B; then

lp | = psina. We first need to determine the time needed for the elec-
tron to turn through an angle Af. To do this, we construct a unit tangent

vector T along the trajectory; then the time for ¥ to turn through an
angle Af is At = AfQ/|d+/dt|. The unit tangent vector is just

.V v va
T==—=——);
14 14 v

since v|| is constant, d/dt = v~1dv, /dt = wpsina and

2
~ywgsino’

At

~
~

vAt;

hence the arrival time between the start of the pulse and its end is

In the time At, the electron moves towards us a distance As

1
AtAzAt(l—K>%73 —,
c ~Y3wpg sin «

We therefore expect the power to be distributed over a broad range of

frequencies up to a critical frequency At ' w, = 7Pwpsina ~ Aty ™.
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Figure 8.1: Radiation electric field for

a particle moving in the xy plane. The
magnetic field points along 2, the center
of gyration is at the origin, and the
observer lies at great distance along the %
direction.
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Since we’ll be interested in averaging over pitch angles o and we aren’t

computing the spectral shape in detail, we’ll define® w, = v3wp = y2wr. ! Note that Rybicki and Lightman [1979]
normalize the critical frequency as

3
EXERCISE 8.1 — A “typical” galactic magnetic field strength is B = 10 pG. we = §W3WB sina.
1. What is the electron cyclotron frequency for this B?

2. For radio observations in the GHz range, what is a typical value of +y for the
electrons? Would you expect these electrons to have a thermal or non-thermal
distribution?

3. Inactuality, our emitted radiation would be a discrete series of frequencies
rather than a continuous distribution. How good is our approximation of a
smooth frequency distribution? Hint: What is the spacing between
harmonics?

Although not immediately obvious from Equation (5.9), for large ~y
the electric field depends on the angle 6 between # and 3 through the
combination 78 = ~ywgt, as illustrated in Fig. 8.2. If we sett = 0 to be
when the electric field is at maximum, then the doppler shift over the

pulse implies that t = ?t,, so that the received electric field depends on
the time as
Ywpt ~ ’y3wBtA  Wcta.

E/max(E)

Hence the electric field is E « f{w,t). Here f is some as-yet-unspecified

function of w.t.

Since the electric field is a function of w.t, its Fourier transform is

E(w)=F (“) .
We Figure 8.2: The electric field, scaled to its
maximum value, as a function of ywgt.
That is, the observed electric field, and hence the observed power, is

distributed over frequencies as a function of w/w.. We can write the
spectral distribution of the power as

Pu(7) = Co (”) .

We

Here Cis a as-yet-undetermined constant and [;~ ¢ dw = 1.

To FIx C, we need to normalize our spectral distribution by the total
power emitted. Here we need to make a brief digression to modify Lar-
mor’s formula, which contains the Newtonian acceleration. First, as
was done in the derivation leading up to Eq. 7.10, we define the four-
acceleration a¢® = du®/dr. This is a four-vector, since dr is a Lorentz
scalar and du® is the differential of the four-velocity. Next we boost to a
momentarily comoving rest frame (MCRF) of our particle. In this frame

0
du

du® =



60 RADIATION IN ASTROPHYSICS

and d7 = dt; hence the four-acceleration is just

where a is the Newtonian acceleration. As a result, the total power emit-
ted is 0 2 0 2

P=35la-al = $5 (nua'a)
and is therefore the same in all frames.

Now to evaluate the acceleration a. Here we hit a small obstacle: in the
MCRE, the force due to the magnetic field vanishes. The acceleration is
instead due to an electric field that appears in this frame. Denoting the
MCRF by a “”, the fields in the MCRF are

2

r 7 .

E = ~(E+BxB) 7+1ﬁ(,6 E) (8.1)
;o 7 .

B = V(B—ﬁXE)—7+1ﬁ(5'B), 8.2)

since E = 0, the particle’s acceleration in the MCRF is
a = 'yi,ﬁ X B = yiﬂBsina.
m m
For large v, 8 ~ 1, and the total power emitted is

2 ,e*B?sin’a
P(y) = s 220
M =37 223
If we assume that the pitch angle « is randomly distributed, then averag-
ing over angles gives

2,201 [,
(P(y)) = 37 o [M/sm adf
L (2) B _afsr et ] B
~ \3/) m2c3 3|3 mt gr|”
4
= gO’TCUB"/Z. (83)

Here o7 is the Thomson scattering cross section and U is the energy
density of the magnetic field.

