Quick notes on Simple Atmospheres

Zach Meisel Ohio University - ASTR4201 - Fall 2020

the Isothermal Atmosphere

- Hydrostatic equilibrium:
 - Must satisfy $\vec{F}_{net} = m\vec{a} = 0$ for a static fluid element
 - Forces: Gravity downward & pressure inward from all sides
 - Non-vertical pressure forces cancel
 - Vertical forces cancel: $F_{\text{pressure,up}} = F_{\text{pressure,down}} + F_{\text{gravity}}$

•
$$F_{\text{pressure}} = P \cdot A$$

• $A(P_{\text{up}} - P_{\text{down}}) = F_g = mg = \rho Vg = \rho \Delta xAg$
• $-\frac{\Delta P}{\Delta x} = \rho g \longrightarrow \frac{dP}{dr} = -\rho g(r)$

• Equation of state:

•
$$PV = Nk_BT \longrightarrow P = \frac{N}{V}k_BT = \frac{k_B}{\mu m_u}\rho T \longrightarrow \rho = \frac{\mu m_u}{k_BT}P$$

- Substitute $\rho(P)$ into hydrostatic equilibrium equation and solve:
 - $P(r) = P_{ref} exp(-r/H_P)$, where H_P is the pressure scale height This is the "barometric formula"

the Isothermal Atmosphere

Atmosphere Composition (for μ)

