Quick notes on Virial Equilibrium

Zach Meisel Ohio University - ASTR4201 - Fall 2020

Virial Theorem

- Describes the energy balance in a stable (not rapidly contracting/expanding), bound (matter isn't escaping) system of N particles
- Consider the total kinetic energy of the star:
 - $K = \sum_{1}^{N} K_{i} = \sum_{1}^{N} \frac{1}{2} m_{i} v_{i}^{2} = \sum_{1}^{N} \frac{1}{2} p_{i} v_{i} = \sum_{1}^{N} \frac{1}{2} \vec{p}_{i} \cdot \frac{d\vec{r}_{i}}{dt}$

- $\frac{d}{dt} \left(\sum_{1}^{N} \vec{p}_{i} \cdot \vec{r}_{i} \right) = \sum_{1}^{N} \vec{r}_{i} \cdot \frac{d\vec{p}_{i}}{dt} + \sum_{1}^{N} \vec{p}_{i} \cdot \frac{d\vec{r}_{i}}{dt}$ • ...so, $K = \frac{1}{2} \left(\frac{d}{dt} \left(\sum_{1}^{N} \vec{p}_{i} \cdot \vec{r}_{i} \right) - \sum_{1}^{N} \vec{r}_{i} \cdot \frac{d\vec{p}_{i}}{dt} \right) \equiv \frac{1}{2} \left(\frac{d}{dt} G - \sum_{1}^{N} \vec{r}_{i} \cdot \frac{d\vec{p}_{i}}{dt} \right) = \frac{1}{2} \left(\frac{dG}{dt} - \sum_{1}^{N} \vec{r}_{i} \cdot \vec{F}_{i} \right)$
- Recall Work = Force*Distance and Work = -(Change in potential energy)
 so, *F*_i = -∇_iΩ
 - and therefore, $2K = \frac{dG}{dt} + \sum_{1}^{N} \vec{r_i} \cdot \nabla_i \Omega$
- Things are stable, so we can consider average properties,

•
$$\langle 2K \rangle = \left\langle \frac{dG}{dt} + \sum_{1}^{N} \vec{r_i} \cdot \nabla_i \Omega \right\rangle = \left\langle \frac{dG}{dt} \right\rangle + \left\langle \sum_{1}^{N} \vec{r_i} \cdot \nabla_i \Omega \right\rangle$$

Virial Theorem part deux

- We now have our time average: $\langle 2K \rangle = \left\langle \frac{dG}{dt} + \sum_{1}^{N} \vec{r_i} \cdot \nabla_i \Omega \right\rangle = \left\langle \frac{dG}{dt} \right\rangle + \left\langle \sum_{1}^{N} \vec{r_i} \cdot \nabla_i \Omega \right\rangle$
- Recall how to take a time average:

•
$$\langle f \rangle = \frac{\sum f(t)\Delta t}{\sum \Delta t} = \frac{1}{\tau} \int f(t)dt$$
 ...over all time: $\langle f \rangle = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} f(t)dt$

• Back to our virial:

•
$$\langle 2K \rangle = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \left\langle \frac{dG}{dt} \right\rangle dt + \left\langle \sum_{1}^N \vec{r_i} \cdot \nabla_i \Omega \right\rangle = \left\langle \sum_{1}^N \vec{r_i} \cdot \nabla_i \Omega \right\rangle$$
 because $\left\langle \frac{dG}{dt} \right\rangle$ is finite and $\tau \to \infty$

- For potentials $\Omega = Cr^{j}$: $\vec{r} \cdot \nabla \Omega = r \frac{\partial}{\partial r} \Omega = r \frac{\partial}{\partial r} Cr^{j} = jrCr^{j-1} = jCr^{j} = j\Omega$
 - So, $\left\langle \sum_{1}^{N} \vec{r_{i}} \cdot \nabla_{i} \Omega \right\rangle = \langle j \Omega \rangle$... for gravity, $\Omega \propto r^{-1}$...so: $\left\langle \sum_{1}^{N} \vec{r_{i}} \cdot \nabla_{i} \Omega \right\rangle = -\langle \Omega \rangle$
 - Meaning, $2\langle K \rangle = -\langle \Omega \rangle$

• Total energy in this case is: $\langle E \rangle = \langle K \rangle + \langle \Omega \rangle = -\frac{1}{2} \langle \Omega \rangle + \langle \Omega \rangle = \frac{1}{2} \langle \Omega \rangle < 0$ (for a bound system)

Consequences of the Virial Theorem

- Consider a contracting star or cloud of gas. Since $\Omega \propto -\frac{1}{r}$, decreasing r results in a more negative Ω .
- Since energy is conserved, $\langle E \rangle = \langle K \rangle + \langle \Omega \rangle = Constant$, and therefore if r decreases, $\langle \Omega \rangle$ goes more negative, meaning $\langle K \rangle$ must increase

• For a monatomic ideal gas,
$$\langle K \rangle = \frac{3}{2} N k_B T$$

- Since N is fixed, $\langle K \rangle$ increasing must mean that T is increasing
- Therefore, the temperature of a contracting cloud of gas is increasing
 - Meaning, a collapsing cloud of gas in space becomes hot enough to ignite hydrogen (a star)
 - Meaning, when a star runs through a core fuel (e.g. hydrogen) and contracts because of the loss in radiation pressure, the newly contracted core will have a higher temperature, ultimately enabling fusion of a harder-to-fuse fuel (e.g. helium).