We can equate equation (8.3) with the integral over all frequencies of
the Fourier transform,

P(r) = / Co (;”) dw = Cw, = Cy2uwr. (8.4)
0 C
Comparing Equations (8.3) and (8.4) fixes C and we have
4 orcU; w
Pu(v) = gUT 2o () : (8.5)
wr, We

This is the spectral distribution for electrons at a single energy ymc?.
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WE CAN DETERMINE THE FORM OF THE SPECTRUM for a population of
electrons even without knowing the precise functional form of ¢(w/w.).
The electrons are non-thermal (cf. Exercise 8.1), and their distribution
with energy can often be described as a power-law,

n(y)dy =noy 7 dv, (8.6)

over a large ranges of energies ymc?. Here ng is a normalizing constant.
Typicallyp ~ 2.5 and we may take ypx — 00. To get the total power
output at frequency w, we multiply P, by n(y) and integrate over all :

4 o1cU, *
P, = §UTC B"O/ v Po <OJ> dy.
wr, , We

‘min

Changing variables to ¢ = w/w. = w/(y?wr)

—(p—l)/2 fmax(w)
2 orcU, w
P, = Z——ng () /0 P32 (¢) de

3 wr, wr,
—(p-1)/2
2 orcU;
~ 2T, (”) . 8.7)
3 wr, wr,

The bounds of the integral depend on w; but, if ¢ — 0 for both large
and small &, we can approximate &,y — 00. As a crude approximation,
we can take ¢(§) = 0(§ — 1): that is, we approximate the spectrum
for electrons with energy ymc? as a sharp spike at w = w,, so that the
integral is unity.

The important point is that for a power-law distribution of electrons
with index p—n(y) o v~ P—the synchrotron spectrum is a power-law
with index (p — 1)/2. For p ~ 2.5, typical for many sources, P,, oc w97,

This spectrum is steeper than thermal bremsstrahlung, for example.

8.2 Synchrotron Absorption

The emission from a cloud of synchrotron-emitting particles is, in the
absence of backlighting,

L(n)=S1-7).

Here S, is the source function, and since we have a non-thermal distribu-
tion of particles, S, = €, /(47k,) # B,. The most direct way to realize
this is that B, = B, (T), and for a power-law distribution of electrons,
temperature is not defined.

To compute the opacity, we use the formalism of Ch. 4. specifically the

Einstein A and B coefficients. Recall that the emissivity is? 2 ¢f. Eq. (4.7)
PEV Anm
- — hp h )
47 " 47 o)

and the opacity is3 3 cf. Eqn. (4.8) and (4.9)
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PRy = (ntmn - nanm) -

The coefficients are related as* 4 Exercise 4.2

Bin _ gm A _ 2h13
B gn7 Bom 2

In these equations, m denotes the lower energy state and n the upper.

Because we have a continuum of electron energies, we must sum over
all pairs of upper and lower energy states separated by hv. The electrons
are free particles, so one has to integrate over their phase space: if f(E) is
a distribution function, then

N [avepne)

so for an isotropic distribution of relativistic electrons (E = pc),

N 8w >
n=y = (he? /E f(E) dE.

Notice this implies that g,, = g(E,,) = 87E2,/(hc)®. In the above relations

we make the replacement n,, = n(E,,) = g(En)f(En). Since we have For a power-law distribution of electrons
with f(E) = E~P~2, we combine the factor
of E? from the density of states and write
sitions from higher to lower energies with a |, and upward transitions n(E) = noE~".

a continuum of energies, rather than discrete levels, let’s denote tran-

with an 1. That is, A, and B, become A| and B, and B,,, becomes B;.
Further, we’ll denote the higher energy as simply E, and the lower energy
asE.

To sum over all transitions, we write the profile function as ¢(v) =
§(E — E' — hv). The power emitted per electron at energy E is then

P,(E) = / AhvS(E —E — hv) dE' = A hv. (8.8)
The opacity is
Ry = / / Bg; - (’;g)] %5(5 — E' — hv)hv g(E) dE dE/
A=l

Here we've used the relations between the A and B coefficients to express
the opacity in terms of A|. Now we use Equation (8.8) and expand the
term in [] to first order” in hv to obtain 5 This is permissible in the classical limit

for which hv < E
2 d [n(E)
- E>— |=Z|P,(E).
phiv 87r1/2/dE dE [ E? ] v(E)
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Substituting for P, (E) from Equation (8.5), writing E = ~ymc?, and
changing variables to ¢ = v/(v?v) gives

corUs (v P2
ERA :
mvy

PRy, X —
vy

The opacity increases at low frequencies, so there is a transition fre-
quency below which the source becomes optically thick: the source func-

