Quick notes on
 Saha Equation

Zach Meisel
Ohio University - ASTR420I - Fall 2020

When does the Saha equation apply?

- The latter term assumes Boltzmann statistics are valid: $P \sim \exp \left(-E / k_{B} T\right)$
- This is only true if $n \ll n_{Q}$, the quantum concentration, which is the ()$^{3 / 2}$ stuff
- For the solar photosphere, $\frac{n}{n_{Q}} \sim 10^{-6}$
- For the solar core, $\frac{n}{n_{Q}} \sim 10^{2}$
- Obviously Saha equation is no good here.
- The solar core is partially supported by electron degeneracy pressure!
- This does not mean the solar core isn't ionized. It means the photons (emitted due to the high temperature) aren't doing the ionizing. It's the pressure.

Stellar Abundance Ratios

- Suppose we observe absorption lines in a stellar atmosphere, from which we infer
 (from the line widths) that there are 400 more Ca II absorbers than $\mathrm{H} \alpha$ absorbers
- Does the photosphere have 400 x more Ca than H ?
- No! Need to know fraction of H in $n=2$ and singly ionized Ca
- Use Saha equation for $\frac{n_{H, n=2}}{n_{H}}$ and $\frac{n_{C a I I}}{n_{C a}}$ and find $\left(\frac{n_{H, n=2}}{n_{H}}\right) /\left(\frac{n_{C a I I}}{n_{C a}}\right)=\frac{5.5 e-9}{0.92} \sim 6 \times 10^{-9}$
- $\frac{n_{C a}}{n_{H}}=\frac{n_{C a I I}}{n_{H, n=2}}\left(\frac{n_{C a}}{n_{C a I I}}\right)\left(\frac{n_{H, n=2}}{n_{H}}\right) \sim 2 \times 10^{-6}$
which agrees with what is shown in the Quick Notes on Simple Atmospheres

Saha Equation: Not just for atoms!

- The Saha equation $\frac{N_{i+1}}{N_{i}} \approx 2 \frac{1}{n_{e}}\left(\frac{m_{e} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2} \frac{g_{i+1, g s}}{g_{i, g s}} \exp \left(\frac{-E_{i o n}}{k_{B} T}\right)$ refers to thermal equilibrium for ionization \& recombination reactions
- For nuclear physics, one can work out almost the same relation for radiative capture and photodisintegration reactions
- E.g. for $(p, \gamma)-(\gamma, p)$ equilibrium $\frac{N_{Z, A}}{N_{Z+1, A+1}} \approx \frac{2}{n_{p}}\left(\frac{\mu_{\mathrm{red}} k_{B} T}{2 \pi \mathrm{~h}^{2}}\right)^{3 / 2} \frac{g_{Z, A}}{g_{Z+1, A+1}} \exp \left(\frac{-Q_{p, \gamma}}{k_{B} T}\right)$
- This explains the reaction network path in explosive burning:
- rp-process in XRBs follows $Q_{p, \gamma} \sim 1 \mathrm{MeV}$
- r-process in NS mergers follows $Q_{n, \gamma} \sim 2 \mathrm{MeV}$

