Quick notes on Magnitudes

Zach Meisel Ohio University - ASTR4201 - Fall 2020

Ways to say how much light a star emits

- Luminosity: Actual amount of energy emitted in light from the star.
 Technically if we're considering all wavelengths, we mean bolometric luminosity
- Apparent magnitude: How bright a star is when observed from Earth in a given band of wavelength
- Absolute magnitude: How bright a star would appear from Earth if it were located 10 parsecs away using a given band of wavelength
- Why use these separate descriptions?
- Luminosity is an intrinsic property, related to stellar structure. Apparent magnitude is something you can actually measure. Absolute magnitude lets us use the concept of magnitude, but relaying information about the luminosity (in a wavelength range).

Apparent Magnitude

- Apparent magnitude, m, is relative. For stars A and B,
 - $m_A m_B = -2.5 \log \left[\frac{F_A}{F_B} \right]$
- The fluxes are typically measured in a particular λ -range, known as a band. Often the letter for the band will be used in place of m
- The difference between m in two different bands provides rough spectral information.
 i.e. we can infer the surface

temperature

Magnitude

Sun

Sirius

Constructing an HR-diagram, for a globular cluster T_{eff} [K] 6000 5000 4000 10000 8000 Mv -1 M55 100il 2 10 5 10 0.112 -0.25 0.25 0.50.75B-V B.J. Mochejska, J. Kaluzny

Absolute Magnitude

- Absolute magnitude M corrects m (in a given λ -band) for distance.
- It is what m would be if the distance to the star were 10 parsecs (10 pc = 32.6 ly)
- Distance modulus: $DM = m - M = 5 \log(d) - 5$ (with d in pc)