5/2
€y o[V
Sy = xvi | — .
47k, v

In the optically thick regime, the spectrum does not depend on p, but the

tion is

slope is 5/2, rather than 2 as for Rayleigh-Jeans emission.
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9
Spectral Lines

9.1 Ionization Balance and Level Populations

Suppose we have a reaction,A+ B+ ... — C+ D + .... For example, we
might consider the ionization of hydrogen,

H—->H" +e. 9.1)

When this reaction comes into equilibrium, we are at a maximum in
entropy, and the condition for equilibrium is that the energy cost, at
constant entropy, to run the reaction in the forward direction is the
same as to run the reaction in reverse. This can be expressed in terms of
chemical potentials as

pa+ps+ ... = pc+pp+ ... (9.2)

Note in this formalism that a reaction 2A — B would be expressed as
2p14 = pp.

To use Eq. (9.2), both sides must be on the same energy scale. To
ionize hydrogen is an endothermic process; the left hand side of Eq. (9.1)
is at a lower energy and we therefore subtract the binding energy Q =
13.6 €V so that the energy zero-point is the same on both sides:

po — Q= pi4 + p—, (9.3)

in which the subscripts 0, +, and — denote H, HT, and e, respectively. To
solve this equation to find the abundance of ionized hydrogen, we then
need an expression for the chemical potentials.

In statistical equilibrium, we can describe a system of particles by a
distribution function f(p, x) d3p d3x, such that the number of particles is

N= / &p Bxf(p, x), (9.4)

where the integration is over the phase spaces of momentum and posi-
tion coordinates (p, x). In an ideal gas, the particles do not interact. In
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such a case, the distribution function f = f(p) does not depend on po-
sition. The integration over d3x just gives a factor of the volume, so the
number densityisn = [ d3pf(p).

The distribution function is

-1
fip) = 5% [exp (skBT“ ) + 1} . 9.5)

Here the + sign is for fermions (half-integral spin) and the — sign is

for bosons (integral spin). The factor g is the degeneracy of states with
energy E. For example, g = 2 for a spin-1/2 particle.

To explore the non-degenerate limit, take® A = exp(u/ksT) < 1.
Further, let’s look at an isotropic system, so that d°p = 47p? dp. Then

_ 4mg p* dp o 47rAg/ ) 2
n(A,T) = h3 /A—lexp(g/kBT)il~ h? P\ ke ) P dp-

This has the form of a Maxwell-Boltzmann gas. For a non-relativistic

system, write p>dp = m(2me)'/? de and make the substitution x =
¢/(ksT) to obtain
2mmkgT 3/2
g 2 .
Solving this equation for p gives

5 3/2
u=kgTIn A = kgTln l; ( h ) ] . (9.6)

A oo
n(p,T) = 47];3g\/§(kaT)3/2/0 e dx = A

27kaBT

We can now use this expression to find the ionization balance of hydro-
gen, Eq. (9.3).
Inserting Eq. (9.6) into Eq. (9.3) and rearranging terms gives the Saha

3/2
nyn_  gig_ (m_kgT Q
= —-——= . 9.7
no 2o < 27h? ) exp< kBT) ©.2)

The number density of all hydrogen in the gas is ng + n; = ny. Denote

equation,

the ionized fraction by x = n,. /ng = n;/npy, so that the left-hand side of
equation (9.7) is ngx?/(1 — x). In the hydrogen atom ground state, the
electron spin and proton spin are either aligned or anti-aligned. These
states are very nearly degenerate, so that go = 2. Both the proton and
electron have spin 1/2; there are really only two available states, however,
because of the freedom in choosing our coordinate system. As a result,
gi+g_ = 2aswell

Inserting these factors into equation (9.7), and using kg = 8.6173 x
107° eV/K, we obtain

2 241x10%em 3 [ T \*? 15.78 X 101K\ g o
1—x nu 10fk) P T -

1 The quantity A is called the fugacity.
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This equation defines relationship between density and temperature at
which x = 1/2. At fixed density, the transition from neutral to fully
ionized is very rapid.

9.2 Line Widths

We saw in Section 5.3 that there is always an intrinsic width to any ab-
sorption or emission feature in a spectrum. This intrinsic width is very
small, however, and in practice the width of lines are set by random
Doppler shifts from thermal motion of the gas (or small-scale turbulent
eddies) and collisions.

