Quick notes on Saha Equation

Zach Meisel Ohio University - ASTR4201 - Fall 2020

When does the Saha equation apply?

•
$$\frac{N_{i+1}}{N_i} \approx 2 \frac{1}{n_e} \left(\frac{m_e k_B T}{2\pi\hbar^2}\right)^{3/2} \frac{g_{i+1,gs}}{g_{i,gs}} \exp\left(-\left(\frac{E_{i+1,gs}-E_{i,gs}}{k_B T}\right)\right)$$
 "~" because assuming in ground-states

- The latter term assumes Boltzmann statistics are valid: $P \sim \exp(-\frac{E}{k_BT})$
- This is only true if $n \ll n_Q$, the quantum concentration, which is the ()^{3/2} stuff
- For the solar photosphere, $\frac{n}{n_O} \sim 10^{-6}$
- For the solar core, $\frac{n}{n_O} \sim 10^2$
 - Obviously Saha equation is no good here.
 - The solar core is partially supported by electron degeneracy pressure!
 - This does not mean the solar core isn't ionized. It means the photons (emitted due to the high temperature) aren't doing the ionizing. It's the pressure.

Stellar Abundance Ratios

- Suppose we observe absorption lines in a stellar atmosphere, from which we infer (from the line widths) that there are 400 more Ca II absorbers than Hα absorbers
- Does the photosphere have 400x more Ca than H?
 - No! Need to know fraction of H in n=2 and singly ionized Ca

Saha Equation: Not just for atoms!

• The Saha equation $\frac{N_{i+1}}{N_i} \approx 2 \frac{1}{n_e} \left(\frac{m_e k_B T}{2\pi\hbar^2}\right)^{3/2} \frac{g_{i+1,gs}}{g_{i,gs}} \exp\left(\frac{-E_{ion}}{k_B T}\right)$ refers to thermal equilibrium for ionization & recombination reactions

• For nuclear physics, one can work out almost the same relation for radiative capture and photodisintegration reactions

• E.g. for
$$(p, \gamma) - (\gamma, p)$$
 equilibrium

$$\frac{N_{Z,A}}{N_{Z+1,A+1}} \approx \frac{2}{n_p} \left(\frac{\mu_{\text{red}} k_B T}{2\pi\hbar^2}\right)^{3/2} \frac{g_{Z,A}}{g_{Z+1,A+1}} \exp\left(\frac{-Q_{p,\gamma}}{k_B T}\right)^{3/2}$$

- This explains the reaction network path in explosive burning:
 - *rp*-process in XRBs follows $Q_{p,\gamma} \sim 1 \text{ MeV}$
 - *r*-process in NS mergers follows $Q_{n,\gamma} \sim 2 \text{ MeV}$

