Quick notes on Blackbody Radiation

Zach Meisel Ohio University - ASTR4201 - Fall 2020

Blackbody Spectrum

• The Planck spectrum (a.k.a. blackbody)

• Intensity =
$$B(\lambda, T) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp(\frac{hc}{\lambda k_B T}) - 1}$$
 [Wsr ⁻¹m⁻²nm⁻¹]

- To express in frequency, perform substitution from $c=\lambda v$
- By integrating over all λ and all outward angles (half of a sphere), the **outward flux** from a blackbody is $F_{bb} = \frac{2\pi^5 k_B^4}{15h^2 c} T^4 \equiv \sigma_{SB} T^4$

How good is "blackbody" for a star?

Often ok, but not so great...

...sometimes outstanding

Effective Temperature

• By approximating a star as a blackbody, determine the **effective temperature**: $(r)^{1/4}$

$$T_{\rm eff} = \left(\frac{F}{\sigma_{SB}}\right)^{1/4}$$

- Meaning $L = 4\pi R^2 \sigma_{SB} T_{eff}^4$
- A greater L for the same λ_{peak} means a larger R

Radiation Pressure

- Radiation pressure is one component of pressure propping a star up against gravitational collapse
- Pressure = Force/Area = (Rate of Change of Momentum)/Area
- For photons, momentum $p = \frac{E}{c}$
- Intensity, $I_{\lambda} = \frac{\Delta E}{\cos \theta dA d\Omega dt d\lambda}$ integrate over all angles and λ results in F/A

really strong temperature dependence!

- Pressure from one wavelength, $P_{\lambda} = \frac{4\pi}{3c} B_{\lambda}$
- Integrate over λ for **Total radiation pressure**, $P_{rad} = \frac{4}{3c}\sigma_{SB}T^4 \equiv \frac{1}{3}aT^4$
- The radiation energy density per wavelength $U_{\lambda} = \frac{dE}{dVd\lambda} = \frac{1}{c} \int I_{\lambda} d\Omega = \frac{4\pi}{c} B_{\lambda}$
- So, the total radiation energy density is $U = 3P_{rad}$. This is the photon equation of state.