Suppose we model our oscillator as being started and stopped by
impacts; in between impacts it just radiates as e°*. To get the spectrum,
we take the Fourier transform,

F(w,t) = /0 dt’ expli(wo — w)t'],

where t is some time between impacts. Now if the impacts are distributed
randomly and are uncorrelated, then the distribution of wait times fol-
lows a Poisson distribution,

W(t)dt = e /7 dt/r,

where T is the average time between collisions. Using this to compute the
energy spectrum, we obtain

1
T 2nr

> . _ 1 1 .
/O dt F(w, t)F* (w, t)W(t) = a7 (o — w2 1 A2

E(w)

the line profile is again Lorentzian, with a full-width at half-maximum
(FWHM) 2/7.

We might be inclined to treat the atoms as hard spheres, but this
gives a large 7, or equivalently a narrow line width. We are therefore
led to consider longer-range interactions for setting the intrinsic line
width. Table 9.1 lists such interactions. The picture is similar to our
considerations of collisions in §6.2. For a given impact parameter, the
interaction perturbs the energy levels; by integrating over a distribution
of impact parameters one gets the intrinsic damping. Of course, we
should really use a quantum mechanical calculation. We can scale our
cross-section to the classical result (eq. [5.22]), however, by writing

o, = (”2> fbu, (9.9)

meC

where ¢, is the line profile (dimension ~ Hz ') and fis a dimensionless
cross-section called the oscillator strength.
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perturbation form source affects Table 9.1: Interactions in stellar atmo-
linear Stark Cor=2 e, p,ions H (Ho, HS, ...) spheres. Erom Mihalas [1576].
quadratic Stark  Cyr—* e non-hydrogenic ions
van der Waals Cgr—®  atoms, H most atomic lines

9.3 The Curve of Growth

A classical technique in the analysis of stellar spectra is to construct the
curve of growth, which relates the equivalent width of a line W, to the
opacity in the line. This discussion follows Mihalas?. 2D. Mihalas. Stellar Atmospheres. W. H.

Let’s first get the opacity in the line. Write the cross-section for the Freeman, 2d edition, 1978

2
e
Oy = ( ) ﬁj¢V7
mec

where the first term is the classical oscillator cross-section, f; is the os-

transitioni — jas

cillator strength and contains the quantum mechanical details of the

interaction, and ¢, is the line profile. Now recall that the opacity is given
by k., = n;o,,/p, where n; denotes the number density of available atoms
in state i available to absorb a photon. Furthermore, we need to allow for

stimulated emission from state j to state i. With this added, the opacity is> 3 P'm writing the line opacity as x., to
distinguish it from the continuum opacity.
71'62 gi
o = (2 fyumi |1~ 7). (9.10)
MeC g n

If we are in LTE, then the relative population of n; and n; follow a Boltz-
mann distribution,

This ensures we have a positive opacity. If our population were inverted,
i. e., more atoms in the upper state j, then the opacity would be negative
and we would have a laser.
Now for the line profile. In addition to damping, there is also Doppler
broadening from thermal (or convective) motion. Let the line p1roﬁ1e4 be 4 Here we’ll switch to v, rather than w.

Lorentzian,
'/ (4m)

(v —v0)> + (T'/[4m])>
In a Maxwellian distribution, the probability of having a line-of-sight

6=

velocity in (u,u + du) is

1 u?
du = —— =,
Au) du = —= - exP( ug>

where ug = (2kT/m)'/? = 12.85kms~! (T/10*K) (for H) is the mean
thermal velocity. The atom absorbs at a it shifted frequency v(1 — u/c), so
the mean cross section is

o, = /OC o [u (1 - %)] Pu) du. (9.11)

— 00
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After some algebraic manipulations, we have the cross-section

Ve’ 1 fa > exp(—y°) dy
(e )iz U [ 2252
1

= A—VDH(a,V) (9.12)

where Avp = vug/cis the doppler width, a = T'/(4wAvp) is the ratio
of the damping width T to the doppler width, and v = Av/Aup is the
difference in frequency from the line center in units of the doppler width.

Ov

The function H(a, v) is called the Voigt function.

Let’s combine the line opacity with the continuum opacity and solve
the equation of transfer. For simplicity, we are going to assume pure
absorption in both the continuum and the line. Under these conditions,

the source function is® S, = B,,, the Planck function. For a plane-parallel 5 See the notes on the Eddington atmo-
atmosphere, the equation of transfer is then sphere.
drI
ud—” =1I,-B, (9.13)
Ty

where p is the cosine of the angle of the ray with vertical. Solving equa-
tion (9.13) for the emergent intensity at 7,, = 0 gives

L () = % / "B, [T(r,)] exp(—7, /1) dr, . (0.14)

The opacity is given by
Ky = Ky + Xu, (9.15)

where € is the continuum opacity and x,, = xo¢, is the line opacity,

with )
1
Xo = — <m> fijni (1 - ehW/kT)
p \mec

being the line opacity at the line center v,.

As a further simplification, we can usually ignore the variation with

C
v

(although it is not so bad in practice), let’s assume that 5, = x,/kc is

v in K, over the width of the line. As a more suspect approximation
independent of 7,,. With this assumption we can write dr, = (1 + 3,)dr,
where 7 = —pk€ dz. Finally, let’s assume that in the line forming region,
the temperature does not vary too much, so that we can expand B,, to
first order in 7,

B,[T(7)] ~ By + BT,

where By and B; are constants. Inserting these approximations into
equation (9.14), multiplying by the direction cosine p and integrating
over outward bound rays gives us the flux,

1 poo
Foo= 2 [ [TiBot Bl | <Z4 8] (004 5) dr

2 B
= 7T|:B()—‘r ! :|

3115, (9.16)
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Far from the line-center, 8, — 0, implying that the continuum flux is

FE=n [Bo + 231] .
3
Hence the depth of the line is
A”_lig‘%lfvﬁu’ (9.17)
where 28,/3
0= m (9.18)

is the depth of an infinitely opaque (3, — c0) line.

EXERCISE 9.1 — Explain why an infinitely opaque line (Eq. [9.18]) is not
completely black, i.e., why Ag # 1.

Now that we have the depth of the line A, we can compute the equiva-
lent width,

o < B
W, = A, dv=A dv. 9.19
/0 Y 0/0 1+8, " (9:19)

Let’s change variables from v tov = Av/Avp = (v — vy)/Avp. Since
H(a,v) is symmetrical about the line center, we will just integrate over
Av > 0, giving

BoH(a,v)

15 BoH (@) BoH(a,v) v, (9.20)

W, = 2A0Avp /
0
with Gy = xo/(k“Avp).

It’s useful to understand the behavior of W,, in various limits. First,
at small line optical depth (6p < 1) only the core of the line will be
visible. In the core of the line, H(a, v) ~ exp(—v?) so we insert this into
equation (9.20) and expand the denominator to give

Wy = Wy = / Z(fl)kflﬂée*k"zdv
0 k=1

2AOAVD

= 1\/7750{1—60—4-68—... . (9.21)
2 V2 V3

Here W is the reduced equivalent width. Notice that since 5y < 1/Avp
(cf. eq. [9.12]), the equivalent width W, is independent of Avp in this
linear regime. Physically, in the limit of small optical depth, each atom
in state i is able to absorb photons, and the flux removed is just propor-
tional to the number of atoms n;.

As we increase f eventually the core of the line saturates—no more
absorption in the core is possible. As a result, the equivalent width
should be nearly constant until there are so many absorbers that the
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damping wings contribute to the removal of flux. In the saturation regime,

2
", but we can no longer assume

the Voigt function is still given by e~
Bo < 1, so our expansion in equation (9.21) won’t work. Let’s go back to

our integral, eq. (9.20), change variables to z = v?, and define a = In 3y
to find . 1
Wy = 1 / 2,7 dz.
2 )y e 41
This may not look like an improvement, but you might notice that it
bears a resemblance to a Fermi-Dirac integral, which are used in com-
puting the equation of state of degenerate electrons. You can find a de-

scription of how to integrate it in a graduate-level textbook on statistical
mechanics. In this saturation regime,

2

T VoS
Wi~ +/Infy |1— 24(In fo)? — 384(In o)’ — .. (9.22)

Note that the amount of flux removed is basically 240 Avp: the line is
maximally dark across the gaussian core.

Finally, if we continue to increase the line opacity, there will finally be
so many absorbers that there will be significant flux removed from the
wings. Now the form of the Voigt profile is H(a,v) =~ (a/+/7)v2, so our
integral (eq. [9.20]) in this damping regime becomes

I ﬁ)
wy = /0 (1+ Foa dv

= (raf)"”. (9.23)

Note that since aBy o Avp?, W, is again independent of the doppler
width in this regime.

Now that we have this “curve of growth”, W#(5,), why is it useful?
Since it only involves the equivalent width, it is possible to construct
the curve of growth empirically without a high-resolution spectrum.
Next, let’s put some of the factors back into the quantities in the curve
of growth. First, for a set of lines, the population of the excited state
depends on the Boltzmann factor exp(—E/kT). Second, we can expand
out the Doppler width in both W and 5o,

Wa) _ WA\ 10 (M0
log <A>\D) = log( 3 > log( . ) (9.24)
E
logBo = log(gifyA) — T + log(N/nC) +logC (9.25)

where C contains all of the constants and the continuum opacity. The
temperature T is picked as a free parameter, and is picked to minimize
scatter about a single curve that is assumed to fit all of the lines. What
is measured then is log(W /) and log(gif;;A); by comparing them to
theoretical curves one gets an estimate of log(uo/c), the mean velocity
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of atoms (may be thermal or turbulent). Since the continuum opacity ¢
usually depends on the density of H, one gets from equation (9.25) an
estimate of the abundance of the line-producing element to H.



A
Technical Notes

A.1 Units

The choice of dimensions and units for physical quantities is arbitrary;

they are chosen for our convenience!. Here we shall give three examples 1 Raymond T. Birge. On the establish-
ment of fundamental and derived units,
with special reference to electric units.
ered. parti. Am.J. Phys., 3:102, 1935a; and
Raymond T. Birge. On the establishment
of fundamental and derived units, with
FOR NUCLEAR PHENOMENA, IT IS CONVENIENT TO SET THE SPEED special reference to electric units. part ii.

OF LIGHT ¢ = 1. The dimension of cis [c] ~ LT~}; in this case, then, Am. J. Phys., 3:171,1935b

of how one chooses quantities based on the phenomena being consid-

we can choose either a unit of length or a unit of time. For example, if
we choose 1 m to be our unit of length, then our unit of time is 1m/c. In
nuclear physics, it is convenient to pick the femtometer, also known as
the fermi?, for the unit of length; the “size” of a nucleon is of order 1 fm.
To define units that connect the macroscopic world to our microscopic 21fm =10~ cm
calculations, we turn to the world of accelerator physics. The electric
potential is defined as the energy per unit charge and has a unit of a
volt (V). If we accelerate a single electron through a 1V electrostatic
potential, then the energy gained by the electronis1eV = 1.602 x
107197 = 1.602 x 1072 erg. The electron volt, and powers thereof, are
convenient scales: the electronic binding energy of a hydrogen atom is
13.6 €V; the rest mass of an electron is 0.511 MeV; and nuclear energy
levels are spaced by keV to MeV, with the rest mass of a proton being

close to 1 GeV.

In nuclear physics a convenient choice is the MeV for energy. In this
system of units, ic = 197 MeV fm, and the unit of charge is3 2 = 3 Recall that €2/ (hc) = 1/137 is the fine-
[e2/(hc)]hc = 1.44 MeV fm. Since the “size” of a nucleon is of order structure constant; since it is dimension-

. . . . less, the unit of e is [energy] x [length].
1fm, this immediately tells you the scale of the electrostatic potential

between two protons in the nucleus. The temperature scale in these units
is1MeV/k = 1.16 x 10° K.

FOR HIGH-ENERGY PHYSICS, WE CAN GO FURTHER AND SET BOTH I
AND ¢ TO UNITY. The dimension of fiis [h] ~ ML2T-1 ~ ET. Time there-
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fore has dimensions E~?, and since ¢ = 1, length also has dimensions E~1.
Our sole dimension is energy, which we can measure in units of MeV,
for example. In this system, e? = 1/137 is dimensionless and the unit of
length is 1MeV ! = hic/(1MeV) = 197 fm = 1.97 x 10~ cm.

If instead we were investigating topics involving stellar-mass black
holes, we could choose c = G = 1. The dimension of cis [c] ~ LT!
and the dimension of G is [G] ~ L3T~2M~1, so our units are specified
once we choose a unit of mass. If we pick our unit of mass to be 1 Mg
(a convenient choice for astrophysics) then our unit of length becomes
GM, /c?> = 1.5km and our unit of time becomes GM, /c® = 4.9 us.

FINALLY, IF WE REALLY WANT TO HAVE NO ARBITRARILY CHOSEN
UNITS, we canset i = ¢ = G = 1, which gives the Planck scale. The
unit of mass is mp = (hc/G)/? = 2.18 x 10~° g; the unit of length is
(hGc=3)Y/? = 1.62 x 10733 cm and the unit of time is (AGc~>)Y/? =
5.39 x 10~%s.

EXERCISE A.1— For atomic problems, we are non-relativistic, so setting
¢ = 1lis not the most convenient choice. Instead, we might choose to set
e’ = i = m, = 1. If we do this what are units of length, time, and energy?

TO ILLUSTRATE HOW TO CONVERT UNITS, WE SHALL START WITH A
SIMPLE EXAMPLE. Suppose we measure the length of a rod with both a
meter stick and a yardstick. The length of the rod, when measured with
the meter stick is I, m; when measured with the yardstick, [,qyd. When
written in this way, both [,4 and I, are pure numbers, and clearly I, and
lyq are different numbers! It is the same rod, however, so

Im x Im =g x 1yd.

The lengths 1 m and 1.0936 yd are equivalent, so if we divide both sides
by this length, we obtain

lya = 1.0936 X In;

or, put differently,

1.0936yd
Im

Let’s now apply this algorithm to find how to convert from charge in

lyg x 1yd = x1m X Iy.

SI (gs1 % 1C) to charge in gaussian CGS (gcgs % 1statcoul). The potential
energy of two identical charges g separated by a distance d is, in SI and
gaussian CGS respectively?,

1 qgl
b = |—| =
St |:47T50 ] SI dSI
2
Dogs = 4ces

dCGS

4 why do we use this relation?
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Hence,
qcgs X lstatcoul = [(Pcgs x lerg) x (degs X 1cm)]1/2
107 er 100 cm 1/2
@) < ST |

1 1/2 2
dneg > 51] gst X (ergcm)

A/«

= {109

= [10cgs1] gs1 % (erg cm)l/Q.

Here c5; = 2.99792458 x 108 is the numerical value of the speed of light
in meters per second and we used (4meg) "1 = 1077¢2.

For example, the charge of an electron in Slise = 1.602 x 10 C;
in gaussian CGS, the chargeise = (2.99792458 x 10%) x (1.602 x
10719) = 4.803 x 10~ statcoul. In practice, the easiest way to remember
the electron charge is to recall that the fine structure constantis a =
e?/(hc) = 1/137 and therefore e = \/hc/137. Indeed, this latter relation
is useful in making the transition to “natural” units, in whichc = i = 1.

A.2 Tensors and index notation

A powerful notation when working with tensors is to use the rule that re-
peated indices are summed over. For example, if x;, y; represent vectors in
a Euclidian space with components [x;, xp, x3] and [y1, y2, y3], respectively,

then the dot product of the vectors is x;y; = x1y1 + x2y2 + x3y3.

In working with vectors, two useful symbols are the Kronecker delta,
defined by

1 i=j
5 = , Al
) {0 i#j @D

and the Levi-Civita symbol, defined by

1 i,j, k are a cyclic permutation of 1, 2, 3
Eijk = —1 i,j, k are an anti-cyclic permutation of 1, 2, 3 (A.2)
0 if any indices are identical

By a “cyclic permutation of 1, 2, 3”, we mean {1, 2,3}, {3,1,2}, or
{2,3,1}; by “anti-cyclic”, we mean {2,1, 3}, {3,2,1}, or {1, 3, 2} —that is,
any combination obtained from {1, 2, 3} by a single exchange of indices.

In terms of the Levi-Civita symbol, the i component of the cross
product of two vectors a, b is written

[a X bL = e,-jka}-bk.

For example, ifi = 1, e,-jkajbk = azbg — a3b2.
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EXERCISE A.2— Show that

€ijk€imn = 0i10imOkn + Ox10im0jn + 610kmdin — 0j16imOkn — Ok1GjmOin — 6i10kmOjn-

EXERCISE A.3 — Use the index notation along with the symbols € and d;
and the result of exercise A.2 to prove the following relations.

1. V-(axb)=b-(Vxa)—a-(V xb)
2. Vx(axb)=b-V)a—b(V-a)+a(V-b)—(a-V)b
3. Vx(VXxa)=V(V-a)—Va

A.3 Hermitian operators

Suppose we have a set of orthonormal base states {|n)}, meaning

win={ g 77

If we have an operator A, the (m, n) matrix elements of the operator are
(m| A |n). Thus, for example, we can use the identity d>oaln) (n] = 1to
expand (¢| A |¢)) as

(@A) =" (@] m) (m|Aln) (n| ©).

The Hermitian adjoint of the operator A, denoted by Af, is defined via
(0 AT [v) = (] A]g)" (A3)

Let |A¢) be the state formed by operating on |¢) with A: |A¢) = A|¢).
Then since (| ¢)* = (¢| 1) we can write Equation (A.3) as

(pIATY)) = (Agly)). (A.4)

IfAT = A, then A is said to be self-adjoint, or Hermitian.

EXERCISE A.4— SupposeA = BC; that is, A is formed by successive
applications of operators C and B. Show that AT = C'Bf. If C* = Cand B = B,
does AT = A?

EXERCISE A.5— Suppose that |n) is an eigenstate of A: that is,
A|n) = a, |n), where a, is a complex number. Show that if AT = A, that is, if A is
Hermitian, then a, is a real number.
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A.4  Time-dependent perturbation theory

This section follows the treatment in
Suppose we have a system in some state |¥) acting under some Hamilto- Baym [1990].

nian Hy. The system evolves in time according to
ind |W) = Ho | W) ; (A.5)
ot — 410 ) .

we wish to analyze the behavior under a perturbation V. Specifically, we
are interested in an oscillatory potential, which we’ll increase in ampli-
tude as time increases from t — —oo:

V= Vet [eii“’t + ei‘*’t] ) (A.6)

Here n > 0 is an arbitrary number used for bookkeeping—we’ll eventu-
ally take the limit n — 0.

To proceed, we first factor out the time dependence from the unper-
turbed Hamiltonian by writing |¥) = e~ iHot/h |1} and substitute this into
the perturbed equation (A.5)

0 .
iz |¥) = (Ho+ V) |9);
as a result, we remove the evolution due to Hy and obtain
0 o o
ih— (1) = et/ Ve fyp) (A.7)

If we start in an eigenstate [{)(t — —o0)) = |m) of Hy with energy E,,
then we can get an approximation to |1) by substituting |¢)) ~ |m) on the
right-hand side of equation (A.7):

. t A .
|¢(t>> = _ih/ dt eiHot/hVe*lHot/ﬁ |m> )

The amplitude for the system to be in an eigenstate |n) of Hy with energy
E, at time tis

. t . -
v} =~ [ de Gal /v I )

—0o0

furthermore, since e =0t/ |m) = e=Ent/% |m) and (n| eHot/P = (n| et/

the amplitude to be in state |n) at time t becomes

.ot
<n| 7/}> _ 7%/ dr [ei(E,,fEmfhwfihn)t/h+ei(E,,fEm+hw7ihn)t/h} <n|‘7|m>
. et (Bn—Em—hw)t/h et (Bn—Em+hw)t/h R
— " %4 .
€ [En—Em—hw—ihn +En—Em+hw—ihn} (nl Vm)

The probability for the system to have transitioned from state |m) to
state |n) after time t is then

N 2 1
Vi
| < { e

Busn(t) = |(n] ) = &7
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1
(Ep — Epp + hw)? + h2n?
672iwt

[E, — Em — hw — ihn][E, — Ep + hw + ihin)

_|_

+

e2iwt
B, —E, — hw 1 i, —Em+fzw—ihn]}'

Now if we suppose we have a large number of systems (like a collection of
atoms upon which we are shining light), then the instantaneous rate at
which a system makes a transition is I'y,—,, = dB,—,,/dt; also, we want

the transition rate averaged over many cycles. The oscillatory terms—

+2iwt

those containing e —will then average to zero, leaving us with the

transition rate
‘; 2 2nt
Tnosn = ‘<n|V|m>‘ e

X 21 + 21
(Eyn — Ep — hw)? + 1202 (E, — Epy + hw)? + h2n?
Now it’s time to take the limit 7 — 0: clearly the result I',,_,, = O unless
hw = +(E, — Ep); in fact,

Tn = 2% (] f/|m>]2{5(5,, — By — hw) + 6 (Bn — By + hw)} . (A.8)

The first §-function comes from the e~ term; the second, from the
et term. Since our frequencies are positive, the first delta function
therefore corresponds to upward transitions E,, > E,,, while the second
corresponds to downward transitions E, < Ej,.

Essentially, one can show that the result
doesn’t really depend on how the per-
turbation is turned on; but having the
exponential cutoff ensured that we could
do the necessary integration.
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